Transactions on Fuzzy Sets and Systems (TFSS)

URL: https://sanad.iau.ir/journal/tfss/

Online ISSN: 2821-0131 Vol.5, No.2, (2026), 384-407

DOI: https://doi.org/10.71602/tfss.2026.1217644

Article Type: Original Research Article

Structural Aspects of Weak Connectedness and Weak Compactness in Bipolar Soft Weak Structures

Bekas S. M. Taher, Baravan A. Asaad*

Abstract. Connectedness and compactness are two essential properties that characterize the structural behavior of topological spaces. Extending these notions to bipolar soft topological spaces is crucial for analyzing systems involving both positive and negative information. In this paper, we define \widetilde{W} -separated B_PSSs and strong \widetilde{W} -separated B_PSSs using bipolar soft weak structures. We also introduce and investigate bipolar soft weak connectedness and bipolar soft weak compactness within bipolar soft weak structures. Furthermore, we define the concepts of bipolar soft weak local connectedness and bipolar soft weak components, supported by illustrative examples to clarify their meanings. Furthermore, we explore the relationships between these new concepts and their classical counterparts, showing that a B_PS \widetilde{W} -connected (resp. disconnected) space is not necessarily B_PS \widetilde{W} -hereditary, and that a B_PSW -closed subset of a B_PS \widetilde{W} -compact space may fail to be B_PS \widetilde{W} -compact.

 $\textbf{AMS Subject Classification 2020:} \ 54A05; \ 54B05; \ 54D05; \ 54D30$

Keywords and Phrases: Bipolar soft set, Bipolar soft weak structure, Bipolar soft weak connectedness (locally connectedness), Bipolar soft weak components, Bipolar soft weak compactness.

1 Introduction

Soft set theory, introduced by Molodtsov [1] in 1999, provides a powerful mathematical framework for handling uncertainty, vagueness, and imprecision that are often encountered in real-world data. Building on this foundation, Maji et al. [2] established the basic operations and definitions that formalized soft sets, while Ali et al. [3] introduced new operations to enhance their applicability in decision-making problems. The development of soft topology emerged as a natural extension of soft set theory to topological structures, initiated by Shabir and Naz [4], who defined the fundamental concepts of soft open and soft closed sets. Subsequent studies by Aygünoğlu and Aygün [5] deepened the theoretical understanding of soft topological spaces. Ahmad and Hussain [6] explored algebraic structures of soft topology, and Peyghan et al. [7] along with Hussain [8] investigated soft connectedness and related properties. Recent contributions have further enriched the field: Polat et al. [9], and Aydn and Enginolu [10] examined new topological notions, Jafari et al. [11] studied soft topologies induced by soft relations, and Al Ghour [12] introduced soft homogeneous components and soft products, providing novel perspectives on the structural composition of soft spaces. Furthermore, Zakari, Ghareeb, and Omran [13] introduced and investigated the concept of soft weak structures, extending classical soft topological notions by defining and analyzing weaker forms of soft open and soft closed sets within soft topological spaces.

*Corresponding Author: Baravan A. Asaad, Email: baravan.asaad@uoz.edu.krd, ORCID: 0000-0002-2049-2044
Received: 12 September 2025; Revised: 8 October 2025; Accepted: 12 October 2025; Available Online: 29 November 2025;
Published Online: 7 November 2026.

How to cite: M Taher BS, Asaad BA. Structural aspects of weak connectedness and weak compactness in bipolar soft weak structures. Transactions on Fuzzy Sets and Systems. 2026; 5(2): 384-407. DOI: https://doi.org/10.71602/tfss.2026.1217644

Recent advances in soft set theory have moved decisively toward bipolar extensions and their topological counterparts, enriching both the theoretical foundations and practical applications of soft topology. Building on classical soft-topological ideas, researchers have introduced bipolar soft structures that capture positivenegative (bipolar) information and enable finer modeling of uncertainty; foundational treatments by [14] and structural properties of bipolar soft topologies by Öztürk [15] and related generalized forms have been developed by Saleh, Asaad and Mohammed [16, 17, 18], while Shabir and collaborators explored bipolar connectedness and compactness notions [19]. These theoretical innovations have been paired with methodological contributions for decision-making and similarity assessment: Demirta and Dalkl applied bipolar fuzzy soft sets to medical diagnosis [20], Demir, Saldaml and Okurer proposed bipolar fuzzy soft filters for multi-criteria group decision-making [21], and Hamad et al. developed similarity measures for bipolar interval-valued fuzzy soft data [22]. Further structural and relational perspectives such as proximity via bipolar fuzzy soft classes and bipolar soft functions were advanced by Saldaml and Demir and by Fadel and Dzul-Kifli [23, 24, 25], while Fujita and Smarandache introduced multi-tier hypergraph frameworks that incorporate bipolar information for modeling complex networks [26, 27]. Recent work on specialized classes, including bipolar soft minimal structures which provides new perspectives for simplifying and analyzing bipolar soft topological systems [28]. Collectively, these contributions show that bipolar soft set theory and bipolar soft topology form a rapidly maturing area that links rigorous topological constructs with concrete decision-making, diagnosis, and network-modeling applications.

Recently, M. Taher and Asaad [29] introduced the concept of bipolar soft weak structures within the framework of bipolar soft topological spaces, establishing a new class of weak topological systems. Their study defines and analyzes key notions such as bipolar soft weak open, closed, closure, interior, and boundary sets, along with corresponding pointwise concepts and neighborhood structures. They defined bipolar soft weak subspaces for these weak structures.

Despite these developments, the concepts of weak connectedness and weak compactness have not yet been examined within bipolar soft topological structures. While soft weak structures and bipolar soft topologies have been studied separately, there is still no unified framework combining both. This gap restricts the analysis of spaces exhibiting weakly connected or weakly compact behaviors under dual (positivenegative) conditions.

Motivated by this limitation, the present paper makes the following contributions:

- 1. Introduces bipolar soft weak connectedness and bipolar soft weak compactness within bipolar soft weak structures.
- 2. Defines bipolar soft weak locally connected spaces and bipolar soft weak components, illustrated with examples.
- 3. Establishes several properties and relationships between the proposed notions and their classical counterparts, showing that a $B_P S \widetilde{\widetilde{W}}$ -connected (resp. disconnected) space is not necessarily $B_P S \widetilde{\widetilde{W}}$ -hereditary, and that a $B_P S W$ -closed subset of a $B_P S \widetilde{\widetilde{W}}$ -compact space may not be $B_P S \widetilde{\widetilde{W}}$ -compact.
- 4. Extends the theoretical foundations of bipolar soft topology and opens new directions for further research in weak topological structures.

2 Preliminaries

Within this paper, let $\check{\Pi}$ be a universe set, and the nonempty set $\check{\aleph}$ be an entire set of parameters, $P(\check{\Pi})$ be the family of all subsets of $\check{\Pi}$. Let $\check{\pi}$ and $\check{\sigma}$ be nonempty subsets of $\check{\aleph}$. This section begins by reviewing essential

concepts, including soft weak structures, bipolar soft set logic and provides the foundational background for bipolar soft topological spaces.

Definition 2.1. [1] (Soft Set) A pair $(\check{\zeta}, \check{\pi})$ is known as a soft set on $\check{\coprod}$, where $\check{\zeta}$ is a mapping from $\check{\pi}$ into $P(\check{\coprod})$. Meaning that a soft set on $\check{\coprod}$ is a parameterized family of subsets of the universe $\check{\coprod}$. For $\epsilon \in \check{\pi}$, $(\check{\zeta}, \check{\pi})$ can be considered as ϵ -elements' set of the soft set $(\check{\zeta}, \check{\pi})$. As seen, soft set is not a crisp set. Following that, the family of all soft sets on $\check{\coprod}$ is denoted by $SS(\check{\coprod})$. Therefore, a soft set $(\check{\zeta}, \check{\pi})$ can be dictated as:

$$(\check{\zeta},\check{\pi})=\{(\epsilon,\check{\zeta}(\epsilon)):\epsilon\in\check{\pi},\ \check{\zeta}(\epsilon)\subseteq\check{\Pi}\}.$$

Definition 2.2. [13] A soft subset $(\check{\zeta}, \rho)$ of $(\widetilde{\coprod}, \rho)$ is called a soft weak compact set, denoted by S \widetilde{W} -compact set, if each S \widetilde{W} -open cover of $(\check{\zeta}, \rho)$ has a finite S subcover. A SWS $(\check{\coprod}, \widetilde{W}, \rho)$ is said to be a S \widetilde{W} -compact space if $(\check{\coprod}, \rho)$ is a S \widetilde{W} -compact subset of itself.

Definition 2.3. [2] Let $\check{\pi} = \{\epsilon_1, \epsilon_2, ..., \epsilon_n\}$ be a subset of $\check{\aleph}$, the **Not** set of $\check{\pi}$ is denoted by $\neg \check{\pi} = \{\neg \epsilon_1, \neg \epsilon_2, ..., \neg \epsilon_n\}$ where, $\neg \epsilon_i = Not \epsilon_i$, for all i.

Definition 2.4. [14] A triple $(\check{\zeta}, \check{\xi}, \check{\pi})$ is known as a bipolar soft set, denoted by B_PSS , on $\check{\Pi}$, where $\check{\zeta}$ and $\check{\xi}$ are mappings defined by $\check{\zeta}: \check{\pi} \longrightarrow P(\check{\Pi})$ and $\check{\xi}: \neg \check{\pi} \longrightarrow P(\check{\Pi})$ so that $\check{\zeta}(\epsilon) \cap \check{\xi}(\neg \epsilon) = \phi$ for all $\epsilon \in \check{\pi}$ and $\neg \epsilon \in \neg \check{\pi}$.

So, a B_PSS $(\check{\zeta}, \check{\xi}, \check{\pi})$ can be dictated as:

$$(\check{\zeta},\check{\xi},\check{\pi}) = \{(\epsilon,\check{\zeta}(\epsilon),\check{\xi}(\neg\epsilon)) : \epsilon \in \check{\pi} \ and \ \check{\zeta}(\epsilon) \ \cap \ \check{\xi}(\neg\epsilon) = \phi\}.$$

We denote $B_PSS(\check{\coprod})$ by the set of all B_PSSs on $\check{\coprod}$.

Definition 2.5. [14] For any two B_PSSs $(\check{\zeta}_1, \check{\xi}_1, \check{\pi})$ and $(\check{\zeta}_2, \check{\xi}_2, \check{\sigma})$, it is stated that $(\check{\zeta}_1, \check{\xi}_1, \check{\pi})$ is a bipolar soft (B_PS) subset of $(\check{\zeta}_2, \check{\xi}_2, \check{\sigma})$ if:

- (i) $\check{\pi} \subseteq \check{\sigma}$ and,
- (ii) $\check{\zeta}_1(\epsilon) \subseteq \check{\zeta}_2(\epsilon)$ and $\check{\xi}_2(\neg \epsilon) \subseteq \check{\xi}_1(\neg \epsilon)$ for all $\epsilon \in \check{\pi}$ and $\neg \epsilon \in \neg \check{\pi}$.

This relationship is denoted by $(\check{\zeta}_1, \check{\xi}_1, \check{\pi}) \stackrel{\cong}{\subseteq} (\check{\zeta}_2, \check{\xi}_2, \check{\sigma})$. Likewise, it is stated that $(\check{\zeta}_1, \check{\xi}_1, \check{\pi})$ is a B_PS superset of $(\check{\zeta}_2, \check{\xi}_2, \check{\sigma})$, denoted by $(\check{\zeta}_1, \check{\xi}_1, \check{\pi}) \stackrel{\cong}{\supseteq} (\check{\zeta}_2, \check{\xi}_2, \check{\sigma})$, if $(\check{\zeta}_2, \check{\xi}_2, \check{\sigma})$ is a B_PS subset of $(\check{\zeta}_1, \check{\xi}_1, \check{\pi})$.

Definition 2.6. [14] A B_PSS $(\check{\zeta}, \check{\xi}, \check{\pi})$ is considered a null B_PSS denoted by $(\Phi, \check{\check{\Pi}}, \check{\pi})$, if $\check{\zeta}(\epsilon) = \phi$ for all $\epsilon \in \check{\pi}$ and $\check{\xi}(\neg \epsilon) = \check{\Pi}$ for all $\neg \epsilon \in \neg \check{\pi}$.

Definition 2.7. [14] A B_PSS $(\check{\zeta}, \check{\xi}, \check{\pi})$ is considered an absolute B_PSS denoted by $(\widetilde{\check{\Pi}}, \Phi, \check{\pi})$, if $\check{\zeta}(\epsilon) = \check{\Pi}$ for all $\epsilon \in \check{\pi}$ and $\check{\xi}(\neg \epsilon) = \phi$ for all $\neg \epsilon \in \neg \check{\pi}$.

Definition 2.8. [14] Let $(\check{\zeta}_1,\check{\xi}_1,\check{\pi})$ and $(\check{\zeta}_2,\check{\xi}_2,\check{\sigma})$ be two B_PSSs , then the B_PS union of these B_PSSs is the $B_PSS(\check{\delta},\check{\gamma},\dot{\kappa})$, where $\dot{\kappa}=\check{\pi}\cap\check{\sigma}$ is a nonempty set and for all $\epsilon\in\dot{\kappa}$, there is $\check{\delta}(\epsilon)=\check{\zeta}_1(\epsilon)\cup\check{\zeta}_2(\epsilon), \epsilon\in\check{\pi}\cap\check{\sigma}\neq\phi$ and $\check{\gamma}(\neg\epsilon)=\check{\xi}_1(\neg\epsilon)\cap\check{\xi}_2(\neg\epsilon), \neg\epsilon\in\neg\check{\pi}\cap\neg\check{\sigma}\neq\phi$. This operation is denoted as $(\check{\zeta}_1,\check{\xi}_1,\check{\pi})$ $\widetilde{\widetilde{\bigcup}}$ $(\check{\zeta}_2,\check{\xi}_2,\check{\sigma})=(\check{\delta},\check{\gamma},\dot{\kappa})$.

Definition 2.9. Let $\{(\check{\zeta}_i,\check{\xi}_i,\check{\pi}): i\in I\}$ be any family of B_PSSs , then $\widetilde{\widetilde{\cup}}_{i\in I}(\check{\zeta}_i,\check{\xi}_i,\check{\pi})=(\check{\delta},\check{\gamma},\dot{\kappa})$, where $\check{\delta}(\epsilon)=\check{\zeta}_1(\epsilon)\cup\check{\zeta}_2(\epsilon)\cup\ldots$ and $\check{\gamma}(\neg\epsilon)=\check{\xi}_1(\neg\epsilon)\cap\check{\xi}_2(\neg\epsilon)\cap\ldots$.

Definition 2.10. [14] Let $(\check{\zeta}_1, \check{\xi}_1, \check{\pi})$ and $(\check{\zeta}_2, \check{\xi}_2, \check{\sigma})$ be two B_PSSs , then the B_PS intersection of these B_PSSs is the $B_PSS(\check{\delta}, \check{\gamma}, \dot{\kappa})$, where $\dot{\kappa} = \check{\pi} \cap \check{\sigma}$ is a nonempty set and for all $\epsilon \in \dot{\kappa}$, there is $\check{\delta}(\epsilon) = \check{\zeta}_1(\epsilon) \cap \check{\zeta}_2(\epsilon), \epsilon \in \check{\pi} \cap \check{\sigma} \neq \phi$ and $\check{\gamma}(\neg \epsilon) = \check{\xi}_1(\neg \epsilon) \cup \check{\xi}_2(\neg \epsilon), \neg \epsilon \in \neg \check{\pi} \cap \neg \check{\sigma} \neq \phi$. This operation is denoted as $(\check{\zeta}_1, \check{\xi}_1, \check{\pi}) \cap (\check{\zeta}_2, \check{\xi}_2, \check{\sigma}) = (\check{\delta}, \check{\gamma}, \dot{\kappa})$.

Definition 2.11. Let $\{(\check{\zeta}_i,\check{\xi}_i,\check{\pi}): i\in I\}$ be any family of B_PSSs , then $\widetilde{\cap}_{i\in I}(\check{\zeta}_i,\check{\xi}_i,\check{\pi})=(\check{\delta},\check{\gamma},\dot{\kappa})$, where $\check{\delta}(\epsilon)=\check{\zeta}_1(\epsilon)\cap\check{\zeta}_2(\epsilon)\cap\ldots$ and $\check{\gamma}(\neg\epsilon)=\check{\xi}_1(\neg\epsilon)\cup\check{\xi}_2(\neg\epsilon)\cup\ldots$.

Proposition 2.12. [19] If $(\check{\zeta}, \check{\xi}, \check{\pi}) \stackrel{\widetilde{\epsilon}}{\tilde{\epsilon}} B_P SS(\check{\Pi})$, then

- (i) $(\check{\zeta}, \check{\xi}, \check{\pi}) \stackrel{\sim}{\widetilde{\cup}} (\check{\zeta}, \check{\xi}, \check{\pi})^c = (\check{\delta}, \Phi, \check{\pi}), \text{ where } \check{\delta}(\epsilon) = \check{\zeta}(\epsilon) \cup \check{\zeta}^c(\epsilon) \subseteq \check{\Pi} \text{ for each } \epsilon \in \check{\pi} \text{ and } \Phi(\neg \epsilon) = \check{\xi}(\neg \epsilon) \cap \check{\xi}^c(\neg \epsilon) = \phi \text{ for each } \neg \epsilon \in \neg \check{\pi}.$
- (ii) $(\check{\zeta},\check{\xi},\check{\pi}) \stackrel{\sim}{\cap} (\check{\zeta},\check{\xi},\check{\pi})^c = (\Phi,\check{\gamma},\check{\pi}), \text{ where } \Phi(\epsilon) = \check{\zeta}(\epsilon) \cap \check{\zeta}^c(\epsilon) = \phi \text{ for each } \epsilon \in \check{\pi} \text{ and } \check{\gamma}(\neg \epsilon) = \check{\xi}(\neg \epsilon) \cup \check{\xi}^c(\neg \epsilon) \subseteq \check{\Pi} \text{ for each } \neg \epsilon \in \neg \check{\pi}.$ Further, $(\check{\zeta},\check{\xi},\check{\pi}), (\check{\zeta},\check{\xi},\check{\pi})^c$ will always satisfy $\check{\zeta}(\epsilon) \cup \check{\zeta}^c(\epsilon) = \check{\xi}(\neg \epsilon) \cup \check{\xi}^c(\neg \epsilon)$ for all $\epsilon \in \check{\pi}$.

