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agility. To construct the framework, a set of critical indicators—namely quality consistency,
response time, delivery speed, total cost, and regulatory compliance—was identified as the
foundation for evaluation. These indicators were analyzed through the application of multiple
machine learning algorithms to ensure accuracy, robustness, and interpretability. Comparative
analysis showed that the CatBoost algorithm delivered the most reliable outcomes, achieving
approximately 92% accuracy while maintaining balanced performance across key metrics such as
F1 score, Precision, and Recall. Other methods, including Support Vector Machines (SVM) and
Decision Trees, demonstrated moderate results but did not match CatBoost’s superior predictive
capability. A sensitivity analysis was further conducted to uncover the most influential determinants
of supplier performance. Findings revealed that quality consistency, responsiveness, and timely
delivery were the strongest drivers, while cost and compliance played secondary yet important roles.
These insights underscore that supplier evaluation cannot rely solely on traditional cost-based
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1. Introduction

Suppliers have always been regarded as one of the
fundamental pillars of supply chains, and their role in
ensuring the continuity of material, service, and product
flows is undeniable (Yazdani et al., 2021). Proper selection
and effective management of suppliers not only lead to cost
reduction and quality improvement but can also directly
influence the competitiveness and overall performance of
organizations (Rezaei Zeynali & Tajally, 2024). In many
industries, dependency on a limited number of suppliers or
the lack of continuous evaluation exposes the supply chain
to significant risks, which in times of crisis may result in
severe disruptions (Amindoust et al., 2012; Sahebjamnia et
al., 2020). From this perspective, continuous supplier
evaluation and the establishment of mechanisms to
guarantee their optimal performance are of paramount
importance, particularly in today’s dynamic and high-risk
environments.

One of the most sensitive areas in which the importance of
supplier management becomes even more pronounced is
the healthcare supply chain and medical equipment
provision (Rostami et al., 2023). Due to the unique nature
of these products and services, this supply chain is directly
linked to human health and lives, and even minor
disruptions can lead to irreversible consequences. Medical
equipment must not only meet high standards of quality
and safety but also adhere to precise delivery schedules for
healthcare centers. The COVID-19 pandemic provided a
clear example of the fragility of healthcare supply chains,
where the sudden shortage of protective equipment,
ventilators, and medicines demonstrated that weaknesses in
supplier evaluation and selection can escalate into a global
crisis (Sazvar et al., 2022). Under such circumstances, the
necessity of developing scientific and data-driven models
for supplier evaluation and management becomes
increasingly evident.

Within this context, the concept of resilience in supply
chains—defined as the system’s ability to withstand
disruptions, recover rapidly after crises, and maintain
service continuity—has received growing attention
(Davoudabadi et al., 2019). For medical equipment
suppliers, resilience means the capacity to sustain
performance in the face of unexpected events such as
pandemics, sanctions, currency fluctuations, or logistical
problems, thereby preventing critical shortages (Tavakoli
et al., 2023). A resilient supplier not only possesses
sufficient capacity to respond to sudden demand surges but
can also ensure continuity of healthcare services through
resource diversification, flexibility in production and
logistics, and the adoption of alternative strategies
(Fallahpour et al., 2021). Consequently, assessing and
enhancing supplier resilience is a key element in designing
modern evaluation frameworks.

On the other hand, agility refers to the ability of supply
chains and their suppliers to respond quickly and
effectively to environmental changes and evolving
customer needs (Alamroshan et al., 2022). In the context of
medical equipment, agility implies the capability of
manufacturers and distributors to rapidly reconfigure
production lines, comply with new standards and
technologies, and deliver support services in the shortest
possible time (Abbasian & Jamili, 2025). The importance

140

of agility becomes particularly evident in competitive and
volatile environments where demand shifts occur rapidly.
For example, during crises where the demand for a specific
type of medical device suddenly spikes, only agile
suppliers can promptly adjust their production or
procurement capacity to meet market needs. Thus,
resilience and agility serve as complementary dimensions
that collectively ensure the sustainability and efficiency of
medical equipment supply chains.