Definition 2.13. [15] If $(\check{\zeta}, \check{\xi}, \check{\pi}) \stackrel{\widetilde{\in}}{\in} B_P SS(\check{\Pi})$, and \check{Y} is a nonempty subset of $\check{\Pi}$, then the sub $B_P S$ set of $(\check{\zeta}, \check{\xi}, \check{\pi})$ over \check{Y} denoted by $(\check{Y}\check{\zeta}, \check{Y}\check{\xi}, \check{\pi})$, and is defined as follows:

$$\check{Y}\check{\zeta}(\epsilon) = \check{Y} \cap \check{\zeta}(\epsilon) \ and \ \check{Y}\check{\xi}(\neg \epsilon) = \check{Y} \cap \check{\xi}(\neg \epsilon), \ for \ each \ \epsilon \in \check{\pi} \ and \ \neg \epsilon \in \neg \check{\pi}.$$

Definition 2.14. [19] Let $\widetilde{\tilde{\tau}}$ be the family of B_PSSs on $\check{\coprod}$ with $\check{\pi}$ as the set of parameters, then, $\widetilde{\tilde{\tau}}$ be considered a bipolar soft topology (B_PST) on $\check{\coprod}$ if:

- $(i) \ (\Phi, \overset{\widetilde{\widetilde{\Xi}}}{\check{\underline{\mathsf{I}}}}, \check{\pi}) \ \mathit{and} \ (\overset{\widetilde{\widetilde{\Xi}}}{\check{\underline{\mathsf{I}}}}, \Phi, \check{\pi}) \ \mathit{belong} \ \mathit{to} \ \overset{\widetilde{\widetilde{\tau}}}{\widetilde{\tau}}.$
- (ii) The B_PS union of any number of B_PSSs in $\widetilde{\tau}$ belongs to $\widetilde{\tau}$.
- (iii) The B_PS intersection of finite number of B_PSSs in $\widetilde{\tilde{\tau}}$ belongs to $\widetilde{\tilde{\tau}}$.

Then $(\check{\Pi}, \widetilde{\widetilde{\tau}}, \check{\pi}, \neg \check{\pi})$ has the name of a bipolar soft topological space (B_PSTS) on $\check{\Pi}$. Every member of $\widetilde{\widetilde{\tau}}$ is known as a bipolar soft open set, denoted by B_PS -open. The complement of a B_PS -open set is B_PS -closed.

Proposition 2.15. [15] Let $(\check{\Pi}, \widetilde{\tilde{\tau}}, \check{\pi}, \neg \check{\pi})$ be a B_PSTS on $\check{\Pi}$ and \check{Y} be a nonempty subset of $\check{\Pi}$, then, $\widetilde{\tilde{\tau}}_{\check{Y}} = \{(\check{Y}, \check{Y}, \check{\xi}, \check{\pi}) : (\check{\zeta}, \check{\xi}, \check{\pi}) \in \widetilde{\tilde{\tau}}\}$ is B_PST on \check{Y} . The family $\widetilde{\tilde{\tau}}_{\check{Y}}$ is known as a B_PS subspace topology.

Definition 2.16. [15] Let $(\check{\Pi}, \widetilde{\widetilde{\tau}}, \check{\pi}, \neg \check{\pi})$ be a B_PSTS on $\check{\Pi}$ and $(\check{\zeta}, \check{\xi}, \check{\pi}) \stackrel{\sim}{\widetilde{\subseteq}} (\widetilde{\check{\Pi}}, \Phi, \check{\pi})$, then the family $\widetilde{\widetilde{\tau}}_{(\check{\zeta}, \check{\xi}, \check{\pi})} = \{(\check{\zeta}, \check{\xi}, \check{\pi}) \stackrel{\sim}{\widetilde{\cap}} (\check{\zeta}_i, \check{\xi}_i, \check{\pi}) : (\check{\zeta}_i, \check{\xi}_i, \check{\pi}) \stackrel{\sim}{\widetilde{\in}} \widetilde{\widetilde{\tau}} \text{ and } i \in I\}$ is a B_PS subspace topology on $(\check{\zeta}, \check{\xi}, \check{\pi})$ and $(\check{\Pi}_{(\check{\zeta}, \check{\xi}, \check{\pi})}, \widetilde{\widetilde{\tau}}_{(\check{\zeta}, \check{\xi}, \check{\pi})}, \check{\pi}, \neg \check{\pi})$ has the name of a B_PS topological subspace of $(\check{\Pi}, \widetilde{\widetilde{\tau}}, \check{\pi}, \neg \check{\pi})$.

Definition 2.17. [19] Two B_PSSs $(\check{\zeta}_1, \check{\xi}_1, \check{\pi})$ and $(\check{\zeta}_2, \check{\xi}_2, \check{\pi})$ are said to be disjoint B_PSSs if $\check{\zeta}_1(\epsilon) \cap \check{\zeta}_2(\epsilon) = \phi$ for all $\epsilon \in \check{\pi}$.

Definition 2.18. [19] Let $(\check{\Pi}, \widetilde{\tilde{\tau}}, \check{\pi}, \neg \check{\pi})$ be a B_PSTS on $\check{\Pi}$. A B_PS separation of $(\widetilde{\check{\Pi}}, \Phi, \check{\pi})$ is a pair $(\check{\zeta}_1, \check{\xi}_1, \check{\pi})$, $(\check{\zeta}_2, \check{\xi}_2, \check{\pi})$ of non-null disjoint B_PS open sets on $\check{\Pi}$ such that $\check{\zeta}_1(\epsilon) \cup \check{\zeta}_2(\epsilon) = \check{\Pi}$ for all $\epsilon \in \check{\pi}$.

Definition 2.19. [19] A B_PSTS $(\check{\Pi}, \widetilde{\widetilde{\tau}}, \check{\pi}, \neg \check{\pi})$ is said to be a B_PS disconnected space if there exists a B_PS separation of $(\widetilde{\check{\Pi}}, \Phi, \check{\pi})$. Further, $(\check{\Pi}, \widetilde{\widetilde{\tau}}, \check{\pi}, \neg \check{\pi})$ is said to be a B_PS connected space if it is not a B_PS disconnected space.

Definition 2.20. [19] A property \mathcal{P} of a B_PSTS $(\check{\Pi}, \widetilde{\widetilde{\tau}}, \check{\pi}, \neg \check{\pi})$ is said to be B_PS hereditary if every B_PS subspace $(Y, \widetilde{\widetilde{\tau}}_{\check{Y}}, \check{\pi}, \neg \check{\pi})$ of $(\check{\Pi}, \widetilde{\widetilde{\tau}}, \check{\pi}, \neg \check{\pi})$ also possesses the property \mathcal{P} .

Definition 2.21. [19] A family $\check{\Delta} = \{(\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi}) : (\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi}) \stackrel{\sim}{\widetilde{\epsilon}} \widetilde{\tau}\}_{\delta \in \Delta} \text{ of } B_{P}SSs \text{ is said to be a } B_{P}S \text{ cover of } a B_{P}SS \ (\check{\zeta}, \check{\xi}, \check{\pi}) \text{ if:}$

$$(\check{\zeta},\check{\xi},\check{\pi})\stackrel{\widetilde{\cong}}{\widetilde{\subseteq}} \widetilde{\widetilde{\cup}}_{\delta\in\Delta}\ (\check{\zeta}_{\delta},\check{\xi}_{\delta},\check{\pi}).$$

Furthermore, it is called the B_PS open cover of a B_PSS $(\check{\zeta},\check{\xi},\check{\pi})$ if each member of $\check{\Delta}$ is a B_PS open set. A B_PS subcover of $\check{\Delta}$ is a subfamily of $\{(\check{\zeta}_{\delta},\check{\xi}_{\delta},\check{\pi})\}_{\delta\in\Delta}$ which is also a B_PS open cover.

Definition 2.22. [19] A bipolar soft subset $(\check{\zeta}, \check{\xi}, \check{\pi})$ of $(\widetilde{\check{\Pi}}, \Phi, \check{\pi})$ is called a bipolar soft compact set, denoted by, B_PS compact set, if each B_PS open cover of $(\check{\zeta}, \check{\xi}, \check{\pi})$ has a finite B_PS subcover. A B_PSTS $(\check{\Pi}, \widetilde{\tau}, \check{\pi}, \neg \check{\pi})$ is said to be B_PS compact space if $(\widetilde{\check{\Pi}}, \Phi, \check{\pi})$ is a B_PS compact subset of itself.

Definition 2.23. [29] Let $\widetilde{\widetilde{W}}$ be a family of B_PS subsets on $\check{\Pi}$, then $\widetilde{\widetilde{W}}$ is considered a (B_PSWS) on $\check{\Pi}$ if $(\Phi, \widetilde{\check{\Pi}}, \check{\pi}) \stackrel{\sim}{\widetilde{\in}} \widetilde{\widetilde{W}}$.

Then, $(\check{\Pi}, \widetilde{\widetilde{W}}, \check{\pi}, \neg \check{\pi})$ is known as a B_PSWS on $\check{\Pi}$. The members of $\widetilde{\widetilde{W}}$ are considered bipolar soft $\widetilde{\widetilde{W}}$ -open sets, denoted by B_PSW -open in $\check{\Pi}$.

And $(\check{\zeta}, \check{\xi}, \check{\pi})$ is considered bipolar soft \widetilde{W} -closed, denoted by B_PSW -closed if its B_PSW complement $(\check{\zeta}, \check{\xi}, \check{\pi})^c$ is B_PSW -open.

Theorem 2.24. [29] Let $(\check{\Pi}, \widetilde{W}, \check{\pi})$ be a SWS. Then the family $\widetilde{\widetilde{W}}$ consisting of B_PSS $(\check{\zeta}, \check{\xi}, \check{\pi})$ such that $(\check{\zeta}, \check{\pi}) \in \widetilde{W}$ and $\check{\xi}(\neg \epsilon) = \check{\Pi} \setminus \check{\zeta}(\epsilon)$ for all $\neg \epsilon \in \neg \check{\pi}$ defines a B_PSWS on $\check{\Pi}$.

Definition 2.25. [29] Let $(\check{\coprod}, \widetilde{W}, \check{\pi}, \neg \check{\pi})$ be a B_PSWS and $(\check{\zeta}, \check{\xi}, \check{\pi}) \stackrel{\widetilde{\in}}{\in} B_PSS(\check{\coprod})$. Then the B_PSW -closure of $(\check{\zeta}, \check{\xi}, \check{\pi})$, denoted by B_PSW -cl $(\check{\zeta}, \check{\xi}, \check{\pi})$, is the B_PS intersection of all B_PSW -closed sets containing $(\check{\zeta}, \check{\xi}, \check{\pi})$. So, the B_PSW -closure can be dictated as:

$$B_PSW\text{-}cl(\check{\zeta},\check{\xi},\check{\pi}) = \bigcap^{\sim} \{(\check{\delta},\check{\gamma},\check{\pi}) : (\check{\delta},\check{\gamma},\check{\pi}) \text{ is } B_PSW\text{-}closed \text{ and } (\check{\delta},\check{\gamma},\check{\pi}) \stackrel{\sim}{\cong} (\check{\zeta},\check{\xi},\check{\pi})\}.$$

Definition 2.26. [29] Let $(\check{\Pi}, \widetilde{\widetilde{W}}, \check{\pi}, \neg \check{\pi})$ be a B_PSWS and $(\check{\zeta}, \check{\xi}, \check{\pi}) \stackrel{\widetilde{\in}}{\in} B_PSS(\check{\Pi})$. Then the B_PSW -interior of $(\check{\zeta}, \check{\xi}, \check{\pi})$, denoted by B_PSW -int $(\check{\zeta}, \check{\xi}, \check{\pi})$, is the B_PS union of all B_PSW -open subsets of $(\check{\zeta}, \check{\xi}, \check{\pi})$. So, the set can be dictated as:

$$B_{P}SW\text{-}int(\check{\zeta},\check{\xi},\check{\pi}) = \widetilde{\widetilde{\bigcup}}\{(\check{\delta},\check{\gamma},\check{\pi}): (\check{\delta},\check{\gamma},\check{\pi})\widetilde{\widetilde{\widetilde{\in}}}\widetilde{\widetilde{W}} and(\check{\delta},\check{\gamma},\check{\pi})\widetilde{\widetilde{\subseteq}}(\check{\zeta},\check{\xi},\check{\pi})\}.$$

Definition 2.27. [29] Let $(\check{\Pi}, \widetilde{\widetilde{W}}, \check{\pi}, \neg \check{\pi})$ be a B_PSWS and $(\check{\zeta}, \check{\xi}, \check{\pi}) \stackrel{\sim}{\widetilde{\in}} B_PSS(\check{\Pi})$, then the bipolar soft $\widetilde{\widetilde{W}}$ -boundary of $(\check{\zeta}, \check{\xi}, \check{\pi})$, denoted by B_PSW -b $(\check{\zeta}, \check{\xi}, \check{\pi})$, is defined as

$$B_PSW$$
- $b(\check{\zeta},\check{\xi},\check{\pi}) = B_PSW$ - $cl(\check{\zeta},\check{\xi},\check{\pi}) \stackrel{\sim}{\cap} B_PSW$ - $cl(\check{\zeta},\check{\xi},\check{\pi})^c$.

Proposition 2.28. [29] Let $(\check{\Pi}, \widetilde{\widetilde{W}}, \check{\pi}, \neg \check{\pi})$ be a B_PSWS on $\check{\Pi}$ and \check{Y} be a nonempty subset of $\check{\Pi}$, then, $\widehat{\widetilde{W}}_{\check{Y}}$ = $\{(\check{Y}\check{\zeta}, \check{Y}\check{\xi}, \check{\pi}) : (\check{\zeta}, \check{\xi}, \check{\pi}) \in \widetilde{\widetilde{W}}\}$ is B_PSW on \check{Y} . The family $\widetilde{\widetilde{W}}_{\check{Y}}$ is known as a B_PS subspace topology.

Proposition 2.29. Let $(\check{Y}, \widetilde{\widetilde{W}}_{\check{Y}}, \check{\pi}, \neg \check{\pi})$ be a B_PSWSS of B_PSWS $(\check{\Pi}, \widetilde{\widetilde{W}}, \check{\pi}, \neg \check{\pi})$ over $\check{\Pi}$ and $(\check{Y}\check{\zeta}, \check{Y}\check{\xi}, \check{\pi})$ be a B_PS $\widetilde{\widetilde{W}}_{\check{Y}}$ -closed set in \check{Y} . Then $(\check{\zeta}, \check{\xi}, \check{\pi})$ is a B_PSW -closed set in $\check{\Pi}$.

Definition 2.30. [29] Let $(\check{\Pi}, \widetilde{\widetilde{W}}, \check{\pi}, \neg \check{\pi})$ be a B_PSWS and $(\check{\zeta}, \check{\xi}, \check{\pi}) \stackrel{\widetilde{\in}}{\in} B_PSS(\check{\Pi})$, then the family

$$\widetilde{\widetilde{W}}_{(\check{\zeta},\check{\xi},\check{\pi})} = \{(\check{\zeta},\check{\xi},\check{\pi}) \ \widetilde{\widetilde{\cap}} \ (\check{\zeta}_i,\check{\xi}_i,\check{\pi}) : (\check{\zeta}_i,\check{\xi}_i,\check{\pi}) \ \widetilde{\widetilde{\in}} \ \widetilde{\widetilde{W}}, \ i \in \mathcal{I}\}$$

is said to be a bipolar soft weak subspace B_PSWSS on $(\check{\zeta}, \check{\xi}, \check{\pi})$.

3 $B_PS \stackrel{\widetilde{\widetilde{W}}}{\widetilde{W}}$ -Connected Sets

This section shows $\widetilde{\widetilde{W}}$ -separated B_PSSs ($S\widetilde{\widetilde{W}}$ -separated B_PSSs) using B_PSWS providing some of their properties. In addition, B_PS $\widetilde{\widetilde{W}}$ -connected sets in terms of B_PSWS are presented, obtaining properties and their relations.

Definition 3.1. Let $(\check{\zeta}_1,\check{\xi}_1,\check{\pi})$ and $(\check{\zeta}_2,\check{\xi}_2,\check{\pi})$ be two B_PSSs in $(\check{\Pi},\widetilde{\widetilde{W}},\check{\pi},\neg\check{\pi})$ which are not null. Then

- (i) $(\check{\zeta}_1,\check{\xi}_1,\check{\pi})$ and $(\check{\zeta}_2,\check{\xi}_2,\check{\pi})$ are known as $\widetilde{\widetilde{W}}$ -separated B_PSSs if $(\check{\zeta}_1,\check{\xi}_1,\check{\pi})$ $\widetilde{\widetilde{\cap}}$ B_PSW -cl $(\check{\zeta}_2,\check{\xi}_2,\check{\pi})=(\Phi,\check{\xi},\check{\pi})$ and B_PSW -cl $(\check{\zeta}_1,\check{\xi}_1,\check{\pi})$ $\widetilde{\widetilde{\cap}}$ $(\check{\zeta}_2,\check{\xi}_2,\check{\pi})=(\Phi,\check{\xi},\check{\pi})$.
- (ii) $(\check{\zeta}_1, \check{\xi}_1, \check{\pi})$ and $(\check{\zeta}_2, \check{\xi}_2, \check{\pi})$ are known as strong $\widetilde{\widetilde{W}}$ -separated B_PSSs $(S\widetilde{\widetilde{W}}$ -separated $B_PSSs)$ if $(\check{\zeta}_1, \check{\xi}_1, \check{\pi})$ $\widetilde{\widetilde{\cap}}$ B_PSW -cl $(\check{\zeta}_2, \check{\xi}_2, \check{\pi}) = (\Phi, \widetilde{\widetilde{\widetilde{\Pi}}}, \check{\pi})$ and B_PSW -cl $(\check{\zeta}_1, \check{\xi}_1, \check{\pi})$ $\widetilde{\widetilde{\cap}}$ $(\check{\zeta}_2, \check{\xi}_2, \check{\pi}) = (\Phi, \widetilde{\widetilde{\widetilde{\Pi}}}, \check{\pi})$.

Proposition 3.2. Every $S\widetilde{\widetilde{W}}$ -separated B_PSSs on $\check{\coprod}$ is a $\widetilde{\widetilde{W}}$ -separated B_PSSs on $\check{\coprod}$.

Proof. Follows directly from definitions. \Box

Proposition 3.3. Any two $\widetilde{\widetilde{W}}$ -separated B_PSSs ($S\widetilde{\widetilde{W}}$ -separated B_PSSs) are disjoint B_PSSs .