Despite the critical importance of these two dimensions,
many traditional supplier evaluation methods are unable to
address  resilience and  agility  simultaneously.
Conventional approaches tend to focus mainly on financial
or quality criteria and pay less attention to the dynamic
aspects of supplier performance under uncertainty. In
contrast, data-driven and machine learning—based
approaches possess a high capacity to process large and
diverse datasets, uncover hidden patterns, and predict
supplier behavior under different conditions (Dong &
Yuan, 2025; Nayeri et al., 2023). Such approaches can
generate a more accurate and comprehensive view of
supplier capabilities by analyzing historical data such as
order records, delivery times, defect rates, and other
operational indicators. Furthermore, machine learning
models offer the possibility of continuous updates,
enabling supplier performance to be evaluated on a
monthly or even real-time basis, thereby allowing
managerial decisions to be based on the most up-to-date
information (Cavalcante et al., 2019; Lo, 2023).

The healthcare and medical equipment supply chain is not
only a logistical system but also a lifeline directly tied to
patient health and survival. Any weakness in this chain can
translate into treatment delays, compromised care quality,
or even loss of lives. In such a sensitive domain, resilience
and agility are not optional attributes—they are
fundamental requirements to withstand shocks such as
pandemics, sanctions, or sudden demand surges.
Traditional supplier evaluation approaches, with their
narrow focus on cost or static quality measures, fail to
capture these dynamic and mission-critical dimensions.
This gap underlines the urgent need for data-driven and
intelligent models that can continuously assess supplier
performance and provide actionable insights. By
integrating advanced machine learning algorithms, such
models offer healthcare managers and policymakers the
ability to mitigate risks, ensure uninterrupted service
delivery, and make informed decisions that ultimately
safeguard both efficiency and sustainability in healthcare
supply chains. Accordingly, the present study employs
machine learning to design a resilient and agile evaluation
framework that addresses these pressing challenges.

In this regard, Section 2 of this study presents a literature
review, followed by the methodology in Section 3, the case
study and evaluation criteria in Section 4, the results in
Section 5, and the conclusion in Section 6.

2. Literature Review

The selection of suppliers and the evaluation of their
performance has, in recent years, become one of the main
topics in supply chain management, particularly in the
healthcare sector and other sensitive industries where
disruptions may have critical consequences. Accordingly,
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numerous studies have focused on developing innovative
and data-driven frameworks for supplier evaluation.

First, (Sazvar et al., 2022), in one of the early studies
conducted during the COVID-19 pandemic, proposed a
data-driven model for evaluating sustainable and resilient
suppliers of essential medicines. By employing FBWM for
weighting, FIS for performance assessment, and
subsequently applying machine learning models for
classification, they demonstrated that criteria such as
Responsiveness and Ability play a pivotal role in
managerial decision-making. The strength of this study lay
in the integration of classical and data-driven methods,
while its limitation was the sole focus on the
pharmaceutical industry and the lack of cross-industry
comparison. Subsequently, (Nayeri et al., 2023) presented
a multi-stage framework for supplier selection and order
allocation in the healthcare supply chain. This framework
utilized SFBWM for weighting, a multi-objective model
for order allocation, and ultimately fuzzy-robust—
stochastic (FRS) optimization combined with the CMCGP-
UF algorithm. The study considered three dimensions—
responsiveness,  sustainability, and  resilience—
simultaneously. Its importance lies in combining sequential
decision-making layers and addressing uncertainty,
although the proposed model appears highly complex and
difficult to implement in practice.

Similarly, (Rostami et al., 2023) introduced a framework
for supplier selection in “viable” supply chains, addressing
a gap in the literature. By developing GP-FBWM for
weighting and employing Fuzzy VIKOR for ranking
oxygen generator suppliers, they showed that integrating
dimensions of leagility, resilience, sustainability, and
digitalization in the post-COVID era can enhance
flexibility and efficiency in medical equipment supply
chains. This study opened an important pathway by linking
the concept of viable supply chains with supplier selection,
although it largely remained conceptual and made limited
use of predictive data. In the agri-food industry, (Zeynali et
al., 2024) focused on the customer-oriented LARG
paradigm (CLARG) and proposed a hybrid approach
combining Stochastic BWM and Weighted Decision Tree
for raw material supplier selection. The results indicated
that criteria such as leagility, resilience, customer-
orientation, and green sustainability were of primary
importance. The advantage of this research was aligning
the model with real-world conditions and using machine
learning alongside MCDM techniques; however, its
reliance on a specific industry and limited dataset restricted
the generalizability of the findings. Complementarily,
(Sahoo & Goswami, 2024) conducted a comprehensive
review of green supplier selection studies using MCDM
methods. This research analyzed the strengths and
weaknesses of various approaches and highlighted that
green supplier selection requires a multidimensional
approach tailored to context. Although this study was
analytical and theoretical without presenting direct
modeling applications, it illuminated directions for future
research in sustainability.