Proof. Obvious. \Box

Remark 3.4. Note that disjoint B_PSSs may not be $\widetilde{\widetilde{W}}$ -separated B_PSSs ($S\widetilde{\widetilde{W}}$ -separated B_PSSs); meaning that the converse of Proposition 3.3 is not true as shown in the following example.

Example 3.5. Let $\check{\Pi} = \{h_1, h_2, h_3, h_4\}, \, \check{\pi} = \{\epsilon_1, \epsilon_2\}$ and

$$\widetilde{\widetilde{W}} = \{(\Phi, \widetilde{\check{\Pi}}, \check{\pi}), (\widetilde{\check{\Pi}}, \Phi, \check{\pi}), (\check{\zeta}_1, \check{\xi}_1, \check{\pi}), (\check{\zeta}_2, \check{\xi}_2, \check{\pi}), (\check{\zeta}_3, \check{\xi}_3, \check{\pi})\}$$

be a B_PSWS over $\check{\Pi}$ where $(\check{\zeta}_1,\check{\xi}_1,\check{\pi}),(\check{\zeta}_2,\check{\xi}_2,\check{\pi}),(\check{\zeta}_3,\check{\xi}_3,\check{\pi}) \stackrel{\widetilde{\approx}}{\tilde{\epsilon}} B_PSS(\check{\Pi}),$ defined as follows

$$\begin{split} &(\check{\zeta}_{1},\check{\xi}_{1},\check{\pi}) = \{(\epsilon_{1},\{\hbar_{2},\hbar_{3}\},\{\hbar_{1}\}),(\epsilon_{2},\{\hbar_{3},\hbar_{4}\},\{\hbar_{2}\})\},\\ &(\check{\zeta}_{2},\check{\xi}_{2},\check{\pi}) = \{(\epsilon_{1},\{\hbar_{1},\hbar_{3}\},\{\hbar_{2},\hbar_{4}\}),(\epsilon_{2},\{\hbar_{1},\hbar_{3}\},\{\hbar_{2}\})\},\\ &(\check{\zeta}_{3},\check{\xi}_{3},\check{\pi}) = \{(\epsilon_{1},\{\hbar_{1},\hbar_{2},\hbar_{3}\},\phi),(\epsilon_{2},\{\hbar_{1},\hbar_{3},\hbar_{4}\},\{\hbar_{2}\})\}. \end{split}$$

Now, assume that $(\check{\delta}_1,\check{\gamma}_1,\check{\pi})$ and $(\check{\delta}_2,\check{\gamma}_2,\check{\pi})$ are disjoint B_PSSs over $\check{\coprod}$ defined by

$$\begin{split} (\check{\delta}_1, \check{\gamma}_1, \check{\pi}) &= \{ (\epsilon_1, \{\hbar_1, \hbar_2, \hbar_4\}, \{\hbar_3\}), (\epsilon_2, \{\hbar_1, \hbar_2, \hbar_4\}, \{\hbar_3\}) \}, \\ (\check{\delta}_2, \check{\gamma}_2, \check{\pi}) &= \{ (\epsilon_1, \{\hbar_3\}, \{\hbar_2\}), (\epsilon_2, \{\hbar_3\}, \{\hbar_2\}) \}. \end{split}$$

Then $B_PSW-cl\ (\check{\delta}_1,\check{\gamma}_1,\check{\pi})=B_PSW-cl\ (\check{\delta}_2,\check{\gamma}_2,\check{\pi})=(\widetilde{\widetilde{\Pi}},\Phi,\check{\pi})$ and $(\check{\delta}_1,\check{\gamma}_1,\check{\pi})\widetilde{\widetilde{\cap}}\ B_PSW-cl\ (\check{\delta}_2,\check{\gamma}_2,\check{\pi})=(\check{\delta}_1,\check{\gamma}_1,\check{\pi}),\ B_PSW-cl\ (\check{\delta}_1,\check{\gamma}_1,\check{\pi})\widetilde{\widetilde{\cap}}\ (\check{\delta}_2,\check{\gamma}_2,\check{\pi})=(\check{\delta}_2,\check{\gamma}_2,\check{\pi})$. But $(\check{\delta}_1,\check{\gamma}_1,\check{\pi})\widetilde{\widetilde{\cap}}\ (\check{\delta}_2,\check{\gamma}_2,\check{\pi})=(\Phi,\check{\gamma},\check{\pi})$. Thus, $B_PSSs\ (\check{\delta}_1,\check{\gamma}_1,\check{\pi}),\ (\check{\delta}_2,\check{\gamma}_2,\check{\pi})$ are disjoint B_PSSs but not \widetilde{W} -separated $B_PSSs\ (\widetilde{SW}$ -separated B_PSSs).

Proposition 3.6. Let be any two B_PSSs on $\check{\coprod}$. Then the following are correct:

- (i) If $(\check{\zeta}_1, \check{\xi}_1, \check{\pi})$ and $(\check{\zeta}_1, \check{\xi}_1, \check{\pi})$ are two $\widetilde{\widetilde{W}}$ -separated B_PSSs over $\check{\coprod}$ with $(\check{\delta}_1, \check{\gamma}_1, \check{\pi})$ $\overset{\sim}{\subseteq}$ $(\check{\zeta}_1, \check{\xi}_1, \check{\pi})$ and $(\check{\delta}_2, \check{\gamma}_2, \check{\pi})$ $\overset{\sim}{\cong}$ $(\check{\zeta}_2, \check{\xi}_2, \check{\pi})$. Then, $(\check{\delta}_1, \check{\gamma}_1, \check{\pi})$ and $(\check{\delta}_2, \check{\gamma}_2, \check{\pi})$ also are $\widetilde{\widetilde{W}}$ -separated B_PSSs over $\check{\coprod}$.
- (ii) If $(\check{\zeta}_1,\check{\xi}_1,\check{\pi})$ and $(\check{\zeta}_1,\check{\xi}_1,\check{\pi})$ are two $S\widetilde{\widetilde{W}}$ -separated B_PSSs over $\check{\coprod}$ with $(\check{\delta}_1,\check{\gamma}_1,\check{\pi})$ $\widetilde{\widetilde{\subseteq}}$ $(\check{\zeta}_1,\check{\xi}_1,\check{\pi})$ and $(\check{\delta}_2,\check{\gamma}_2,\check{\pi})$ $\widetilde{\widetilde{\subseteq}}$ $(\check{\zeta}_2,\check{\xi}_2,\check{\pi})$. Then, $(\check{\delta}_1,\check{\gamma}_1,\check{\pi})$ and $(\check{\delta}_2,\check{\gamma}_2,\check{\pi})$ also are $S\widetilde{\widetilde{W}}$ -separated B_PSSs over $\check{\coprod}$.

Proof.

- (i) Given \widetilde{W} -separated B_PSSs $(\check{\zeta}_1,\check{\xi}_1,\check{\pi})$ and $(\check{\zeta}_1,\check{\xi}_1,\check{\pi})$. Then $(\check{\zeta}_1,\check{\xi}_1,\check{\pi})$ $\widetilde{\cap}$ B_PSW -cl $(\check{\zeta}_2,\check{\xi}_2,\check{\pi}) = B_PSW$ -cl $(\check{\zeta}_1,\check{\xi}_1,\check{\pi})$ $\widetilde{\cap}$ $(\check{\zeta}_2,\check{\xi}_2,\check{\pi}) = (\Phi,\check{\xi},\check{\pi})$. Since $(\check{\delta}_1,\check{\gamma}_1,\check{\pi})$ $\widetilde{\subseteq}$ $(\check{\zeta}_1,\check{\xi}_1,\check{\pi})$ and $(\check{\delta}_2,\check{\gamma}_2,\check{\pi})$ $\widetilde{\subseteq}$ $(\check{\zeta}_2,\check{\xi}_2,\check{\pi})$, then B_PSW -cl $(\check{\delta}_1,\check{\gamma}_1,\check{\pi})$ $\widetilde{\subseteq}$ B_PSW -cl $(\check{\zeta}_1,\check{\xi}_1,\check{\pi})$ and B_PSW -cl $(\check{\delta}_2,\check{\gamma}_2,\check{\pi})$ $\widetilde{\subseteq}$ B_PSW -cl $(\check{\zeta}_2,\check{\xi}_2,\check{\pi})$. Therefore, $(\check{\delta}_1,\check{\gamma}_1,\check{\pi})$ $\widetilde{\cap}$ B_PSW -cl $(\check{\delta}_2,\check{\gamma}_2,\check{\pi}) = B_PSW$ -cl $(\check{\delta}_1,\check{\gamma}_1,\check{\pi})$ $\widetilde{\cap}$ $(\check{\delta}_2,\check{\gamma}_2,\check{\pi}) = (\Phi,\check{\gamma},\check{\pi})$. Hence, $(\check{\delta}_1,\check{\gamma}_1,\check{\pi})$ and $(\check{\delta}_2,\check{\gamma}_2,\check{\pi})$ are \widetilde{W} -separated B_PSSs over $\check{\Pi}$.
- (ii) Let given $S\widetilde{W}$ -separated B_PSSs $(\check{\zeta}_1,\check{\xi}_1,\check{\pi})$ and $(\check{\zeta}_1,\check{\xi}_1,\check{\pi})$. Then $(\check{\zeta}_1,\check{\xi}_1,\check{\pi}) \overset{\sim}{\widetilde{\cap}} B_PSW\text{-}cl\ (\check{\zeta}_2,\check{\xi}_2,\check{\pi}) = B_PSW\text{-}cl\ (\check{\zeta}_1,\check{\xi}_1,\check{\pi}) \overset{\sim}{\widetilde{\cap}} (\check{\zeta}_2,\check{\xi}_2,\check{\pi}) = (\Phi,\overset{\sim}{\widetilde{\coprod}},\check{\pi}). \text{ Since } (\check{\delta}_1,\check{\gamma}_1,\check{\pi}) \overset{\sim}{\widetilde{\subseteq}} (\check{\zeta}_1,\check{\xi}_1,\check{\pi}) \text{ and } (\check{\delta}_2,\check{\gamma}_2,\check{\pi}) \overset{\sim}{\widetilde{\subseteq}} (\check{\zeta}_2,\check{\xi}_2,\check{\pi}), \text{ then } B_PSW\text{-}cl\ (\check{\delta}_1,\check{\gamma}_1,\check{\pi}) \overset{\sim}{\widetilde{\subseteq}} B_PSW\text{-}cl\ (\check{\zeta}_1,\check{\xi}_1,\check{\pi}) \text{ and } B_PSW\text{-}cl\ (\check{\delta}_2,\check{\gamma}_2,\check{\pi}) \overset{\sim}{\widetilde{\subseteq}} B_PSW\text{-}cl\ (\check{\zeta}_2,\check{\xi}_2,\check{\pi}). \text{ Therefore,} \\ (\check{\delta}_1,\check{\gamma}_1,\check{\pi}) \overset{\sim}{\widetilde{\cap}} B_PSW\text{-}cl\ (\check{\delta}_2,\check{\gamma}_2,\check{\pi}) = B_PSW\text{-}cl\ (\check{\delta}_1,\check{\gamma}_1,\check{\pi}) \overset{\sim}{\widetilde{\cap}} (\check{\delta}_2,\check{\gamma}_2,\check{\pi}) = (\Phi,\overset{\sim}{\check{\coprod}},\check{\pi}). \text{ Hence, } (\check{\delta}_1,\check{\gamma}_1,\check{\pi}) \text{ and } \\ (\check{\delta}_2,\check{\gamma}_2,\check{\pi}) \text{ are } S\widetilde{W}\text{-separated } B_PSSs \text{ over }\check{\coprod}.$

Theorem 3.7. Two $\widetilde{\widetilde{W}}$ -closed subsets $(\check{\zeta}_1,\check{\xi}_1,\check{\pi})$ and $(\check{\zeta}_2,\check{\xi}_2,\check{\pi})$ of B_PSWS $(\check{\coprod},\widetilde{\widetilde{W}},\check{\pi},\neg\check{\pi})$ over $\check{\coprod}$ are $\widetilde{\widetilde{W}}$ -separated B_PSSs if and only if they are disjoint B_PSSs .

Proof. The first condition is obvious. Conversely, assume that $(\check{\zeta}_1,\check{\xi}_1,\check{\pi})$ and $(\check{\zeta}_2,\check{\xi}_2,\check{\pi})$ are disjoint \widetilde{W} -closed. So, $(\check{\zeta}_1,\check{\xi}_1,\check{\pi})$ $\overset{\sim}{\cap}$ $(\check{\zeta}_2,\check{\xi}_2,\check{\pi})=(\Phi,\check{\xi},\check{\pi})$ and B_PSW - $cl(\check{\zeta}_1,\check{\xi}_1,\check{\pi})=(\check{\zeta}_1,\check{\xi}_1,\check{\pi}), B_PSW$ - $cl(\check{\zeta}_2,\check{\xi}_2,\check{\pi})=(\check{\zeta}_2,\check{\xi}_2,\check{\pi})$ and hence

$$(\check{\zeta}_1,\check{\xi}_1,\check{\pi})\stackrel{\widetilde{\cap}}{\cap} B_PSW - cl\,(\check{\zeta}_2,\check{\xi}_2,\check{\pi}) \ = B_PSW - cl\,(\check{\zeta}_1,\check{\xi}_1,\check{\pi})\stackrel{\widetilde{\cap}}{\cap} (\check{\zeta}_2,\check{\xi}_2,\check{\pi}) \ = (\Phi,\check{\xi},\check{\pi})$$

showing that $(\check{\zeta}_1, \check{\xi}_1, \check{\pi})$ and $(\check{\zeta}_2, \check{\xi}_2, \check{\pi})$ are $\widetilde{\widetilde{W}}$ -separated B_PSSs over $\check{\Pi}$.

Remark 3.8. Two disjoint $\widetilde{\widetilde{W}}$ -open sets $(\check{\zeta}_1,\check{\xi}_1,\check{\pi})$ and $(\check{\zeta}_2,\check{\xi}_2,\check{\pi})$ are not necessarily $\widetilde{\widetilde{W}}$ -separated.

Example 3.9. Let $\check{\Pi} = \{\hbar_1, \hbar_2, \hbar_3, \hbar_4\}, \check{\pi} = \{\epsilon_1, \epsilon_2\}$ and

$$\widetilde{\widetilde{W}} = \{(\Phi, \widetilde{\check{\Pi}}, \check{\pi}), (\widetilde{\check{\Pi}}, \Phi, \check{\pi}), (\check{\zeta}_1, \check{\xi}_1, \check{\pi}), (\check{\zeta}_2, \check{\xi}_2, \check{\pi}), (\check{\zeta}_3, \check{\xi}_3, \check{\pi})\}$$

be a B_PSWS over $\check{\Pi}$ where $(\check{\zeta}_1,\check{\xi}_1,\check{\pi}),\,(\check{\zeta}_2,\check{\xi}_2,\check{\pi}),\,(\check{\zeta}_3,\check{\xi}_3,\check{\pi})$ $\stackrel{\widetilde{\approx}}{\tilde{\epsilon}}$ $B_PSS(\check{\Pi}),$ defined as follows

$$\begin{split} &(\check{\zeta}_{1},\check{\xi}_{1},\check{\pi}) = \{(\epsilon_{1},\{\hbar_{2}\},\{\hbar_{1},\hbar_{4}\}),(\epsilon_{2},\{\hbar_{2}\},\{\hbar_{1},\hbar_{4}\})\},\\ &(\check{\zeta}_{2},\check{\xi}_{2},\check{\pi}) = \{(\epsilon_{1},\{\hbar_{3}\},\{\hbar_{1},\hbar_{4}\}),(\epsilon_{2},\{\hbar_{3}\},\{\hbar_{1},\hbar_{4}\})\},\\ &(\check{\zeta}_{3},\check{\xi}_{3},\check{\pi}) = \{(\epsilon_{1},\{\hbar_{2},\hbar_{3}\},\{\hbar_{1},\hbar_{4}\}),(\epsilon_{2},\{\hbar_{2},\hbar_{3}\},\{\hbar_{1},\hbar_{4}\})\}. \end{split}$$

Corollary 3.10. If two $\widetilde{\widetilde{W}}$ -closed subsets $(\check{\zeta}_1,\check{\xi}_1,\check{\pi})$ and $(\check{\zeta}_2,\check{\xi}_2,\check{\pi})$ of B_PSWS $(\check{\Pi},\widetilde{\widetilde{W}},\check{\pi},\neg\check{\pi})$ over $\check{\Pi}$ are $S\widetilde{\widetilde{W}}$ -separated B_PSSs , then they are disjoint B_PSSs .

Proof. Follows directly from Proposition 3.2 and Theorem 3.7. \Box

Remark 3.11. The example below shows that the converse of Corollary 3.10 is not true in general. Hence two disjoint $\widetilde{\widetilde{W}}$ -closed sets $(\check{\zeta}_1,\check{\xi}_1,\check{\pi})$ and $(\check{\zeta}_2,\check{\xi}_2,\check{\pi})$ are not necessarily $S\widetilde{\widetilde{W}}$ -separated B_PSSs .

Example 3.12. Let $\check{\Pi} = \{h_1, h_2, h_3\}, \check{\pi} = \{\epsilon_1\}$ and

$$\widetilde{\widetilde{W}} = \{(\Phi, \widetilde{\check{\coprod}}, \check{\pi}), (\check{\zeta}_1, \check{\xi}_1, \check{\pi}), (\check{\zeta}_2, \check{\xi}_2, \check{\pi})\}$$

be a B_PSWS over $\check{\Pi}$ where $(\check{\zeta}_1,\check{\xi}_1,\check{\pi}), (\check{\zeta}_2,\check{\xi}_2,\check{\pi}) \stackrel{\widetilde{\approx}}{\in} B_PSS(\check{\Pi}),$ defined as follows

$$\begin{split} &(\check{\zeta}_1, \check{\xi}_1, \check{\pi}) = \{(\epsilon_1, \{\hbar_2\}, \{\hbar_1\}), (\epsilon_2, \{\hbar_3\}, \{\hbar_2\})\}, \\ &(\check{\zeta}_2, \check{\xi}_2, \check{\pi}) = \{(\epsilon_1, \{\hbar_3\}, \{\hbar_2\}), (\epsilon_2, \{\hbar_3\}, \{\hbar_1\})\}. \end{split}$$

Obviously, $(\check{\zeta}_1, \check{\xi}_1, \check{\pi})^c$, $(\check{\zeta}_2, \check{\xi}_2, \check{\pi})^c$ are disjoint $\widetilde{\widetilde{W}}$ -closed but not $S\widetilde{\widetilde{W}}$ -strong separated as $B_PSW\text{-}cl(\check{\zeta}_1, \check{\xi}_1, \check{\pi})^c$ $= B_PSW\text{-}cl(\check{\zeta}_2, \check{\xi}_2, \check{\pi})^c = (\widetilde{\check{L}}, \Phi, \check{\pi})$, which implies that $(\check{\zeta}_1, \check{\xi}_1, \check{\pi})^c \widetilde{\widetilde{\cap}} B_PSW\text{-}cl(\check{\zeta}_2, \check{\xi}_2, \check{\pi})^c = (\check{\zeta}_1, \check{\xi}_1, \check{\pi})^c$, $B_PSW\text{-}cl(\check{\zeta}_1, \check{\xi}_1, \check{\pi})^c \widetilde{\widetilde{\cap}} (\check{\zeta}_2, \check{\xi}_2, \check{\pi})^c = (\check{\zeta}_1, \check{\xi}_1, \check{\pi})^c$. Hence the conclusion.