In the pharmaceutical industry, (Sheykhizadeh et al., 2024)
developed a hybrid framework based on LARG criteria and
compared conditions before and after COVID-19. They
found that during crisis periods, the importance of criteria
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such as on-time delivery and safety stock increased. The
methods applied included Fuzzy BWM and ARAS. This
study effectively illustrated the dynamic changes in criteria
during crises, but its limitation was the absence of
predictive layers and scenario analysis. Another step in this
direction was taken by (Tajally et al., 2025), who proposed
a hybrid framework incorporating dimensions of
sustainability, circular economy, and viability. By using
LGPSBWM for weighting and the SWSVM algorithm for
performance evaluation, they demonstrated in the
automotive industry that criteria such as Responsiveness,
Reliability, cost, and quality are critical in supplier
evaluation. The novelty of this research was in combining
circular economy and viability within supplier selection,
although the dataset was limited to a specific industry.
Additionally, (Molaei et al., 2025) focused on the home
appliances industry and developed a data-driven model for
selecting suppliers in resilient-agile and circular economy-
based supply chains. This study, using Stochastic VIKOR
and a neural network optimized by a genetic algorithm,
achieved 98% accuracy in predicting supplier performance.
This achievement highlights the strong potential of
machine learning methods to enhance decision-making
accuracy and sustainability, though the computational
complexity of the model may hinder its large-scale
practical ~application. In the healthcare sector,
(Harikrishnan et al., 2025) developed a framework based
on Carter’s 7C model for the selection and classification of
hospital suppliers. Using data gathered from expert
interviews and hospital information systems, the
framework emphasized criteria such as effective
communication, technology, and strategic collaboration.
The main advantage of this study was its direct alignment
with hospital needs, although its limitation was the static
nature of the framework and the lack of consideration for
environmental dynamism. In the field of renewable energy,
(Sultan & Akram, 2025) proposed a novel approach for
selecting hydrogen fuel cell suppliers using Spherical
Fuzzy Rough Numbers. By combining the capabilities of
fuzzy and rough sets with the PROMETHEE method, this
approach managed to address uncertainty and
informational ambiguity. The novelty of this study lay in
introducing new mathematical techniques for supplier
selection, though its application remained limited to a
specific field (hydrogen energy).

The literature review demonstrates that although recent
studies have extensively examined dimensions such as
sustainability, resilience, agility, and even circular
economy in supplier selection, several significant gaps
remain. First, many models are limited to specific
industries (e.g., pharmaceuticals, automotive, food, or
energy), with limited cross-industry generalizability.
Second, most frameworks focus on one dimension (e.g.,
greenness or resilience), while few studies have
simultaneously examined resilience and agility in the
healthcare sector. Third, although historical data and
machine learning have been applied in some studies, their
integration into operational DSS for continuous evaluation
(e.g., monthly) has received limited attention.
Accordingly, the present study introduces three main
innovations:
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e A focus on the healthcare and medical equipment
supply chain as a vital and sensitive industry,
integrating resilience and agility simultaneously.

e  The development of a data-driven framework based
on machine learning algorithms capable of dynamic
and continuous supplier evaluation.

e  The provision of a decision support system (DSS)
for healthcare managers that, in addition to ranking
and alerting, ensures interpretability of results.

These innovations distinguish the present research from
prior studies and highlight its added value in bridging the
gap between modern supply chain theories and practical
data-driven applications.

3. Methodology

The CatBoostClassifier is an advanced gradient boosting
method built upon symmetric binary trees (Oblivious
Trees). This algorithm is specifically designed for tabular
data and demonstrates strong capabilities in processing
categorical variables without the need for one-hot or
complex encoding schemes (Rastgoo & Khajavi, 2023).
The main innovation of CatBoost lies in its use of Ordered
Target Statistics for transforming categorical features and
Ordered Boosting to enhance the training process, which
helps mitigate overfitting and information leakage (Qian et
al., 2023). Alongside providing high accuracy and efficient
speed, this algorithm also enables the extraction of feature
importance and the interpretation of results, making it an
ideal choice for complex classification tasks within
healthcare supply chains.