Definition 3.13. A B_PS subset $(\check{\zeta},\check{\xi},\check{\pi})$ of B_PSWS $(\check{\Pi},\widetilde{\widetilde{W}},\check{\pi},\neg\check{\pi})$ over $\check{\Pi}$ is called B_PS $\widetilde{\widetilde{W}}$ -disconnected over $\check{\Pi}$ if there exist $\widetilde{\widetilde{W}}$ -separated B_PSSs of $(\check{\zeta},\check{\xi},\check{\pi})$. Otherwise, a B_PSS $(\check{\zeta},\check{\xi},\check{\pi})$ is called B_PS $\widetilde{\widetilde{W}}$ -connected over $\check{\Pi}$.

Remark 3.14. The null B_PSS $(\Phi, \widetilde{\widetilde{H}}, \check{\pi})$ is always B_PS $\widetilde{\widetilde{W}}$ -connected.

Definition 3.15. Let \hbar_v^{ϵ} , $\hbar_{v'}^{\prime \epsilon'} \stackrel{\widetilde{\in}}{\widetilde{\in}} B_P SP(\check{\Pi})_{(\check{\pi}, \neg \check{\pi})}$ of a $B_P SWS$ $(\check{\Pi}, \widetilde{\widetilde{W}}, \check{\pi}, \neg \check{\pi})$. Then, \hbar_v^{ϵ} and $\hbar_{v'}^{\prime \epsilon'}$ are called $B_P S \stackrel{\widetilde{\widetilde{W}}}{\widetilde{W}}$ -connected points if they are contained in $B_P S \stackrel{\widetilde{\widetilde{W}}}{\widetilde{W}}$ -connected set over $\check{\Pi}$.

Proposition 3.16. Let $(\check{\Pi}, \widetilde{\widetilde{W}}, \check{\pi}, \neg \check{\pi})$ be a B_PSWS over $\check{\Pi}$ and $(\check{\zeta}, \check{\xi}, \check{\pi})$ be a B_PS $\widetilde{\widetilde{W}}$ -connected set such that $(\check{\zeta}, \check{\xi}, \check{\pi})$ $\widetilde{\subseteq}$ $(\check{\zeta}_1, \check{\xi}_1, \check{\pi})$ $\widetilde{\widetilde{\subseteq}}$ $(\check{\zeta}_1, \check{\xi}_1, \check{\pi})$ $\widetilde{\widetilde{\subseteq}}$ $(\check{\zeta}_1, \check{\xi}_1, \check{\pi})$ or $(\check{\zeta}, \check{\xi}, \check{\pi})$ $\widetilde{\widetilde{\subseteq}}$ $(\check{\zeta}_1, \check{\xi}_1, \check{\pi})$ or $(\check{\zeta}, \check{\xi}, \check{\pi})$ $\widetilde{\widetilde{\subseteq}}$ $(\check{\zeta}_2, \check{\xi}_2, \check{\pi})$.

Proof. From $(\check{\zeta}_1,\check{\xi}_1,\check{\pi})$ and $(\check{\zeta}_2,\check{\xi}_2,\check{\pi})$ are \widetilde{W} -separated B_PSSs , then $(\check{\zeta}_1,\check{\xi}_1,\check{\pi})$ $\widetilde{\cap}$ B_PSW - $cl(\check{\zeta}_2,\check{\xi}_2,\check{\pi}) = (\Phi,\check{\xi},\check{\pi})$ and B_PSW - $cl(\check{\zeta}_1,\check{\xi}_1,\check{\pi})$ $\widetilde{\cap}$ $(\check{\zeta}_2,\check{\xi}_2,\check{\pi}) = (\Phi,\check{\xi},\check{\pi})$. Since $(\check{\xi},\check{\xi},\check{\pi})$ $\widetilde{\subseteq}$ $(\check{\zeta}_1,\check{\xi}_1,\check{\pi})$ $\widetilde{\cup}$ $(\check{\zeta}_2,\check{\xi}_2,\check{\pi})$, then $(\check{\xi},\check{\xi},\check{\pi})$ $= (\check{\xi},\check{\xi},\check{\pi})$ $\widetilde{\cap}$ $(\check{\xi}_1,\check{\xi}_1,\check{\pi})$ $\widetilde{\cup}$ $(\check{\xi}_2,\check{\xi}_2,\check{\pi})$ $= (\check{\xi},\check{\xi},\check{\pi})$ $\widetilde{\cap}$ $(\check{\xi}_1,\check{\xi}_1,\check{\pi})$ $\widetilde{\cap}$ $(\check{\xi}_2,\check{\xi}_2,\check{\pi})$. We state that at least one of the B_PSSs $((\check{\xi},\check{\xi},\check{\pi})$ $\widetilde{\cap}$ $(\check{\xi}_1,\check{\xi}_1,\check{\pi})$ and $((\check{\xi},\check{\xi},\check{\pi})$ $\widetilde{\cap}$ $(\check{\xi}_2,\check{\xi}_2,\check{\pi})$ is null B_PSS . Now, suppose that if possible non of these B_PSSs is null, hence,

$$(\check{\zeta},\check{\xi},\check{\pi})\stackrel{\widetilde{\cap}}{\cap} (\check{\zeta}_1,\check{\xi}_1,\check{\pi}) \neq (\Phi,\check{\xi},\check{\pi}) \text{ and } (\check{\zeta},\check{\xi},\check{\pi})\stackrel{\widetilde{\cap}}{\cap} (\check{\zeta}_2,\check{\xi}_2,\check{\pi}) \neq (\Phi,\check{\xi},\check{\pi}).$$

Thus,

$$\begin{split} ((\check{\zeta},\check{\xi},\check{\pi})\widetilde{\widetilde{\cap}}\ (\check{\zeta}_{1},\check{\xi}_{1},\check{\pi}))\widetilde{\widetilde{\cap}}\ B_{P}SW - cl\big((\check{\zeta},\check{\xi},\check{\pi})\widetilde{\widetilde{\cap}}\ (\check{\zeta}_{2},\check{\xi}_{2},\check{\pi})\big) \\ \widetilde{\subseteq}\ \big((\check{\zeta},\check{\xi},\check{\pi})\widetilde{\widetilde{\cap}}\ (\check{\zeta}_{1},\check{\xi}_{1},\check{\pi})\big)\widetilde{\widetilde{\cap}}\ \big(B_{P}SW - cl(\check{\zeta},\check{\xi},\check{\pi})\widetilde{\widetilde{\cap}}\ B_{P}SW - cl(\check{\zeta}_{2},\check{\xi}_{2},\check{\pi})\big) \\ = \big((\check{\zeta},\check{\xi},\check{\pi})\widetilde{\widetilde{\cap}}\ B_{P}SW - cl(\check{\zeta},\check{\xi},\check{\pi})\big)\widetilde{\widetilde{\cap}}\ \big((\check{\zeta}_{1},\check{\xi}_{1},\check{\pi})\widetilde{\widetilde{\cap}}\ B_{P}SW - cl(\check{\zeta}_{2},\check{\xi}_{2},\check{\pi})\big) \\ = (\check{\zeta},\check{\xi},\check{\pi})\widetilde{\widetilde{\cap}}\ (\Phi,\check{\xi},\check{\pi}) \\ = (\Phi,\check{\xi},\check{\pi}). \end{split}$$

Similarly,

$$B_PSW\text{-}cl\left((\check{\zeta},\check{\xi},\check{\pi})\widetilde{\widetilde{\cap}}(\check{\zeta}_1,\check{\xi}_1,\check{\pi})\right)\widetilde{\widetilde{\cap}}\left((\check{\zeta},\check{\xi},\check{\pi})\widetilde{\widetilde{\cap}}(\check{\zeta}_2,\check{\xi}_2,\check{\pi})\right)=(\Phi,\check{\xi},\check{\pi}).$$

Therefore, $(\check{\zeta},\check{\xi},\check{\pi}) \stackrel{\sim}{\widetilde{\cap}} (\check{\zeta}_1,\check{\xi}_1,\check{\pi})$ and $(\check{\zeta},\check{\xi},\check{\pi}) \stackrel{\sim}{\widetilde{\cap}} (\check{\zeta}_2,\check{\xi}_2,\check{\pi})$ are \widetilde{W} -separated B_PSSs . Thus, $(\check{\zeta},\check{\xi},\check{\pi})$ can be expressed as B_PS union of a pair of \widetilde{W} -separated B_PSSs . So, $(\check{\zeta},\check{\xi},\check{\pi})$ is a $B_PS \stackrel{\sim}{W}$ -disconnected. Which is a contradiction. Hence, at least one of the B_PSSs $(\check{\zeta},\check{\xi},\check{\pi}) \stackrel{\sim}{\widetilde{\cap}} (\check{\zeta}_1,\check{\xi}_1,\check{\pi})$ and $(\check{\zeta},\check{\xi},\check{\pi}) \stackrel{\sim}{\widetilde{\cap}} (\check{\zeta}_2,\check{\xi}_2,\check{\pi})$ is null B_PSS . Now, if $(\check{\zeta},\check{\xi},\check{\pi}) \stackrel{\sim}{\widetilde{\cap}} (\check{\zeta}_1,\check{\xi}_1,\check{\pi}) = (\Phi,\check{\xi},\check{\pi})$, then $(\check{\zeta},\check{\xi},\check{\pi}) \stackrel{\sim}{\widetilde{\cap}} (\check{\zeta}_2,\check{\xi}_2,\check{\pi})$ which implies that $(\check{\zeta},\check{\xi},\check{\pi}) \stackrel{\sim}{\widetilde{\subseteq}} (\check{\zeta}_2,\check{\xi}_2,\check{\pi})$. If $(\check{\zeta},\check{\xi},\check{\pi}) \stackrel{\sim}{\widetilde{\cap}} (\check{\zeta}_2,\check{\xi}_2,\check{\pi}) = (\Phi,\check{\xi},\check{\pi})$, then $(\check{\zeta},\check{\xi},\check{\pi}) = (\check{\zeta},\check{\xi},\check{\pi}) \stackrel{\sim}{\widetilde{\cap}} (\check{\zeta}_1,\check{\xi}_1,\check{\pi})$ implying that $(\check{\zeta},\check{\xi},\check{\pi}) \stackrel{\sim}{\widetilde{\subseteq}} (\check{\zeta}_1,\check{\xi}_1,\check{\pi})$. Therefore, either $(\check{\zeta},\check{\xi},\check{\pi}) \stackrel{\sim}{\widetilde{\subseteq}} (\check{\zeta}_1,\check{\xi}_1,\check{\pi})$ or $(\check{\zeta},\check{\xi},\check{\pi}) \stackrel{\sim}{\widetilde{\subseteq}} (\check{\zeta}_2,\check{\xi}_2,\check{\pi})$. \square

Corollary 3.17. If $(\check{\zeta}, \check{\xi}, \check{\pi})$ is a B_PS $\widetilde{\widetilde{W}}$ -connected subset of a B_PSWS $(\check{\coprod}, \widetilde{\widetilde{W}}, \check{\pi}, \neg \check{\pi})$ such that $(\check{\zeta}, \check{\xi}, \check{\pi})$ $\widetilde{\subseteq}$ $(\check{\zeta}_1, \check{\xi}_1, \check{\pi})$ $\widetilde{\widetilde{\cup}}$ $(\check{\zeta}_2, \check{\xi}_2, \check{\pi})$ where $(\check{\zeta}_1, \check{\xi}_1, \check{\pi})$ and $(\check{\zeta}_2, \check{\xi}_2, \check{\pi})$ are both B_PSW -closed and nonnull disjoint B_PSSs . Then, $(\check{\zeta}_1, \check{\xi}_1, \check{\pi})$ and $(\check{\zeta}_2, \check{\xi}_2, \check{\pi})$ are $\widetilde{\widetilde{W}}$ -separated B_PSSs .

Proof. Follows directly from Proposition 3.16 and Theorem 3.7.

Proposition 3.18. Let $(\check{\zeta},\check{\xi},\check{\pi})$ be B_PS $\widetilde{\widetilde{W}}$ -connected and $(\check{\delta},\check{\gamma},\check{\pi})$ $\widetilde{\widetilde{\in}}$ $B_PSS(\check{\Pi})$ such that $(\check{\zeta},\check{\xi},\check{\pi})$ $\widetilde{\widetilde{\subseteq}}$ $(\check{\delta},\check{\gamma},\check{\pi})$ $\widetilde{\widetilde{\subseteq}}$ B_PSW -cl $(\check{\zeta},\check{\xi},\check{\pi})$. Then $(\check{\delta},\check{\gamma},\check{\pi})$ is B_PS $\widetilde{\widetilde{W}}$ -connected. Specifically, B_PSW -cl $(\check{\zeta},\check{\xi},\check{\pi})$ is also B_PS $\widetilde{\widetilde{W}}$ -connected.

Proof. Suppose that $(\check{\delta}, \check{\gamma}, \check{\pi})$ is B_PS $\widetilde{\widetilde{W}}$ -disconnected. Then, there exist nonnull B_PSSs $(\check{\zeta}_1, \check{\xi}_1, \check{\pi})$ and $(\check{\zeta}_2, \check{\xi}_2, \check{\pi})$ in which

$$(\check{\zeta}_{1},\check{\xi}_{1},\check{\pi})\stackrel{\widetilde{\cap}}{\cap} B_{P}SW\text{-}cl\ (\check{\zeta}_{2},\check{\xi}_{2},\check{\pi}) = B_{P}SW\text{-}cl\ (\check{\zeta}_{1},\check{\xi}_{1},\check{\pi})\stackrel{\widetilde{\cap}}{\cap} (\check{\zeta}_{2},\check{\xi}_{2},\check{\pi}) = (\Phi,\check{\xi},\check{\pi})$$

and $(\check{\delta}, \check{\gamma}, \check{\pi}) = (\check{\zeta}_1, \check{\xi}_1, \check{\pi}) \stackrel{\sim}{\widetilde{\cup}} (\check{\zeta}_2, \check{\xi}_2, \check{\pi}).$

From $(\check{\zeta},\check{\xi},\check{\pi})$ $\widetilde{\subseteq}$ $(\check{\delta},\check{\gamma},\check{\pi}) = (\check{\zeta}_1,\check{\xi}_1,\check{\pi})$ $\widetilde{\widetilde{\cup}}$ $(\check{\zeta}_2,\check{\xi}_2,\check{\pi})$, it follows from Proposition 3.16 that $(\check{\zeta},\check{\xi},\check{\pi})$ $\widetilde{\subseteq}$ $(\check{\zeta}_1,\check{\xi}_1,\check{\pi})$ or $(\check{\zeta},\check{\xi},\check{\pi})$ $\widetilde{\subseteq}$ $(\check{\zeta}_2,\check{\xi}_2,\check{\pi})$. Let $(\check{\zeta},\check{\xi},\check{\pi})$ $\widetilde{\subseteq}$ $(\check{\zeta}_1,\check{\xi}_1,\check{\pi})$ thus, $B_PSW\text{-}cl(\check{\zeta},\check{\xi},\check{\pi})$ $\widetilde{\subseteq}$ $B_PSW\text{-}cl(\check{\zeta}_1,\check{\xi}_1,\check{\pi})$ then,

$$B_PSW\text{-}cl(\check{\zeta},\check{\xi},\check{\pi})\stackrel{\widetilde{\frown}}{\cap} (\check{\zeta}_2,\check{\xi}_2,\check{\pi})\stackrel{\widetilde{\subset}}{\subseteq} B_PSW\text{-}cl(\check{\zeta}_1,\check{\xi}_1,\check{\pi})\stackrel{\widetilde{\frown}}{\cap} (\check{\zeta}_2,\check{\xi}_2,\check{\pi}) = (\Phi,\check{\xi},\check{\pi}),$$

but $(\Phi, \check{\xi}, \check{\pi}) \stackrel{\widetilde{\simeq}}{\subseteq} B_P SW\text{-}cl(\check{\zeta}, \check{\xi}, \check{\pi}) \stackrel{\widetilde{\sim}}{\cap} (\check{\zeta}_2, \check{\xi}_2, \check{\pi})$, therefore,

$$B_PSW\text{-}cl(\check{\zeta},\check{\xi},\check{\pi}) \stackrel{\sim}{\widetilde{\cap}} (\check{\zeta}_2,\check{\xi}_2,\check{\pi}) = (\Phi,\check{\xi},\check{\pi}).$$

So, $(\check{\zeta}_1,\check{\xi}_1,\check{\pi}) \stackrel{\widetilde{\frown}}{\widetilde{\bigcirc}} (\check{\zeta}_2,\check{\xi}_2,\check{\pi}) = (\check{\delta},\check{\gamma},\check{\pi}) \stackrel{\widetilde{\frown}}{\widetilde{\subseteq}} B_P S W - c l(\check{\zeta},\check{\xi},\check{\pi}) \text{ then, } (\check{\zeta}_2,\check{\xi}_2,\check{\pi}) \stackrel{\widetilde{\frown}}{\widetilde{\subseteq}} (\check{\delta},\check{\gamma},\check{\pi}) \stackrel{\widetilde{\frown}}{\widetilde{\subseteq}} B_P S W - c l(\check{\zeta},\check{\xi},\check{\pi}) \text{ implies that } B_P S W - c l(\check{\zeta},\check{\xi},\check{\pi}) \stackrel{\widetilde{\frown}}{\widetilde{\frown}} (\check{\zeta}_2,\check{\xi}_2,\check{\pi}) = (\check{\zeta}_2,\check{\xi}_2,\check{\pi}). \text{ Hence, } (\check{\zeta}_2,\check{\xi}_2,\check{\pi}) = (\Phi,\check{\xi},\check{\pi}). \text{ This is a contradiction because } (\check{\zeta}_2,\check{\xi}_2,\check{\pi}) \text{ is nonnull } B_P S S. \text{ Therefore, } (\check{\delta},\check{\gamma},\check{\pi}) \text{ is } B_P S \stackrel{\widetilde{\widetilde{W}}}{\widetilde{W}} \text{-connected. Also, from } (\check{\zeta},\check{\xi},\check{\pi}) \stackrel{\widetilde{\frown}}{\widetilde{\subseteq}} (\check{\delta},\check{\gamma},\check{\pi}) \stackrel{\widetilde{\frown}}{\widetilde{\subseteq}} B_P S W - c l(\check{\zeta},\check{\xi},\check{\pi}), \text{ implies that } B_P S W - c l(\check{\zeta},\check{\xi},\check{\pi}) \text{ is } B_P S \stackrel{\widetilde{\widetilde{W}}}{\widetilde{W}} \text{-connected.}$

Proposition 3.19. Let $\{(\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi}) : \delta \in \Delta\}$ be the family of B_PS $\widetilde{\widetilde{W}}$ -connected sets such that $\bigcap_{\delta \in \Delta} (\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi})$ $\neq (\Phi, \check{\xi}, \check{\pi})$. Then $\bigcap_{\delta \in \Delta} (\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi})$ is B_PS $\bigcap_{\delta \in \Delta} (\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi})$

Proof. Assume $(\check{\delta},\check{\gamma},\check{\pi}) = \widetilde{\widetilde{\bigcup}}_{\delta\in\Delta}(\check{\zeta}_{\delta},\check{\xi}_{\delta},\check{\pi})$ is not B_PS $\widetilde{\widetilde{W}}$ -connected. Thus, there exist two nonnull disjoint B_PSW -open sets $(\check{\delta}_1,\check{\gamma}_1,\check{\pi})$ and $(\check{\delta}_2,\check{\gamma}_2,\check{\pi})$ such that $(\check{\delta},\check{\gamma},\check{\pi}) = (\check{\delta}_1,\check{\gamma}_1,\check{\pi})$ $\widetilde{\widetilde{\bigcup}}$ $(\check{\delta}_2,\check{\gamma}_2,\check{\pi})$. For each $\delta\in\Delta$, $(\check{\delta}_1,\check{\gamma}_1,\check{\pi})$ $\widetilde{\widetilde{\bigcap}}$ $(\check{\zeta}_{\delta},\check{\xi}_{\delta},\check{\pi})$ and $(\check{\delta}_2,\check{\gamma}_2,\check{\pi})$ $\widetilde{\widetilde{\bigcap}}$ $(\check{\zeta}_{\delta},\check{\xi}_{\delta},\check{\pi})$ are disjoint B_PSW -open sets in $(\check{\zeta}_{\delta},\check{\xi}_{\delta},\check{\pi})$ in which

$$\begin{split} & \left((\check{\delta}_1, \check{\gamma}_1, \check{\pi}) \widetilde{\widetilde{\cap}} (\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi}) \right) \, \widetilde{\widetilde{\cup}} \, \left((\check{\delta}_2, \check{\gamma}_2, \check{\pi}) \widetilde{\widetilde{\cap}} (\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi}) \right) \\ &= \left((\check{\delta}_1, \check{\gamma}_1, \check{\pi}) \widetilde{\widetilde{\cup}} (\check{\delta}_2, \check{\gamma}_2, \check{\pi}) \right) \, \widetilde{\widetilde{\cap}} \, (\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi}) = (\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi}). \end{split}$$

Now, from $(\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi})$ is a B_PS $\widetilde{\widetilde{W}}$ -connected set, one of the B_PSSs $(\check{\delta}_1, \check{\gamma}_1, \check{\pi})$ $\widetilde{\cap}$ $(\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi})$ and $(\check{\delta}_2, \check{\gamma}_2, \check{\pi})$ $\widetilde{\cap}$ $(\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi})$ is a null B_PSSs , say, $(\check{\delta}_1, \check{\gamma}_1, \check{\pi})$ $\widetilde{\cap}$ $(\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi}) = (\Phi, \check{\gamma}, \check{\pi})$. Then, $(\check{\delta}_2, \check{\gamma}_2, \check{\pi})$ $\widetilde{\cap}$ $(\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi}) = (\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi})$ which implies that $(\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi})$ $\widetilde{\subseteq}$ $(\check{\delta}_2, \check{\gamma}_2, \check{\pi})$ for all $\delta \in \Delta$ and hence $\widetilde{\bigcup}_{\delta \in \Delta}$ $(\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi})$ $\widetilde{\subseteq}$ $(\check{\delta}_2, \check{\gamma}_2, \check{\pi})$, that is, $(\check{\delta}_1, \check{\gamma}_1, \check{\pi})$ $\widetilde{\cup}$ $(\check{\delta}_2, \check{\gamma}_2, \check{\pi})$. This given, $(\check{\delta}_1, \check{\gamma}_1, \check{\pi}) = (\Phi, \check{\gamma}, \check{\pi})$. This is a contradiction because $(\check{\delta}_1, \check{\gamma}_1, \check{\pi})$ is nonnull B_PSS . Hence, $(\check{\delta}, \check{\gamma}, \check{\pi})$ is a B_PS \widetilde{W} -connected. \square

Proposition 3.20. For any two B_PSPs \hbar_v^{ϵ} , $\hbar_{v'}^{\epsilon'} \stackrel{\widetilde{\epsilon}}{\widetilde{\epsilon}} (\check{\zeta}, \check{\xi}, \check{\pi}) \stackrel{\widetilde{\epsilon}}{\widetilde{\epsilon}} B_PSS(\check{\Pi})$ in a B_PSWS $(\check{\Pi}, \widetilde{\widetilde{W}}, \check{\pi}, \neg\check{\pi})$ are contained in some B_PS $\widetilde{\widetilde{W}}$ -connected set $(\check{\delta}, \check{\gamma}, \check{\pi}) \stackrel{\widetilde{\epsilon}}{\widetilde{\epsilon}} (\check{\zeta}, \check{\xi}, \check{\pi})$. Then $(\check{\zeta}, \check{\xi}, \check{\pi})$ is B_PS $\widetilde{\widetilde{W}}$ -connected.

Proof. Let $(\check{\zeta},\check{\xi},\check{\pi})$ be a B_PS \widetilde{W} -disconnected set. Thus, there is a \widetilde{W} -separated B_PSSs $(\check{\zeta}_1,\check{\xi}_1,\check{\pi})$ and $(\check{\zeta}_2,\check{\xi}_2,\check{\pi})$ of $(\check{\zeta},\check{\xi},\check{\pi})$. Then, there are two B_PSPs \hbar_v^{ϵ} , $\hbar_{v'}^{\prime\epsilon'}$ in which \hbar_v^{ϵ} $\widetilde{\widetilde{\epsilon}}$ $(\check{\zeta}_1,\check{\xi}_1,\check{\pi})$ and $\hbar_{v'}^{\prime\epsilon'}$ $\widetilde{\widetilde{\epsilon}}$ $(\check{\zeta}_2,\check{\xi}_2,\check{\pi})$. Through the assumption, there is a B_PS $\widetilde{\widetilde{W}}$ -connected set $(\check{\delta},\check{\gamma},\check{\pi})$ containing \hbar_v^{ϵ} , $\hbar_{v'}^{\prime\epsilon'}$ such that

$$(\check{\delta},\check{\gamma},\check{\pi})\stackrel{\widetilde{\cong}}{\subseteq} (\check{\zeta},\check{\xi},\check{\pi}) = (\check{\zeta}_1,\check{\xi}_1,\check{\pi})\stackrel{\widetilde{\cong}}{\widetilde{\cup}} (\check{\zeta}_2,\check{\xi}_2,\check{\pi}).$$

Thus, by Proposition 3.16, we have $(\check{\delta},\check{\gamma},\check{\pi}) \stackrel{\cong}{\subseteq} (\check{\zeta}_1,\check{\xi}_1,\check{\pi})$ or $(\check{\delta},\check{\gamma},\check{\pi}) \stackrel{\cong}{\subseteq} (\check{\zeta}_2,\check{\xi}_2,\check{\pi})$. This implies that

$$(\check{\zeta}_1,\check{\xi}_1,\check{\pi}) \stackrel{\sim}{\widetilde{\cap}} (\check{\zeta}_2,\check{\xi}_2,\check{\pi}) \neq (\Phi,\check{\zeta},\check{\pi}).$$

This is contradiction since $(\check{\zeta}_1, \check{\xi}_1, \check{\pi})$ and $(\check{\zeta}_2, \check{\xi}_2, \check{\pi})$ are $\widetilde{\widetilde{W}}$ -separated B_PSSs . So, $(\check{\zeta}, \check{\xi}, \check{\pi})$ is B_PS $\widetilde{\widetilde{W}}$ -connected.

Proposition 3.21. Let $\{(\check{\zeta}_{\delta},\check{\xi}_{\delta},\check{\pi}):\delta\in\Delta\}$ be the family of B_PS $\widetilde{\widetilde{W}}$ -connected sets such that one of the members of this family intersects every other member. Then, $\widetilde{\bigcup}_{\delta\in\Delta}(\check{\zeta}_{\delta},\check{\xi}_{\delta},\check{\pi})$ is B_PS $\widetilde{\widetilde{W}}$ -connected.

Proof. Let $(\check{\zeta}_{\delta_0}, \check{\xi}_{\delta_0}, \check{\pi})$ be a fixed member of the given family such that $(\check{\zeta}_{\delta_0}, \check{\xi}_{\delta_0}, \check{\pi}) \stackrel{\sim}{\widetilde{\cap}} (\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi}) \neq (\Phi, \check{\zeta}, \check{\pi})$ for every $\delta \in \Delta$. Then, $(\check{\delta}_{\delta}, \check{\gamma}_{\delta}, \check{\pi}) = (\check{\zeta}_{\delta_0}, \check{\xi}_{\delta_0}, \check{\pi}) \stackrel{\sim}{\widetilde{\cup}} (\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi})$ is $B_PS \stackrel{\sim}{\widetilde{W}}$ -connected for each $\delta \in \Delta$, hence by Proposition 3.20. Now,

$$\begin{split} \widetilde{\widetilde{\bigcup}}_{\delta \in \Delta} \ (\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi}) &= \widetilde{\widetilde{\bigcup}}_{\delta \in \Delta} \ \big((\check{\zeta}_{\delta_{0}}, \check{\xi}_{\delta_{0}}, \check{\pi}) \widetilde{\widetilde{\bigcup}} (\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi}) \big) \\ &= (\check{\zeta}_{\delta_{0}}, \check{\xi}_{\delta_{0}}, \check{\pi}) \ \widetilde{\widetilde{\bigcup}} \ \big(\widetilde{\widetilde{\bigcup}}_{\delta \in \Delta} (\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi}) \big). \end{split}$$

Since $(\check{\zeta}_{\delta_0}, \check{\xi}_{\delta_0}, \check{\pi})$ is one of the family $\{(\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi}) : \delta \in \Delta\}$ and

$$\begin{split} \widetilde{\widetilde{\bigcap}}_{\delta \in \Delta} \; (\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi}) &= \widetilde{\widetilde{\bigcap}}_{\delta \in \Delta} \; \big((\check{\zeta}_{\delta_{0}}, \check{\xi}_{\delta_{0}}, \check{\pi}) \widetilde{\widetilde{\bigcup}} (\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi}) \big) \\ &= (\check{\zeta}_{\delta_{0}}, \check{\xi}_{\delta_{0}}, \check{\pi}) \; \widetilde{\widetilde{\cap}} \; \big(\widetilde{\widetilde{\bigcup}}_{\delta \in \Delta} (\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi}) \big) \neq (\Phi, \check{\xi}, \check{\pi}). \end{split}$$

From $(\check{\zeta}_{\delta_0}, \check{\xi}_{\delta_0}, \check{\pi})$ intersects every $(\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi})$. Therefore, $(\check{\zeta}_{\delta_0}, \check{\xi}_{\delta_0}, \check{\pi}) \neq (\Phi, \check{\xi}, \check{\pi})$. Hence, by Proposition 3.19, $\widetilde{\widetilde{\bigcup}}_{\delta \in \Delta} (\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi})$ is B_PS $\widetilde{\widetilde{W}}$ -connected. \square

Proposition 3.22. For each two \hbar_{v}^{ϵ} , $\hbar_{v'}^{\prime \epsilon'} \stackrel{\widetilde{\epsilon}}{\widetilde{\epsilon}} B_{P}SP(\check{\Pi})_{(\check{\pi},\neg\check{\pi})}$ of a $B_{P}SWS$ $(\check{\Pi},\widetilde{\widetilde{W}},\check{\pi},\neg\check{\pi})$ are $B_{P}S$ $\widetilde{\widetilde{W}}$ -connected, then $(\check{\Pi},\widetilde{\widetilde{W}},\check{\pi},\neg\check{\pi})$ is $B_{P}S$ $\widetilde{\widetilde{W}}$ -connected.

Proof. Let \hbar_{v}^{ϵ} be a fixed $B_{P}SP$ in a $B_{P}SWS$ $(\check{\Pi}, \widetilde{\widetilde{W}}, \check{\pi}, \neg\check{\pi})$. Then, for each \hbar_{v}^{ϵ} $B_{P}S$ different than $\hbar_{v'}^{\epsilon'}$, we have $B_{P}S$ $\widetilde{\widetilde{W}}$ -connected, say, $(\check{\zeta}, \check{\xi}, \check{\pi})$ containing \hbar_{v}^{ϵ} and $\hbar_{v'}^{\epsilon'}$. Since $\hbar_{v}^{\epsilon} \overset{\sim}{\widetilde{\in}} \widetilde{\bigcap}_{\hbar_{v}^{\epsilon} \overset{\sim}{\widetilde{\in}} (\widetilde{\check{\Pi}}, \Phi, \check{\pi})} (\check{\zeta}, \check{\xi}, \check{\pi})$, it follows from Proposition 3.19 that $\widetilde{\widetilde{\bigcup}}_{\hbar_{v}^{\epsilon} \overset{\sim}{\widetilde{\in}} (\widetilde{\check{\Pi}}, \Phi, \check{\pi})} (\check{\zeta}, \check{\xi}, \check{\pi}) = (\widetilde{\check{\Pi}}, \Phi, \check{\pi})$ is $B_{P}S$ $\widetilde{\widetilde{W}}$ -connected. \square

4 $B_PS \widetilde{W}$ -Connected Spaces

In this section, the concept of bipolar soft weak connected ($B_PS\ \widetilde{W}$ -connected) structure is presented. Also, some properties and results of this new concept of B_PSWS are discussed.

Definition 4.1. Let $(\check{\Pi}, \widetilde{\widetilde{W}}, \check{\pi}, \neg \check{\pi})$ be a B_PSWS . A B_PS $\widetilde{\widetilde{W}}$ -separation of $(\widetilde{\check{\Pi}}, \Phi, \check{\pi})$ is defined to be the nonnull disjoint B_PSW -open sets $(\check{\zeta}_1, \check{\xi}_1, \check{\pi})$ and $(\check{\zeta}_2, \check{\xi}_2, \check{\pi})$ such that $\check{\zeta}_1(\epsilon) \cup \check{\zeta}_2(\epsilon) = \check{\Pi}$ for each $\epsilon \in \check{\pi}$.

Definition 4.2. A B_PSWS $(\check{\coprod}, \widetilde{\widetilde{W}}, \check{\pi}, \neg\check{\pi})$ is called B_PS $\widetilde{\widetilde{W}}$ -disconnected if $(\check{\check{\coprod}}, \Phi, \check{\pi})$ has B_PS $\widetilde{\widetilde{W}}$ -separation. That is, there exist nonnull disjoint B_PSW -open sets $(\check{\zeta}_1, \check{\xi}_1, \check{\pi})$ and $(\check{\zeta}_2, \check{\xi}_2, \check{\pi})$ such that $\check{\zeta}_1(\epsilon) \cup \check{\zeta}_2(\epsilon) = \check{\coprod}$ for all $\epsilon \in \check{\pi}$. Otherwise, $(\check{\coprod}, \widetilde{\widetilde{W}}, \check{\pi}, \neg\check{\pi})$ is said to be B_PS $\widetilde{\widetilde{W}}$ -connected.

Remark 4.3. Suppose that $|\check{\Pi}| = 1$, there are only three B_PSWS in $\check{\Pi}$ (that is, $(\Phi, \widetilde{\check{\Pi}}, \check{\pi})$, $(\widetilde{\check{\Pi}}, \Phi, \check{\pi})$ and $(\Phi, \Phi, \check{\pi})$) are B_PS $\widetilde{\widetilde{W}}$ -connected spaces, then we will have four $\widetilde{\widetilde{W}}$ -structures B_PSWS :-

$$(i)\ \ \widetilde{\widetilde{W}}_1 = \{(\Phi, \widetilde{\check{\underline{\mathbf{H}}}}, \check{\pi}), (\widetilde{\check{\underline{\mathbf{H}}}}, \Phi, \check{\pi}), (\Phi, \Phi, \check{\pi})\}.$$

$$(ii)\ \ \widetilde{\widetilde{W}}_2 = \{(\Phi, \widetilde{\check{\breve{\Pi}}}, \check{\pi}), (\widetilde{\check{\check{\Pi}}}, \Phi, \check{\pi})\}.$$

$$(iii) \ \ \widetilde{\widetilde{W}}_3 = \{ (\Phi, \widetilde{\check{\breve{\Pi}}}, \check{\pi}), (\Phi, \Phi, \check{\pi}) \}.$$

$$(iv)\ \ \widetilde{\widetilde{\widetilde{W}}}_4 = \{(\Phi, \widetilde{\check{\dot{\Pi}}}, \check{\pi})\}.$$

Now, we suppose that $|\check{\mathbf{I}}| > 1$, for the rest of our work.