The implementation steps of this algorithm can be
summarized as follows:

Step 1: Problem definition and labeling.

The problem is initially formulated as a classification task,
for example, categorizing supplier performance into five
levels (“very good,” “good,” “average,” “poor,” and “very
poor”) or three levels (“high,” “medium,” and “low”). This
categorical structure allows the model to produce outputs
that are both understandable and actionable for managers.
Step 2: Feature engineering.

Key features include delivery performance indicators (such
as on-time delivery rate and delivery time variance),
quality (defect and return rates), agility (response time and
order flexibility), resilience (alternative sourcing, recovery
time, backup capacity), and medical compliance (standard
certifications and safety incidents). To improve accuracy,
rolling averages and variances over 3-, 6-, and 12-month
windows are also incorporated.

Step 3: Data preprocessing.

CatBoost directly handles categorical variables; therefore,
it suffices to designate the relevant columns as categorical.
Missing values are managed automatically, though it is
recommended to define cleaning rules for sensitive
indicators. Outliers are detected and flagged to prevent
adverse effects on model decision-making.

Step 4: Model training and evaluation.

The data are split chronologically to prevent information
leakage. The model is trained with class weighting to
address data imbalance. Performance evaluation is
conducted using metrics such as F1-macro, ROC-AUC,
and MCC. For improved interpretability, SHAP summary
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plots and force plots are applied to analyze feature
importance both at the global and individual levels.

Step 5: Deployment in monthly DSS.

The trained model is integrated into a Decision Support
System (DSS), which receives new data on a monthly
basis, classifies and ranks supplier performance, and
presents results as scorecards for managers. In addition,
risk alerts and “what-if” analyses are provided to support
more informed decision-making.

The decision to adopt CatBoostClassifier in this study
stems from both its technical strengths and its alignment
with the unique requirements of healthcare supply chains.
Unlike many traditional boosting models, CatBoost is
inherently optimized for datasets that contain a mixture of
numerical and categorical variables, which are common in
supplier evaluation contexts. This capability eliminates the
need for extensive preprocessing and reduces the risk of
information loss during encoding. Moreover, CatBoost has
consistently demonstrated superior accuracy and stability
when compared to well-known alternatives such as
XGBoost and LightGBM, especially in situations
involving relatively small or noisy datasets—conditions
that often characterize healthcare-related data. Beyond
predictive power, CatBoost provides clear feature
importance metrics, making the results transparent and
interpretable for managers and policymakers, a critical
factor in a highly regulated domain like medical
equipment. Its efficient training process, robustness against
overfitting, and seamless integration into monthly decision
support systems further reinforce its suitability. Taken
together, these features justify the selection of CatBoost as
the most appropriate and practical algorithm for building a
resilient and agile supplier evaluation framework.

4. Case study and criteria

Dialyzer filters are among the critical medical devices
directly associated with the health and survival of dialysis-
dependent kidney patients. Owing to their widespread
application and continuous demand in healthcare centers,
these products are considered strategic items in the
healthcare supply chain. The supply of dialyzer filters is
carried out both through domestic manufacturers and
suppliers as well as international companies. In recent
years, due to import restrictions, currency fluctuations, and
challenges arising from sanctions, the role of domestic
suppliers has become more prominent; however, a
significant portion of national demand is still met through
foreign sources. Figure 1 illustrates an example of this
product.

The classification of evaluation indicators into categories
such as agility, resilience, and general performance is not
arbitrary but reflects the multidimensional nature of
supplier performance in the healthcare sector. Agility
indicators are crucial because they capture the supplier’s
ability to respond rapidly to fluctuations in demand,
regulatory changes, or unexpected crises, all of which are
highly prevalent in medical equipment supply chains.
Without agility, even suppliers with strong quality records
may fail to meet urgent healthcare needs. Similarly, general
indicators such as cost efficiency, compliance, and
collaboration provide a baseline for ensuring that suppliers
not only meet technical standards but also remain
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financially viable and strategically aligned with healthcare
institutions. Integrating these categories ensures a balanced
assessment: agility secures responsiveness under dynamic
conditions, resilience guarantees continuity during
disruptions, and general indicators safeguard fundamental
operational and regulatory requirements. This structured
categorization therefore enhances both the
comprehensiveness and practical relevance of the supplier
evaluation framework.

Fig. 1. View of the dialysis machine filter

Since the quality, delivery scheduling, and reliability of
dialyzer filter suppliers have a direct impact on healthcare
service provision and patient well-being, continuous
evaluation of these suppliers is essential. Sudden demand
fluctuations, logistical challenges, and risks associated
with compliance with medical standards can disrupt the
supply chain of this vital product. Therefore, establishing a
scientific and data-driven mechanism for the regular,
monthly evaluation of both domestic and international
suppliers will ensure supply sustainability, enhance the
quality of healthcare services, and reduce critical risks in
the healthcare system. In this regard, supplier evaluation
indicators encompass multiple dimensions. Based on a
review of the literature and related studies (Dong & Yuan,
2025; GhanavatiNejad et al., 2025; Javan-Molaei et al.,
2024; Modares et al., 2025; Nessari et al., 2024; Rezaei et
al., 2020; Rostami et al., 2023; Sonar et al., 2022; Tajally
et al., 2025), the following indicators were identified:

Agility Indicators

e Response Time: The time required to provide a
quotation or confirm a new order.

e Order Flexibility: The supplier’s ability to
accommodate rapid changes in order volume.

e Changeover Time: The time needed to switch
product type or production capacity.

e Delivery Speed: The ability to deliver goods in
shorter timeframes than standard.

e Contract Flexibility: The capacity to negotiate and
adjust pricing or delivery terms under special
conditions.

Resilience Indicators

e  Supplier Diversification: Having multiple sources
of raw materials or production channels.

o  Safety Stock Level: The level of reserve inventory
to cope with unexpected demand.

e Recovery Time: The duration required to return to
normal operations after a disruption.

e Logistics Flexibility: The ability to use alternative
routes or transportation methods.

e Quality Consistency: The capability to maintain
stable quality even under disruptions or demand
pressure.

General Indicators

e Total Cost: The overall expenses of purchasing,
transportation, and related services.

e Product Quality: The degree of conformity with
technical and regulatory standards.

e Compliance: Adherence to medical and legal
standards such as 1SO 13485.

e On-time Delivery Rate: The proportion of orders
delivered on schedule relative to total orders.

e Collaboration Level: The degree of transparency,
communication, and willingness to collaborate in
improving the supply chain.

5. Result

In this section, the research findings are examined and
analyzed. First, the proposed model is developed and its
accuracy and validity are assessed. Next, a sensitivity
analysis of the features is conducted, followed by the
presentation of managerial insights.

5.1. Data preprocessing and model development

The dataset was first examined for completeness, logical
ranges, and collinearity. Extreme outliers (particularly in
quality_consistency_ppm and total_cost_index) were
flagged and retained to avoid deletion bias. For stability,
sensitive indicators were prepared using rolling windows
of 3, 6, and 12 months (for this monthly dataset, a version
without timestamps using the current values was applied).
To prevent leakage, data splitting was performed using
Stratified 5-Fold CV (due to the absence of timestamps in
this version), and a final 80/20 split was maintained for test
reporting. Given that the labels were balanced, the
class_weight parameter remained at its default (uniform)
value. Missing values were handled by the internal
CatBoost mechanism; however, for critical indicators (e.g.,
on_time_delivery rate and compliance_score), missing
records were flagged to incorporate risk considerations into
the sensitivity analysis. To enhance interpretability and
alignment with business logic, monotonicity constraints
were applied to specific variables: increases in
defect_rate/quality_consistency_ppm were constrained to
increase the probability of “Rejected,” while increases in
on_time_delivery rate were constrained to increase the
probability of “Selected.”
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The baseline model was defined as CatBoostClassifier
(loss_function=MultiClass, eval_metric=TotalF1) with
early stopping on the validation set. Subsequently,
parameter optimization was performed using Grid Search
(nested within CV). The search space included:

e depth € {4, 6, 8},
learning_rate € {0.03, 0.06, 0.10},
iterations € {1000, 1500, 2000},
12_leaf reg € {3, 5, 7},
bagging_temperature € {0, 1, 2},
rsm € {0.8, 0.9, 1.0},
random_strength € {0.5, 1.0}.

label_Selected <= 0.5

gini
samp

= 0.667

les = 600

The winning configuration (based on the average best
TotalF1 in CV) was:

depth = 6, learning_rate = 0.08, iterations = 1500,
12_leaf reg = 5, bagging_temperature = 1.0, rsm = 0.9,
random_strength = 1.0, od_type = Iter, od_wait = 80.
Probability calibration was examined using Isotonic
Regression after training; since it did not produce a
significant change in the Brier score, calibration was
disabled in the reported version for simplicity.