Example 4.4. Let $\check{\Pi} = \{h_1, h_2, h_3, h_4\}$, $\check{\pi} = \{\epsilon_1, \epsilon_2, \epsilon_3\}$ and $\neg \check{\pi} = \{\neg \epsilon_1, \neg \epsilon_2, \neg \epsilon_3\}$. Suppose that $\widetilde{\widetilde{W}} = \{(\Phi, \widecheck{\Pi}, \check{\pi}), (\check{\zeta}_1, \check{\xi}_1, \check{\pi}), (\check{\zeta}_2, \check{\xi}_2, \check{\pi})\}$, where $(\check{\zeta}_1, \check{\xi}_1, \check{\pi}), (\check{\zeta}_2, \check{\xi}_2, \check{\pi})$ defined as follows:

$$(\check{\zeta}_{1},\check{\xi}_{1},\check{\pi}) = \{(\epsilon_{1},\{\hbar_{1},\hbar_{3}\},\{\hbar_{2}\}),(\epsilon_{2},\{\hbar_{2},\hbar_{3}\},\{\hbar_{1},\hbar_{4}\}),(\epsilon_{3},\{\hbar_{1},\hbar_{2}\},\{\hbar_{3}\})\} and \\ (\check{\zeta}_{2},\check{\xi}_{2},\check{\pi}) = \{(\epsilon_{1},\{\hbar_{3},\hbar_{4}\},\{\hbar_{1},\hbar_{2}\}),(\epsilon_{2},\{\hbar_{1},\hbar_{2},\hbar_{3}\},\{\hbar_{4}\}),(\epsilon_{3},\{\hbar_{1},\hbar_{4}\},\phi)\}.$$

Thus, $(\check{\Pi}, \widetilde{\widetilde{W}}, \check{\pi}, \neg \check{\pi})$ is a B_PS $\widetilde{\widetilde{W}}$ -connected space since there does not exist B_PS $\widetilde{\widetilde{W}}$ -separation of $(\widetilde{\check{\widetilde{\Pi}}}, \Phi, \check{\pi})$.

Example 4.5. Let $\check{\Pi} = \{\hbar_1, \hbar_2, \hbar_3\}$ and $\check{\pi} = \{\epsilon_1, \epsilon_2\}$. So, the B_PSWS $\widetilde{\widetilde{W}}$ over $\check{\Pi}$ is given by $\widetilde{\widetilde{W}} = \{(\Phi, \widetilde{\check{\Pi}}, \check{\pi}), (\check{\zeta}_1, \check{\xi}_1, \check{\pi}), (\check{\zeta}_2, \check{\xi}_2, \check{\pi})\}$, where $(\check{\zeta}_1, \check{\xi}_1, \check{\pi}), (\check{\zeta}_2, \check{\xi}_2, \check{\pi})$ $\widetilde{\tilde{\epsilon}}$ $B_PSS(\check{\Pi})$ defined as follows:

$$\begin{split} &(\check{\zeta}_1,\check{\xi}_1,\check{\pi}) = \{(\epsilon_1,\{\hbar_1\},\{\hbar_2\}),(\epsilon_2,\{\hbar_1\},\{\hbar_2\})\},\\ &(\check{\zeta}_2,\check{\xi}_2,\check{\pi}) = \{(\epsilon_1,\{\hbar_2,\hbar_3\},\{\hbar_1\}),(\epsilon_2,\{\hbar_2,\hbar_3\},\{\hbar_1\})\}. \end{split}$$

Therefore, $(\check{\Pi}, \widetilde{\widetilde{W}}, \check{\pi}, \neg \check{\pi})$ is $B_P S \stackrel{\widetilde{\widetilde{W}}}{\widetilde{W}}$ -disconnected since $(\check{\zeta}_1, \check{\xi}_1, \check{\pi})$ and $(\check{\zeta}_2, \check{\xi}_2, \check{\pi})$ form a $B_P S \stackrel{\widetilde{\widetilde{W}}}{\widetilde{W}}$ -separation of $(\widetilde{\check{\Pi}}, \Phi, \check{\pi})$.

Proposition 4.6. Let $\{(\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi}) : \delta \in \Delta\}$ be a family of B_PS $\widetilde{\widetilde{W}}$ -connected sets such that $\widetilde{\bigcap}_{\delta \in \Delta} (\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi}) \neq (\Phi, \check{\xi}, \check{\pi})$. Then $\widetilde{\bigcup}_{\delta \in \Delta} (\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi})$ is B_PS $\widetilde{\widetilde{W}}$ -connected.

Proof. Suppose $(\check{\delta}, \check{\gamma}, \check{\pi}) = \widetilde{\widetilde{\bigcup}}_{\delta \in \Delta} (\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi})$ is not $B_P S$ $\widetilde{\widetilde{W}}$ -connected. Then, there exist two nonnull disjoint $B_P S$ $\widetilde{\widetilde{W}}$ -open sets $(\check{\delta}_1, \check{\gamma}_1, \check{\pi})$ and $(\check{\delta}_2, \check{\gamma}_2, \check{\pi})$ such that $(\check{\delta}, \check{\gamma}, \check{\pi}) = (\check{\delta}_1, \check{\gamma}_1, \check{\pi})$ $\widetilde{\widetilde{\bigcup}}$ $(\check{\delta}_2, \check{\gamma}_2, \check{\pi})$. For each $\delta \in \Delta$, $(\check{\delta}_1, \check{\gamma}_1, \check{\pi})$ $\widetilde{\widetilde{\bigcap}}$ $(\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi})$ and $(\check{\delta}_2, \check{\gamma}_2, \check{\pi})$ $\widetilde{\widetilde{\bigcap}}$ $(\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi})$ are disjoint $B_P S$ $\widetilde{\widetilde{W}}$ -open sets in $(\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi})$ such that

$$\begin{split} & \left((\check{\delta}_1, \check{\gamma}_1, \check{\pi}) \stackrel{\widetilde{\frown}}{\widetilde{\frown}} (\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi}) \right) \stackrel{\widetilde{\smile}}{\widetilde{\smile}} \left((\check{\delta}_2, \check{\gamma}_2, \check{\pi}) \stackrel{\widetilde{\frown}}{\widetilde{\frown}} (\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi}) \right) \\ &= \left((\check{\delta}_1, \check{\gamma}_1, \check{\pi}) \stackrel{\widetilde{\smile}}{\widetilde{\smile}} (\check{\delta}_2, \check{\gamma}_2, \check{\pi}) \right) \stackrel{\widetilde{\frown}}{\widetilde{\frown}} (\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi}) = (\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi}). \end{split}$$

Now, $(\check{\zeta}_{\delta},\check{\xi}_{\delta},\check{\pi})$ is a B_PS $\widetilde{\widetilde{W}}$ -connected sets, one of the B_PSSs $(\check{\delta}_1,\check{\gamma}_1,\check{\pi})$ $\widetilde{\widetilde{\cap}}$ $(\check{\zeta}_{\delta},\check{\xi}_{\delta},\check{\pi})$ and $(\check{\delta}_2,\check{\gamma}_2,\check{\pi})$ $\widetilde{\widetilde{\cap}}$ $(\check{\zeta}_{\delta},\check{\xi}_{\delta},\check{\pi})$ is a null B_PSSs , say, $(\check{\delta}_1,\check{\gamma}_1,\check{\pi})$ $\widetilde{\widetilde{\cap}}$ $(\check{\zeta}_{\delta},\check{\xi}_{\delta},\check{\pi}) = (\Phi,\check{\gamma},\check{\pi})$. Then, $(\check{\delta}_2,\check{\gamma}_2,\check{\pi})$ $\widetilde{\widetilde{\cap}}$ $(\check{\zeta}_{\delta},\check{\xi}_{\delta},\check{\pi}) = (\check{\zeta}_{\delta},\check{\xi}_{\delta},\check{\pi})$ which implies that $(\check{\zeta}_{\delta},\check{\xi}_{\delta},\check{\pi})$ $\widetilde{\widetilde{\subseteq}}$ $(\check{\delta}_2,\check{\gamma}_2,\check{\pi})$ for all $\delta\in\Delta$ and hence $\widetilde{\widetilde{\bigcup}}_{\delta\in\Delta}$ $(\check{\zeta}_{\delta},\check{\xi}_{\delta},\check{\pi})$ $\widetilde{\widetilde{\subseteq}}$ $(\check{\delta}_2,\check{\gamma}_2,\check{\pi})$, that is, $(\check{\delta}_1,\check{\gamma}_1,\check{\pi})$ $\widetilde{\widetilde{\cup}}$ $(\check{\delta}_2,\check{\gamma}_2,\check{\pi})$ $\widetilde{\widetilde{\subseteq}}$ $(\check{\delta}_2,\check{\gamma}_2,\check{\pi})$. This gives, $(\check{\delta}_1,\check{\gamma}_1,\check{\pi}) = (\Phi,\check{\gamma},\check{\pi})$. This is a contradiction, because $(\check{\delta}_1,\check{\gamma}_1,\check{\pi})$ is nonnull B_PSS . Hence, $(\check{\delta},\check{\gamma},\check{\pi})$ is a B_PS $\widetilde{\widetilde{W}}$ -connected. \square

Theorem 4.7. A B_PSWS $(\check{\Pi}, \widetilde{\widetilde{W}}, \check{\pi}, \neg \check{\pi})$ over $\check{\Pi}$ is B_PS $\widetilde{\widetilde{W}}$ -disconnected space if and only if there are two B_PSW -closed sets $(\check{\zeta}_1, \check{\xi}_1, \check{\pi})$ and $(\check{\zeta}_2, \check{\xi}_2, \check{\pi})$ such that $\check{\xi}_1(\neg \epsilon) \neq \phi$, $\check{\xi}_2(\neg \epsilon) \neq \phi$ for some $\neg \epsilon \in \neg \check{\pi}$, and $\check{\xi}_1(\neg \epsilon) \cup \check{\xi}_2(\neg \epsilon) = \check{\Pi}$ for each $\neg \epsilon \in \neg \check{\pi}$ and $\check{\xi}_1(\neg \epsilon) \cap \check{\xi}_2(\neg \epsilon) = \phi$ for each $\neg \epsilon \in \neg \check{\pi}$.

Proof. Suppose that $(\check{\Pi}, \widetilde{\widetilde{W}}, \check{\pi}, \neg \check{\pi})$ is $B_P S$ $\widetilde{\widetilde{W}}$ -disconnected. Then, there exist $B_P S$ $\widetilde{\widetilde{W}}$ -separation of $(\check{\check{\Pi}}, \Phi, \check{\pi})$, say, $(\check{\zeta}_1, \check{\xi}_1, \check{\pi})$ and $(\check{\zeta}_2, \check{\xi}_2, \check{\pi})$. Then,

$$\dot{\zeta}_1(\epsilon) \cup \dot{\zeta}_2(\epsilon) = \check{\Pi} \text{ for all } \epsilon \in \check{\pi},
\dot{\zeta}_1(\epsilon) \cap \dot{\zeta}_2(\epsilon) = \phi \text{ for all } \epsilon \in \check{\pi} \text{ and}
\dot{\zeta}_1(\epsilon) \neq \phi, \dot{\zeta}_2(\epsilon) \neq \phi \text{ for some } \epsilon \in \check{\pi}.$$

Since $\check{\zeta}_1(\epsilon) = \check{\xi}_1^c(\neg \epsilon)$ and $\check{\zeta}_2(\epsilon) = \check{\xi}_2^c(\neg \epsilon)$. Now, we get

$$\dot{\xi}_1^c(\neg \epsilon) \cup \dot{\xi}_2^c(\neg \epsilon) = \dot{\coprod} \text{ for all } \epsilon \in \check{\pi}, \\
\dot{\xi}_1^c(\neg \epsilon) \cap \dot{\xi}_2^c(\neg \epsilon) = \phi \text{ for all } \epsilon \in \check{\pi} \text{ and} \\
\dot{\xi}_1^c(\epsilon) \neq \phi, \dot{\xi}_2(\epsilon) \neq \phi \text{ for some } \epsilon \in \check{\pi}.$$

From, $(\check{\zeta}_1, \check{\xi}_1, \check{\pi})$, $(\check{\zeta}_2, \check{\xi}_2, \check{\pi}) \stackrel{\widetilde{\widetilde{\in}}}{\widetilde{\widetilde{W}}}$, then $(\check{\zeta}_1, \check{\xi}_1, \check{\pi})^c$ and $(\check{\zeta}_2, \check{\xi}_2, \check{\pi})^c$ are B_PSW -closed sets. Conversely, assuming that there are B_PSW -closed sets $(\check{\zeta}_1, \check{\xi}_1, \check{\pi})$, $(\check{\zeta}_2, \check{\xi}_2, \check{\pi})$ such that

$$\check{\xi}_1(\neg \epsilon) \cup \check{\xi}_2(\neg \epsilon) = \check{\Pi} \text{ for all } \neg \epsilon \in \neg \check{\pi}, \\
\check{\xi}_1(\neg \epsilon) \cap \check{\xi}_2(\neg \epsilon) = \phi \text{ for all } \neg \epsilon \in \neg \check{\pi} \text{ and} \\
\check{\xi}_1(\neg \epsilon) \neq \phi, \check{\xi}_2(\neg \epsilon) \neq \phi \text{ for some } \neg \epsilon \in \neg \check{\pi}.$$

Then $(\check{\zeta}_1,\check{\xi}_1,\check{\pi})^c$, $(\check{\zeta}_2,\check{\xi}_2,\check{\pi})^c$ are B_PSW -open sets such that

$$\dot{\zeta}_1^c(\epsilon) = \dot{\xi}_1(\neg \epsilon) \neq \phi \text{ and } \dot{\zeta}_2^c(\epsilon) = \dot{\xi}_2(\neg \epsilon) \neq \phi \text{ for some } \epsilon \in \check{\pi},
\dot{\zeta}_1^c(\epsilon) \cup \dot{\zeta}_2^c(\epsilon) = \dot{\xi}_1(\neg \epsilon) \cup \dot{\xi}_2(\neg \epsilon) = \check{\Pi} \text{ for all } \epsilon \in \check{\pi} \text{ and}
\dot{\zeta}_1^c(\epsilon) \cap \dot{\zeta}_2^c(\epsilon) = \dot{\xi}_1(\neg \epsilon) \cap \dot{\xi}_2(\neg \epsilon) = \phi \text{ for all } \epsilon \in \check{\pi}.$$

Thus, $(\check{\zeta}_1, \check{\xi}_1, \check{\pi})^c$ and $(\check{\zeta}_2, \check{\xi}_2, \check{\pi})^c$ form B_PS $\widetilde{\widetilde{W}}$ -separation of $(\widetilde{\check{\Pi}}, \Phi, \check{\pi})$. Thus, $(\check{\Pi}, \widetilde{\widetilde{W}}, \check{\pi}, \neg \check{\pi})$ is a B_PS $\widetilde{\widetilde{W}}$ -disconnected space. \square

Theorem 4.8. The B_PS intersection of a pair of B_PS $\widetilde{\widetilde{W}}$ -connected spaces over a common universal set is B_PS $\widetilde{\widetilde{W}}$ -connected.

Proof. Let $(\check{\coprod},\widetilde{\widetilde{W}}_1,\check{\pi},\neg\check{\pi})$ and $(\check{\coprod},\widetilde{\widetilde{W}}_2,\check{\pi},\neg\check{\pi})$ be two B_PS $\widetilde{\widetilde{W}}_i$ -connected spaces over $\check{\coprod}$, i=1,2 and $\widetilde{\widetilde{W}}$ = $\widetilde{\widetilde{W}}_1$ $\widetilde{\cap}$ $\widetilde{\widetilde{W}}_2$. We need to show that the space $(\check{\coprod},\widetilde{\widetilde{W}},\check{\pi},\neg\check{\pi})$ is B_PS $\widetilde{\widetilde{W}}$ -connected. If we say that $(\check{\coprod},\widetilde{\widetilde{W}},\check{\pi},\neg\check{\pi})$ is not B_PS $\widetilde{\widetilde{W}}$ -connected. Then there exist two B_PSSs $(\check{\zeta}_1,\check{\xi}_1,\check{\pi}),(\check{\zeta}_2,\check{\xi}_2,\check{\pi})$ $\widetilde{\widetilde{\in}}$ $\widetilde{\widetilde{W}}$, which forms a B_PS $\widetilde{\widetilde{W}}$ -separation of $(\widetilde{\check{\coprod}},\Phi,\check{\pi})$ in $(\check{\coprod},\widetilde{\widetilde{W}},\check{\pi},\neg\check{\pi})$. From $(\check{\zeta}_1,\check{\xi}_1,\check{\pi}),(\check{\zeta}_2,\check{\xi}_2,\check{\pi})$ $\widetilde{\widetilde{\in}}$ $\widetilde{\widetilde{W}}$, then $(\check{\zeta}_1,\check{\xi}_1,\check{\pi}),(\check{\zeta}_2,\check{\xi}_2,\check{\pi})$ and $(\check{\zeta}_1,\check{\xi}_1,\check{\pi}),(\check{\zeta}_2,\check{\xi}_2,\check{\pi})$ form a B_PS $\widetilde{\widetilde{W}}$ -separation of $(\widetilde{\check{\coprod}},\Phi,\check{\pi})$ in $(\check{\coprod},\widetilde{\widetilde{W}},\check{\pi},\neg\check{\pi})$ and also $(\check{\zeta}_1,\check{\xi}_1,\check{\pi})$ and $(\check{\zeta}_2,\check{\xi}_2,\check{\pi})$ form a B_PS $\widetilde{\widetilde{W}}$ -separation of $(\check{\coprod},\Phi,\check{\pi})$ in $(\check{\coprod},\widetilde{\widetilde{W}},\Phi,\check{\pi},\neg\check{\pi})$ which is the contradiction to given hypothesis. Therefore, $(\check{\coprod},\widetilde{\widetilde{W}},\check{\pi},\neg\check{\pi})$ is a B_PS $\widetilde{\widetilde{W}}$ -connected space over $\check{\coprod}$. \square

Remark 4.9. The B_PS union of a pair of B_PS $\widetilde{\widetilde{W}}$ -connected spaces over the common universal set may not be B_PS $\widetilde{\widetilde{W}}$ -connected. As shown in the following example.