A portion of the developed model is illustrated in the Figure
2.

value = [200, 200, 200]
class = High

label Reserve <= 0.5
gini = 0.594
samples = 393
value = [51, 200, 142]
class = Low
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samples = 11
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class = High
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value = [7, 0, 2
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Fig. 2. Part of the tree structure of the Catboost algorithm

The presented decision tree model demonstrates that
explanatory variables such as quality and cost indicators
play a fundamental role in determining supplier
performance levels. In the upper nodes of the tree, variables
are positioned that possess the greatest ability to
distinguish between the “High,” “Medium,” and “Low”
performance groups. This structure clearly shows that, at
the initial stage, the main features related to collaboration
quality and cost levels serve as the key criteria for
separating suppliers, while other variables such as
flexibility or contractual compliance play a more secondary
role in the decision-making path. The results of the tree
revealed that suppliers with more favorable quality and
cost indicators are predominantly classified into the High
group, whereas deficiencies in these indicators, even in the
presence of certain advantages, tend to push a supplier
toward the Low group. The Medium group is largely
associated with suppliers who perform adequately in some
aspects but fail to reach higher levels in the critical
indicators of quality or cost.

5.2. Model performance evaluation

The results indicate that the CatBoost model achieved an
accuracy of approximately 92% and a high F1-macro score
(=0.918), demonstrating outstanding performance. These
results suggest that the model was able to balance the
identification of correct samples while minimizing both
false positives and false negatives. The SVM model ranked
second, with an accuracy of =~82% and an F1-macro of
~0.812, indicating a relative balance between Precision
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(=0.832) and Recall (=0.823). Although weaker than
CatBoost, this model clearly outperformed the Decision
Tree. The Decision Tree model, despite its transparency
and interpretability, achieved only =64% accuracy and an
F1-macro of about 0.62 in these evaluations. This finding
shows that although useful for extracting simple decision
rules, it is limited in accurately predicting supplier
performance. Furthermore, a confusion matrix was
employed, as illustrated in Figure 3, with the findings
confirming that the CatBoost algorithm reached an
accuracy of approximately 92%.

True Label
Reserve Selected

Rejected

Reserve
Predicted Label

Fig. 3. Algorithm accuracy confusion matrix

Selelcted Rejected

5.3. Feature sensitivity analysis

The Figure 4 presents the feature importance values
obtained from the outputs of the CatBoost algorithm.
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The results indicate that variables such as quality consistency ppm, response time hours, and delivery speed index had the
greatest impact on the model’s decision-making process. This clearly demonstrates that product quality consistency,
responsiveness, and the ability to deliver on time are the key factors in determining whether suppliers are accepted or rejected.
In other words, any fluctuation or weakness in these indicators exerts the strongest influence on predicting supplier

performance.

In the next tier, indicators such as total cost index, changeover time hours, and order flexibility score appear, showing that
days or compliance score contributed less to class separation, suggesting that while these variables may carry managerial

overall costs and order flexibility also hold significant positions in decision-making. Conversely, features such as safety stock

importance, they play a lesser role in the predictive model.

Overall, the sensitivity analysis confirms that the model logically concentrates on the primary supply factors—quality,
responsiveness, and delivery speed—which is consistent with practical realities in supply chain management.
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Fig. 4. Importance of features
Third, error analysis revealed that most misclassifications

occurred between the “Reserve” class and the two other
categories. From a managerial perspective, this has
particular significance, as the Reserve group, serving as the
intermediate class, can play a crucial role in creating
flexibility and mitigating risk. Managers can design
supportive policies and provide improvement opportunities