Example 4.10. Let $\check{\Pi} = \{h_1, h_2\}, \check{\pi} = \{\epsilon_1, \epsilon_2\}, \widetilde{\widetilde{W}}_1 = \{(\Phi, \widetilde{\widetilde{\Pi}}, \check{\pi}), (\check{\zeta}_1, \check{\xi}_1, \check{\pi})\} \text{ and } \widetilde{\widetilde{W}}_2 = \{(\Phi, \widetilde{\widetilde{\Pi}}, \check{\pi}), (\check{\zeta}_2, \check{\xi}_2, \check{\pi})\},$ where

$$(\check{\zeta}_1, \check{\xi}_1, \check{\pi}) = \{(\epsilon_1, \phi, \check{\Pi}), (\epsilon_2, \check{\Pi}, \phi)\},\$$

$$(\check{\zeta}_2, \check{\xi}_2, \check{\pi}) = \{(\epsilon_1, \check{\Pi}, \phi), (\epsilon_2, \phi, \check{\Pi})\}.$$

Clearly $(\check{\Pi}, \widetilde{\widetilde{W}}_1, \check{\pi}, \neg \check{\pi})$ and $(\check{\Pi}, \widetilde{\widetilde{W}}_2, \check{\pi}, \neg \check{\pi})$ are B_PS $\widetilde{\widetilde{W}}$ -connected spaces over $\check{\Pi}$ where $\widetilde{\widetilde{W}} = \widetilde{\widetilde{W}}_1$ $\widetilde{\widetilde{\widetilde{U}}}$ $\widetilde{\widetilde{W}}_2$. We note that $\widetilde{\widetilde{W}}_1$ $\widetilde{\widetilde{\widetilde{U}}}$ $\widetilde{\widetilde{W}}_2 = \{(\Phi, \widetilde{\check{\Pi}}, \check{\pi}), (\check{\zeta}_1, \check{\xi}_1, \check{\pi}), (\check{\zeta}_2, \check{\xi}_2, \check{\pi})\}$ is not a B_PS $\widetilde{\widetilde{W}}$ -connected space over $\check{\Pi}$ since $(\check{\zeta}_1, \check{\xi}_1, \check{\pi})$ and $(\check{\zeta}_2, \check{\xi}_2, \check{\pi})$ form a B_PS $\widetilde{\widetilde{W}}$ -separation of $(\widetilde{\check{\Pi}}, \Phi, \check{\pi})$ in $\widetilde{\widetilde{W}}_1$ $\widetilde{\widetilde{\widetilde{U}}}$ $\widetilde{\widetilde{W}}_2$.

Proposition 4.11. The B_PS union of a pair of B_PS $\widetilde{\widetilde{W}}$ -disconnected spaces over the common universal set is B_PS $\widetilde{\widetilde{W}}$ -disconnected.

Proof. Obvious. \Box

Remark 4.12. The B_PS intersection of a pair of B_PS $\widetilde{\widetilde{W}}$ -disconnected spaces over the common universal set is not necessarily a B_PS $\widetilde{\widetilde{W}}$ -disconnected space, as shown in the following example.

Example 4.13. Let $\check{\Pi} = \{h_1, h_2, h_3\}$, $\check{\pi} = \{\epsilon_1, \epsilon_2\}$, $\widetilde{\widetilde{W}}_1 = \{(\Phi, \widetilde{\overset{\circ}{\Pi}}, \check{\pi}), (\check{\zeta}_1, \check{\xi}_1, \check{\pi}), (\check{\zeta}_2, \check{\xi}_2, \check{\pi})\}$ and $\widetilde{\widetilde{W}}_2 = \{(\Phi, \widetilde{\overset{\circ}{\Pi}}, \check{\pi}), (\check{\zeta}_3, \check{\xi}_3, \check{\pi}), (\check{\zeta}_4, \check{\xi}_4, \check{\pi})\}$, where $(\check{\zeta}_1, \check{\xi}_1, \check{\pi}), (\check{\zeta}_2, \check{\xi}_2, \check{\pi}), (\check{\zeta}_3, \check{\xi}_3, \check{\pi}), (\check{\zeta}_4, \check{\xi}_4, \check{\pi}) \stackrel{\widetilde{\circ}}{\tilde{\epsilon}} B_P S S(\check{\Pi})$ defined as follows

$$\begin{split} &(\check{\zeta}_{1},\check{\xi}_{1},\check{\pi}) = \{(\epsilon_{1},\{\hbar_{1}\},\{\hbar_{2}\}),(\epsilon_{2},\{\hbar_{1},\hbar_{2}\},\{\hbar_{3}\})\},\\ &(\check{\zeta}_{2},\check{\xi}_{2},\check{\pi}) = \{(\epsilon_{1},\{\hbar_{2},\hbar_{3}\},\phi),(\epsilon_{2},\{\hbar_{3}\},\{\hbar_{1}\})\},\\ &(\check{\zeta}_{3},\check{\xi}_{3},\check{\pi}) = \{(\epsilon_{1},\{\hbar_{1},\hbar_{3}\},\{\hbar_{2}\}),(\epsilon_{2},\{\hbar_{1},\hbar_{3}\},\{\hbar_{2}\})\} \ and\\ &(\check{\zeta}_{4},\check{\xi}_{4},\check{\pi}) = \{(\epsilon_{1},\{\hbar_{2}\},\{\hbar_{1}\}),(\epsilon_{2},\{\hbar_{2}\},\{\hbar_{1}\})\}. \end{split}$$

Clearly $(\check{\Pi}, \widetilde{\widetilde{W}}_1, \check{\pi}, \neg \check{\pi})$ and $(\check{\Pi}, \widetilde{\widetilde{\widetilde{W}}}_2, \check{\pi}, \neg \check{\pi})$ are B_PS $\widetilde{\widetilde{W}}$ -disconnected spaces over $\check{\Pi}$ where $\widetilde{\widetilde{W}} = \widetilde{\widetilde{W}}_1$ $\widetilde{\widetilde{\cap}}$ $\widetilde{\widetilde{W}}_2$.

We note that $\widetilde{\widetilde{W}}_1$ $\widetilde{\widetilde{\cap}}$ $\widetilde{\widetilde{W}}_2 = \{(\Phi, \widetilde{\check{\Pi}}, \check{\pi})\}$ is not a B_PS $\widetilde{\widetilde{W}}$ -disconnected space over $\check{\Pi}$ since there is no two B_PS $\widetilde{\widetilde{W}}$ -separation of $(\widetilde{\check{\Pi}}, \Phi, \check{\pi})$ in $\widetilde{\widetilde{W}}_1$ $\widetilde{\widetilde{\cap}}$ $\widetilde{\widetilde{W}}_2$.

Proposition 4.14. Let $(\check{\Pi}, \widetilde{\widetilde{W}}, \check{\pi}, \neg \check{\pi})$ be a B_PSWS over $\check{\Pi}$. If there exist a nonnull, nonabsolute B_PSW clopen set $(\check{\zeta}, \check{\xi}, \check{\pi})$ over $\check{\Pi}$ with $\check{\zeta}(\epsilon) \cup \check{\zeta}^c(\epsilon) = \check{\Pi}$ for each $\epsilon \in \check{\pi}$, then $(\check{\Pi}, \widetilde{\widetilde{W}}, \check{\pi}, \neg \check{\pi})$ is B_PS $\widetilde{\widetilde{W}}$ -disconnected.

Proof. Since $(\check{\zeta}, \check{\xi}, \check{\pi})$ is a nonnull, nonabsolute B_PSW -clopen set, then $(\check{\zeta}, \check{\xi}, \check{\pi})^c$ is a nonnull nonabsolute B_PSW -clopen set. By Proposition 2.12 and the assumption, we get

$$\check{\zeta}(\epsilon) \, \cup \, \check{\zeta}^c(\epsilon) = \check{\Pi}, \, \text{for each} \, \, \epsilon \in \check{\pi}, \, \text{and} \, \, \check{\xi}(\neg \epsilon) \, \cap \, \check{\xi}^c(\neg \epsilon) = \phi, \, \text{for each} \, \, \neg \epsilon \in \neg \check{\pi},$$

$$\check{\zeta}(\epsilon) \, \cap \, \check{\zeta}^c(\epsilon) = \phi, \, \text{for each} \, \, \epsilon \in \check{\pi}, \, \text{and} \, \, \check{\xi}(\neg \epsilon) \, \cup \, \check{\xi}^c(\neg \epsilon) = \check{\Pi}, \, \text{for each} \, \, \neg \epsilon \in \neg \check{\pi},$$

Therefore, $(\check{\zeta}, \check{\xi}, \check{\pi})$ and $(\check{\zeta}, \check{\xi}, \check{\pi})^c$ form a B_PS $\widetilde{\widetilde{W}}$ -separation of $(\widetilde{\check{\coprod}}, \Phi, \check{\pi})$. Hence, $(\check{\coprod}, \widetilde{\widetilde{W}}, \check{\pi}, \neg \check{\pi})$ is a B_PS $\widetilde{\widetilde{W}}$ -disconnected space. \square

Remark 4.15. If there exist a nonnull, nonabsolute B_PSW -open set, B_PSW -closed set, then $(\check{\Pi}, \widetilde{W}, \check{\pi}, \neg\check{\pi})$ may not be a B_PS \widetilde{W} -disconnected space. As shown in the following example.

Example 4.16. Let $\check{\Pi} = \{\hbar_1, \hbar_2, \hbar_3\}$, $\check{\pi} = \{\epsilon_1, \epsilon_2\}$ and $\widetilde{\widetilde{W}} = \{(\Phi, \widetilde{\widetilde{\Pi}}, \check{\pi}), (\check{\zeta}_1, \check{\xi}_1, \check{\pi}), (\check{\zeta}_2, \check{\xi}_2, \check{\pi})\}$, where $(\check{\zeta}_1, \check{\xi}_1, \check{\pi}), (\check{\zeta}_2, \check{\xi}_2, \check{\pi}) \stackrel{\sim}{\widetilde{\epsilon}} B_P S S(\check{\Pi})$ defined as follows $(\check{\zeta}_1, \check{\xi}_1, \check{\pi}) = \{(\epsilon_1, \{\hbar_1, \hbar_2\}, \{\hbar_3\}), (\epsilon_2, \{\hbar_1\}, \{\hbar_3\})\}$ and $(\check{\zeta}_2, \check{\xi}_2, \check{\pi}) = \{(\epsilon_1, \{\hbar_3\}, \{\hbar_1, \hbar_2\}), (\epsilon_2, \{\hbar_3\}, \{\hbar_1\})\}$.

Obviously, $(\check{\zeta}_1, \check{\xi}_1, \check{\pi})$ is nonnull, nonabsolute B_PSW -clopen but $(\check{\Pi}, \widetilde{\widetilde{W}}, \check{\pi}, \neg \check{\pi})$ is not a B_PS $\widetilde{\widetilde{W}}$ -disconnected space since there does not exist B_PS $\widetilde{\widetilde{W}}$ -separation of $(\check{\Pi}, \Phi, \check{\pi})$.

Proposition 4.17. Let $(\check{\coprod}, \widetilde{\widetilde{W}}_1, \check{\pi}, \neg\check{\pi})$ and $(\check{\coprod}, \widetilde{\widetilde{W}}_2, \check{\pi}, \neg\check{\pi})$ be two B_PSWSs over $\check{\coprod}$. Then,

- (i) If $(\check{\Pi}, \widetilde{\widetilde{W}}_1, \check{\pi}, \neg \check{\pi})$ is a B_PS $\widetilde{\widetilde{W}}_1$ -connected such that $\widetilde{\widetilde{W}}_2 \stackrel{\sim}{\subseteq} \widetilde{\widetilde{W}}_1$, then $(\check{\Pi}, \widetilde{\widetilde{W}}_2, \check{\pi}, \neg \check{\pi})$ is a B_PS $\widetilde{\widetilde{W}}_2$ -connected.
- (ii) If $(\check{\Pi}, \widetilde{\widetilde{W}}_1, \check{\pi}, \neg \check{\pi})$ is a B_PS $\widetilde{\widetilde{W}}_1$ -disconnected such that $\widetilde{\widetilde{W}}_1 \stackrel{\sim}{\widetilde{\subseteq}} \widetilde{\widetilde{W}}_2$, then $(\check{\Pi}, \widetilde{\widetilde{W}}_2, \check{\pi}, \neg \check{\pi})$ is a B_PS $\widetilde{\widetilde{W}}_2$ -disconnected.

Proof.

- (i) Assume that $(\check{\Pi},\widetilde{\widetilde{W}}_1,\check{\pi},\neg\check{\pi})$ is a B_PS $\widetilde{\widetilde{W}}_1$ -connected such that $\widetilde{\widetilde{W}}_2$ $\widetilde{\subseteq}$ $\widetilde{\widetilde{W}}_1$. Assume the contrary that $(\check{\zeta}_1,\check{\xi}_1,\check{\pi})$ and $(\check{\zeta}_2,\check{\xi}_2,\check{\pi})$ are B_PS $\widetilde{\widetilde{W}}_2$ -separation of $(\widetilde{\check{\Pi}},\Phi,\check{\pi})$ in $(\check{\Pi},\widetilde{\widetilde{W}}_2,\check{\pi},\neg\check{\pi})$. Since $\widetilde{\widetilde{W}}_2$ $\widetilde{\subseteq}$ $\widetilde{\widetilde{W}}_1$, then $(\check{\zeta}_1,\check{\xi}_1,\check{\pi}),$ $(\check{\zeta}_2,\check{\xi}_2,\check{\pi})$ are B_PS $\widetilde{\widetilde{W}}_1$ -separation of $(\widetilde{\check{\Pi}},\Phi,\check{\pi})$ in $(\check{\Pi},\widetilde{\widetilde{W}}_1,\check{\pi},\neg\check{\pi})$. This is contradiction. Therefore, $(\check{\Pi},\widetilde{\widetilde{W}}_2,\check{\pi},\neg\check{\pi})$ is B_PS $\widetilde{\widetilde{W}}_2$ -connected.
- (ii) Let $(\check{\Pi},\widetilde{\widetilde{W}}_1,\check{\pi},\neg\check{\pi})$ be a B_PS $\widetilde{\widetilde{W}}_1$ -disconnected such that $\widetilde{\widetilde{W}}_1$ $\widetilde{\subseteq}$ $\widetilde{\widetilde{W}}_2$. Assume the contrary that $(\check{\Pi},\widetilde{\widetilde{W}}_2,\check{\pi},\neg\check{\pi})$ is a B_PS $\widetilde{\widetilde{W}}_2$ -connected space. Since $\widetilde{\widetilde{W}}_1$ $\widetilde{\subseteq}$ $\widetilde{\widetilde{W}}_2$, then by (i), we get $(\check{\Pi},\widetilde{\widetilde{W}}_1,\check{\pi},\neg\check{\pi})$ is B_PS $\widetilde{\widetilde{W}}_1$ -connected. This is contradiction. Therefore, $(\check{\Pi},\widetilde{\widetilde{W}}_2,\check{\pi},\neg\check{\pi})$ is B_PS $\widetilde{\widetilde{W}}_2$ -disconnected.

Proposition 4.18. Let $\left((\check{\zeta},\check{\xi},\check{\pi}),\widetilde{\widetilde{W}}_{(\check{\zeta},\check{\xi},\check{\pi})},\check{\pi},\neg\check{\pi}\right)$ be B_PS $\widetilde{\widetilde{W}}$ -connected, then $(\check{\zeta},\check{\xi},\check{\pi})$ is B_PS $\widetilde{\widetilde{W}}$ -connected.

Proof. Let $((\check{\zeta},\check{\xi},\check{\pi}),\widetilde{\widetilde{W}}_{(\check{\zeta},\check{\xi},\check{\pi})},\check{\pi},\neg\check{\pi})$ be a B_PS $\widetilde{\widetilde{W}}$ -connected space. Assume $(\check{\zeta},\check{\xi},\check{\pi})$ is B_PS $\widetilde{\widetilde{W}}$ -disconnected, then there exist $\widetilde{\widetilde{W}}$ -separated B_PSSs , say, $(\check{\zeta}_1,\check{\xi}_1,\check{\pi})$ and $(\check{\zeta}_2,\check{\xi}_2,\check{\pi})$ of $(\check{\zeta},\check{\xi},\check{\pi})$, so by Theorem 3.7 that $(\check{\zeta}_1,\check{\xi}_1,\check{\pi})$ and $(\check{\zeta}_2,\check{\xi}_2,\check{\pi})$ are B_PS $\widetilde{\widetilde{W}}$ -separation of $(\check{\zeta},\check{\xi},\check{\pi})$. This is a contradiction. Thus, $(\check{\zeta},\check{\xi},\check{\pi})$ is a B_PS $\widetilde{\widetilde{W}}$ -connected space. \square

Definition 4.19. A property \mathcal{P} of a B_PSWS $(\check{\Pi}, \widetilde{\widetilde{W}}, \check{\pi}, \neg \check{\pi})$ is said to be a B_PS weak hereditary property $(B_PS\widetilde{\widetilde{W}}$ - hereditary property) if every B_PSWSS $(\check{Y}, \widetilde{\widetilde{W}}_{\check{Y}}, \check{\pi}, \neg \check{\pi})$ of $(\check{\Pi}, \widetilde{\widetilde{W}}, \check{\pi}, \neg \check{\pi})$ also has the property \mathcal{P} .

Remark 4.20. The B_PS $\widetilde{\widetilde{W}}$ -connected space (resp. B_PS $\widetilde{\widetilde{W}}$ -disconnected space) is not necessarily a B_PS $\widetilde{\widetilde{W}}$ -hereditary property. As shown in the following example.

Example 4.21. Let $\check{\Pi} = \{h_1, h_2, h_3\}, \, \check{\pi} = \{\epsilon_1, \epsilon_2\}$ and

$$\begin{split} \widetilde{\widetilde{W}} &= \{ (\Phi, \widetilde{\check{\underline{\mathbf{H}}}}, \check{\pi}), (\check{\zeta}_1, \check{\xi}_1, \check{\pi}), (\check{\zeta}_2, \check{\xi}_2, \check{\pi}) \}, \text{ where } (\check{\zeta}_1, \check{\xi}_1, \check{\pi}), (\check{\zeta}_2, \check{\xi}_2, \check{\pi}) \stackrel{\widetilde{\in}}{\in} B_P S (\check{\underline{\mathbf{H}}}), \text{ defined as follows} \\ & (\check{\zeta}_1, \check{\xi}_1, \check{\pi}) = \{ (\epsilon_1, \{\hbar_1\}, \{\hbar_2, \hbar_3\}), (\epsilon_2, \{\hbar_1\}, \{\hbar_2, \hbar_3\}) \} \ and \\ & (\check{\zeta}_2, \check{\xi}_2, \check{\pi}) = \{ (\epsilon_1, \{\hbar_2\}, \{\hbar_1, \hbar_3\}), (\epsilon_2, \{\hbar_2\}, \{\hbar_1, \hbar_3\}) \}. \end{split}$$

Therefore, $(\check{\Pi}, \widetilde{\widetilde{W}}, \check{\pi}, \neg \check{\pi})$ is a B_PS $\widetilde{\widetilde{W}}$ -connected space.