5.4. Managerial insights
The findings of this study provide several key messages for
managers and policymakers in the field of medical
equipment supply. First, the results revealed that indicators

such as quality consistency (quality consistency ppm),
response time (response time hours), and delivery speed
(delivery speed index) have the greatest impact on overall
supplier performance. This highlights the necessity for

for this group to reduce the risks associated with
misclassification and to leverage the potential capacity of

these suppliers during crises.
the sensitivity analysis showed that some

Finally,

indicators, such as safety stock days (safety stock days)

and compliance with regulations (compliance_score), had
less influence on the predictive model. This does not imply
that they are unimportant; rather, it indicates that while
these factors may have limited impact under normal
conditions, they can become strategically significant in
specific circumstances (e.g., health crises or regulatory
changes). Hence, managers should focus primarily on the

key indicators of quality and timeliness while also
considering these less influential criteria in forward-

looking, scenario-based planning.

managers to assign greater weight to these indicators in

supplier evaluation and selection processes and to establish

continuous  monitoring  mechanisms  over  them.
Specifically, investing in the improvement of quality
control processes, enhancing order responsiveness, and
upgrading logistics efficiency can directly increase the
likelihood of supplier acceptance and sustained

collaboration.
Second, the comparison of algorithms demonstrated that
the use of advanced machine learning approaches—
particularly CatBoost—can significantly enhance decision-
making accuracy (=92% compared to ~64% for the
Decision Tree). This finding reminds managers that
employing modern analytical tools not only improves the
precision of evaluations but also enables a more accurate
distinction between the “Selected,” “Reserve,” and
“Rejected” classes. Therefore, it is recommended that
decision support systems within organizations be updated,
and that data-driven algorithms be applied on a monthly or

even real-time basis for re-evaluating suppliers.

5.5. Theoretical implications
This study offers several important contributions to the

theoretical advancement of supplier evaluation and supply
First, by integrating the dual

chain management.
dimensions of resilience and agility into a unified
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evaluation framework, it extends existing theories that
have traditionally treated these constructs separately. The
findings demonstrate that resilience and agility should not
be considered as independent attributes but rather as
complementary capabilities that collectively determine
supply chain sustainability. Second, the application of
advanced machine learning algorithms, particularly
CatBoost, highlights the value of data-driven approaches in
addressing complex decision-making problems under
uncertainty. This contributes to the growing body of
literature on the intersection of artificial intelligence and
supply chain management by showing how predictive
analytics can enhance both accuracy and interpretability.
Third, the case study in the healthcare sector underscores
the contextual nature of evaluation criteria, emphasizing
that theories of supplier selection must account for
industry-specific risks such as regulatory compliance and
patient safety. Overall, the study enriches theoretical
discussions by bridging classical evaluation models with
modern, data-driven paradigms, thereby laying the
groundwork for future research on intelligent decision
support systems in supply chain contexts.

6. Conclusions

This study aimed to develop a data-driven framework for
evaluating medical equipment suppliers based on the
dimensions of resilience and agility. By employing
machine learning algorithms, particularly CatBoost, it was
demonstrated that supplier performance can be predicted
and classified with high accuracy. Comparative results
indicated that CatBoost, with remarkable accuracy and
balanced performance across F1, Precision, and Recall
metrics, outperformed other methods, while the Decision
Tree served primarily as an interpretable and exploratory
tool, and SVM occupied an intermediate position.

In addition, feature sensitivity analysis revealed that
quality consistency, responsiveness, and on-time delivery
were the most critical factors in determining supplier
performance. These findings provide important managerial
implications for improving decision-making, resource
allocation, and risk reduction within the healthcare supply
chain.

Overall, the present study demonstrated that integrating
data-driven approaches with traditional evaluation criteria
provides a more comprehensive and precise understanding
of supplier capabilities, paving the way for the
development of intelligent decision support systems in the
medical equipment sector. However, several limitations
should be acknowledged. First, the dataset used in this
study was limited in size and scope, which may restrict the
generalizability of the findings across broader healthcare
contexts or other industries. Second, while CatBoost was
shown to be highly effective, the focus on a single
algorithm means that potential benefits of ensemble or
hybrid approaches were not fully explored. Third, the
evaluation framework was tested within the context of
medical equipment suppliers, and its applicability to other
healthcare products or cross-industry settings remains to be
validated. Finally, the study did not incorporate
longitudinal or real-time data streams, which could further
enhance the adaptability of the model under rapidly
changing conditions. These limitations point to important
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directions for future research, including expanding
datasets, comparing multiple machine learning algorithms,
and applying the framework in diverse and dynamic
environments.
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