Now let $\check{Y} = \{\hbar_1, \hbar_2\}$, then $\widetilde{\widetilde{W}}_{\check{Y}} = \{(\Phi, \widetilde{\check{Y}}, \check{\pi}), (\check{Y}\check{\zeta}_1, \check{Y}\check{\xi}_1, \check{\pi}), (\check{Y}\check{\zeta}_2, \check{Y}\check{\xi}_2, \check{\pi})\}$, such that

$$(\check{Y}\check{\zeta}_{1},\check{Y}\check{\xi}_{1},\check{\pi}) = \{(\epsilon_{1},\{\hbar_{1}\},\{\hbar_{2}\}),(\epsilon_{2},\{\hbar_{1}\},\{\hbar_{2},\})\} \text{ and } (\check{Y}\check{\zeta}_{2},\check{Y}\check{\xi}_{2},\check{\pi}) = \{(\epsilon_{1},\{\hbar_{2}\},\{\hbar_{1}\}),(\epsilon_{2},\{\hbar_{2}\},\{\hbar_{1}\})\}.$$

Clearly, $(\check{Y}, \widetilde{\widetilde{W}}_{\check{Y}}, \check{\pi}, \neg \check{\pi})$ is a B_PS $\widetilde{\widetilde{W}}$ -disconnected subspace of $(\check{\Pi}, \widetilde{\widetilde{W}}, \check{\pi}, \neg \check{\pi})$. While $(\check{\Pi}, \widetilde{\widetilde{W}}, \check{\pi}, \neg \check{\pi})$ is a B_PS $\widetilde{\widetilde{W}}$ -connected space.

Example 4.22. Let $\check{\Pi} = \{\hbar_1, \hbar_2, \hbar_3\}, \, \check{\pi} = \{\epsilon_1, \epsilon_2\}$ and

$$\widetilde{\widetilde{W}} = \{ (\Phi, \widetilde{\widetilde{\Pi}}, \check{\pi}), (\check{\zeta}_1, \check{\xi}_1, \check{\pi}), (\check{\zeta}_2, \check{\xi}_2, \check{\pi}) \}, \text{ where } (\check{\zeta}_1, \check{\xi}_1, \check{\pi}), (\check{\zeta}_2, \check{\xi}_2, \check{\pi}) \stackrel{\widetilde{\widetilde{\epsilon}}}{\widetilde{\epsilon}} B_P S S(\check{\Pi}), \text{ defined as follows}$$

$$(\check{\zeta}_1, \check{\xi}_1, \check{\pi}) = \{ (\epsilon_1, \{\hbar_1\}, \{\hbar_2\}), (\epsilon_2, \{\hbar_2\}, \{\hbar_1, \hbar_3\}) \} \text{ and }$$

$$(\check{\zeta}_2, \check{\xi}_2, \check{\pi}) = \{ (\epsilon_1, \{\hbar_2, \hbar_3\}, \phi), (\epsilon_2, \{\hbar_1, \hbar_3\}, \{\hbar_2\}) \}.$$

Therefore, $(\check{\Pi}, \widetilde{\widetilde{W}}, \check{\pi}, \neg \check{\pi})$ is $B_P S \widetilde{\widetilde{W}}$ -disconnected space.

Let $\check{Y} = \{\hbar_3\}$, then $\widetilde{\widetilde{W}}_{\check{Y}} = \{(\Phi, \widetilde{\check{\check{Y}}}, \check{\pi}), (\check{\check{Y}}\check{\zeta}_1, \check{\check{Y}}\check{\xi}_1, \check{\pi}), (\check{\check{Y}}\check{\zeta}_2, \check{\check{Y}}\check{\xi}_2, \check{\pi})\}$, such that

$$(\check{Y}\check{\zeta}_1,\check{Y}\check{\xi}_1,\check{\pi}) = \{(\epsilon_1,\phi,\phi),(\epsilon_2,\phi,\check{Y})\},$$
$$(\check{Y}\check{\zeta}_2,\check{Y}\check{\xi}_2,\check{\pi}) = \{(\epsilon_1,\check{Y},\phi),(\epsilon_2,\check{Y},\phi)\}.$$

Clearly, $(\check{Y},\widetilde{\widetilde{W}}_{\check{Y}},\check{\pi},\neg\check{\pi})$ is B_PS $\widetilde{\widetilde{W}}$ -connected subspace of $(\check{\Pi},\widetilde{\widetilde{W}},\check{\pi},\neg\check{\pi})$. While $(\check{\Pi},\widetilde{\widetilde{W}},\check{\pi},\neg\check{\pi})$ is a B_PS $\widetilde{\widetilde{W}}$ -connected space.

5 $B_PS \stackrel{\widetilde{\widetilde{W}}}{\widetilde{W}}$ -Locally Connected Spaces and $B_PS \stackrel{\widetilde{\widetilde{W}}}{\widetilde{W}}$ -Components

In this section, a new type of connected set is studied, known as $\widetilde{\widetilde{W}}$ -locally connected in B_PSWS . Furthermore, B_PS $\widetilde{\widetilde{W}}$ -component with some properties.

Definition 5.1. A B_PS $\widetilde{\widetilde{W}}$ -component of B_PSWS $(\check{\Pi}, \widetilde{\widetilde{W}}, \check{\pi}, \neg \check{\pi})$ corresponding to \hbar_v^{ϵ} is the B_PS union of all B_PS $\widetilde{\widetilde{W}}$ -connected $(\check{\zeta}, \check{\xi}, \check{\pi})$ $\widetilde{\widetilde{\subseteq}}$ $(\widetilde{\check{\Pi}}, \Phi, \check{\pi})$ which contains \hbar_v^{ϵ} . It is denoted by B_PSW - $Co(\hbar_v^{\epsilon})$ that is

$$B_PSW\text{-}Co\big(\hbar_v^\epsilon\big) = \widetilde{\widetilde{\bigcup}}\big\{\big(\check{\zeta},\check{\xi},\check{\pi}\big) \ \widetilde{\widetilde{\subseteq}} \ (\widetilde{\check{\dot{\Pi}}},\Phi,\check{\pi}) : \hbar_v^\epsilon \ \widetilde{\widetilde{\in}} \ (\check{\zeta},\check{\xi},\check{\pi}) \ and \ (\check{\zeta},\check{\xi},\check{\pi}) \ is \ B_PS \ \widetilde{\widetilde{W}}\text{-}connected\big\}.$$

Definition 5.2. A B_PSWS $(\check{\mathbb{I}},\widetilde{\widetilde{W}},\check{\pi},\neg\check{\pi})$ is called B_PS $\widetilde{\widetilde{W}}$ -locally connected at \hbar_v^{ϵ} $\widetilde{\widetilde{\widetilde{\epsilon}}}$ $(\check{\widetilde{\widetilde{L}}},\Phi,\check{\pi})$ if for every B_PS $\widetilde{\widetilde{W}}$ -open set $(\check{\zeta},\check{\xi},\check{\pi})$ containing \hbar_v^{ϵ} , there is a B_PS $\widetilde{\widetilde{W}}$ -connected open $(\check{\delta},\check{\gamma},\check{\pi})$ containing \hbar_v^{ϵ} such that \hbar_v^{ϵ} $\widetilde{\widetilde{\widetilde{\epsilon}}}$ $(\check{\delta},\check{\gamma},\check{\pi})$ $\widetilde{\widetilde{\widetilde{C}}}$ $(\check{\zeta},\check{\xi},\check{\pi})$. A B_PSWS $(\check{\underline{L}},\widetilde{\widetilde{W}},\check{\pi},\neg\check{\pi})$ is said to be B_PS $\widetilde{\widetilde{W}}$ -locally connected if it is B_PS $\widetilde{\widetilde{W}}$ -locally connected at every B_PSP \hbar_v^{ϵ} $\widetilde{\widetilde{\widetilde{\varepsilon}}}$ $(\check{\underline{\widetilde{L}}},\Phi,\check{\pi})$. Otherwise, it is said to be B_PS $\widetilde{\widetilde{W}}$ -locally disconnected.

Remark 5.3. B_PS $\widetilde{\widetilde{W}}$ -locally connectedness and B_PS $\widetilde{\widetilde{W}}$ -connectedness are independent as shown below.

Example 5.4. Let $\check{\Pi} = \{h_1, h_2, h_3\}$, $\check{\pi} = \{\epsilon_1, \epsilon_2\}$ and $\widetilde{\widetilde{W}} = \{(\Phi, \widetilde{\overset{\circ}{\Pi}}, \check{\pi}), (\widetilde{\overset{\circ}{\Pi}}, \Phi, \check{\pi}), (\check{\zeta}_1, \check{\xi}_1, \check{\pi}), (\check{\zeta}_2, \check{\xi}_2, \check{\pi}), (\check{\zeta}_3, \check{\xi}_3, \check{\pi}), (\check{\zeta}_4, \check{\xi}_4, \check{\pi})\}$, where $(\check{\zeta}_1, \check{\xi}_1, \check{\pi}), (\check{\zeta}_2, \check{\xi}_2, \check{\pi}), (\check{\zeta}_3, \check{\xi}_3, \check{\pi}), (\check{\zeta}_4, \check{\xi}_4, \check{\pi}) \overset{\circ}{\widetilde{\epsilon}} B_P SS(\check{\Pi})$, defined as follows

$$\begin{split} (\check{\zeta}_{1}, \check{\xi}_{1}, \check{\pi}) &= \{(\epsilon_{1}, \{\hbar_{1}, \hbar_{2}\}, \phi)\}, \\ (\check{\zeta}_{2}, \check{\xi}_{2}, \check{\pi}) &= \{(\epsilon_{1}, \{\hbar_{2}, \hbar_{3}\}, \phi)\}, \\ (\check{\zeta}_{3}, \check{\xi}_{3}, \check{\pi}) &= \{(\epsilon_{1}, \check{\Pi}, \phi), (\epsilon_{2}, \phi, \check{\Pi})\} \ and \\ (\check{\zeta}_{4}, \check{\xi}_{4}, \check{\pi}) &= \{(\epsilon_{1}, \phi, \check{\Pi}), (\epsilon_{2}, \check{\Pi}, \phi)\}. \end{split}$$

Then $(\check{\Pi}, \widetilde{\widetilde{W}}, \check{\pi}, \neg \check{\pi})$ is B_PS $\widetilde{\widetilde{W}}$ -locally connected space but not B_PS $\widetilde{\widetilde{W}}$ -connected.

Example 5.5. Let $\check{\Pi} = \{h_1, h_2, h_3\}$, $\check{\pi} = \{\epsilon_1, \epsilon_2\}$ and $\widetilde{\widetilde{W}} = \{(\Phi, \widetilde{\overset{\sim}{\Pi}}, \check{\pi}), (\check{\check{\zeta}}_1, \check{\xi}_1, \check{\pi}), (\check{\zeta}_2, \check{\xi}_2, \check{\pi}), (\check{\zeta}_3, \check{\xi}_3, \check{\pi}), (\check{\zeta}_4, \check{\xi}_4, \check{\pi})\}$ where $(\check{\zeta}_1, \check{\xi}_1, \check{\pi}), (\check{\zeta}_2, \check{\xi}_2, \check{\pi}), (\check{\zeta}_3, \check{\xi}_3, \check{\pi}), (\check{\zeta}_4, \check{\xi}_4, \check{\pi}) \overset{\sim}{\widetilde{\epsilon}} B_P SS(\check{\Pi})$, defined as follows

$$\begin{split} &(\check{\zeta}_{1},\check{\xi}_{1},\check{\pi}) = \{(\epsilon_{1},\{\hbar_{2}\},\{\hbar_{3}\})\},\\ &(\check{\zeta}_{2},\check{\xi}_{2},\check{\pi}) = \{(\epsilon_{1},\{\hbar_{1},\hbar_{2}\},\phi)\},\\ &(\check{\zeta}_{3},\check{\xi}_{3},\check{\pi}) = \{(\epsilon_{1},\{\hbar_{2}\},\{\hbar_{3}\}),(\epsilon_{2},\{\hbar_{2}\},\{\hbar_{1},\hbar_{3}\})\},\\ &(\check{\zeta}_{4},\check{\xi}_{4},\check{\pi}) = \{(\epsilon_{1},\{\hbar_{1},\hbar_{2}\},\phi),(\epsilon_{2},\{\hbar_{2}\},\{\hbar_{1},\hbar_{3}\})\}. \end{split}$$

Then, $(\check{\Pi}, \widetilde{\widetilde{W}}, \check{\pi}, \neg \check{\pi})$ is B_PS $\widetilde{\widetilde{W}}$ -connected space but not B_PS $\widetilde{\widetilde{W}}$ -locally connected because $(\check{\zeta}_2, \check{\xi}_2, \check{\pi})$ is the B_PS $\widetilde{\widetilde{W}}$ -open set containing $\hbar_{1_{\hbar_2}}^{\epsilon_1}$, but there is no B_PS $\widetilde{\widetilde{W}}$ -connected open subset of $(\check{\zeta}_2, \check{\xi}_2, \check{\pi})$ containing $\hbar_{1_{\hbar_2}}^{\epsilon_1}$.

Remark 5.6. For a B_PSWS $(\check{\Pi}, \widetilde{\widetilde{W}}, \check{\pi}, \neg \check{\pi})$, we have

- (i) According to Proposition 4.6, every B_PS $\widetilde{\widetilde{W}}$ -component of a B_PSP is the largest B_PS $\widetilde{\widetilde{W}}$ -connected set containing this B_PSP .
- (ii) If $(\check{\Pi}, \widetilde{\widetilde{W}}, \check{\pi}, \neg \check{\pi})$ is a B_PS $\widetilde{\widetilde{W}}$ -connected space, then $(\widetilde{\check{\Pi}}, \Phi, \check{\pi})$ is only the B_PS $\widetilde{\widetilde{W}}$ -component of each B_PSP .

Example 5.7. Consider the B_PSWS in Example 5.4, we have the following:

$$\begin{split} B_{P}SW\text{-}Co\left(\hbar_{1\hbar_{2}}^{\epsilon_{1}}\right) &= B_{P}SW\text{-}Co\left(\hbar_{1\hbar_{3}}^{\epsilon_{1}}\right) = B_{P}SW\text{-}Co\left(\hbar_{2\hbar_{1}}^{\epsilon_{1}}\right) = B_{P}SW\text{-}Co\left(\hbar_{2\hbar_{1}}^{\epsilon_{1}}\right) = B_{P}SW\text{-}Co\left(\hbar_{3\hbar_{1}}^{\epsilon_{1}}\right) = B_{P}SW\text{-}Co\left(\hbar_{3\hbar_{1}}^{\epsilon_{1}}\right) = B_{P}SW\text{-}Co\left(\hbar_{3\hbar_{1}}^{\epsilon_{1}}\right) = B_{P}SW\text{-}Co\left(\hbar_{3\hbar_{1}}^{\epsilon_{2}}\right) = B_{P}SW\text{-}Co\left(\hbar_{2\hbar_{1}}^{\epsilon_{2}}\right) = B_{P}SW\text{-}Co\left(\hbar_{3\hbar_{1}}^{\epsilon_{2}}\right) = B_{P}SW\text{-}Co\left(\hbar_{3\hbar_{1}}^{$$

Theorem 5.8. A B_PSWS $(\check{\coprod}, \widetilde{\widetilde{W}}, \check{\pi}, \neg \check{\pi})$ is a B_PS $\widetilde{\widetilde{W}}$ -locally connected if and only if the B_PS $\widetilde{\widetilde{W}}$ -components of B_PS $\widetilde{\widetilde{W}}$ -open sets are B_PS $\widetilde{\widetilde{W}}$ -open sets.

Proof. Assume that the space $(\check{\Pi}, \widetilde{\widetilde{W}}, \check{\pi}, \neg \check{\pi})$ is B_PS $\widetilde{\widetilde{W}}$ -locally connected. Let $(\check{\zeta}, \check{\xi}, \check{\pi})$ be B_PS $\widetilde{\widetilde{W}}$ -open and B_PSW -Co be a B_PS $\widetilde{\widetilde{W}}$ -component of $(\check{\zeta}, \check{\xi}, \check{\pi})$. If \hbar^{ϵ}_v $\widetilde{\widetilde{\epsilon}}$ B_PSW -Co and since $\hbar^{\epsilon}_v \in (\check{\zeta}, \check{\xi}, \check{\pi})$, there is a B_PS $\widetilde{\widetilde{W}}$ -connected open set $(\check{\delta}, \check{\gamma}, \check{\pi})$ such that \hbar^{ϵ}_v $\widetilde{\widetilde{\epsilon}}$ $(\check{\delta}, \check{\gamma}, \check{\pi})$ $\widetilde{\widetilde{\subseteq}}$ $(\check{\zeta}, \check{\xi}, \check{\pi})$. Now, as B_PSW -Co is a B_PS $\widetilde{\widetilde{W}}$ -component of \hbar^{ϵ}_v and $(\check{\delta}, \check{\gamma}, \check{\pi})$ is B_PS $\widetilde{\widetilde{W}}$ -connected, we have \hbar^{ϵ}_v $\widetilde{\widetilde{\epsilon}}$ $(\check{\delta}, \check{\gamma}, \check{\pi})$ $\widetilde{\widetilde{\subseteq}}$ B_PSW -Co. This shows that B_PSW -Co is B_PS $\widetilde{\widetilde{W}}$ -open.

Conversely, let $h_v^{\epsilon} \stackrel{\widetilde{\epsilon}}{\widetilde{e}} (\widetilde{\overset{\widetilde{\Pi}}{\Pi}}, \Phi, \check{\pi})$ be arbitrary and $(\check{\zeta}, \check{\xi}, \check{\pi})$ be a B_PS $\widetilde{\widetilde{W}}$ -open set containing h_v^{ϵ} . Suppose B_PSW -Co is a B_PS $\widetilde{\widetilde{W}}$ -component of $(\check{\zeta}, \check{\xi}, \check{\pi})$ such that $h_v^{\epsilon} \stackrel{\widetilde{\epsilon}}{\widetilde{e}} B_PSW$ -Co. Now, B_PSW -Co is a B_PS $\widetilde{\widetilde{W}}$ -connected open set with $h_v^{\epsilon} \stackrel{\widetilde{\epsilon}}{\widetilde{e}} B_PSW$ -Co is a B_PS $\widetilde{\widetilde{W}}$ -connected open set with $h_v^{\epsilon} \stackrel{\widetilde{\epsilon}}{\widetilde{e}} B_PSW$ -Co is a B_PS $\widetilde{\widetilde{W}}$ -connected open set with $h_v^{\epsilon} \stackrel{\widetilde{\epsilon}}{\widetilde{e}} B_PSW$ -Co is a B_PS $\widetilde{\widetilde{W}}$ -connected open set with $h_v^{\epsilon} \stackrel{\widetilde{\epsilon}}{\widetilde{e}} B_PSW$ -Co is a B_PS $\widetilde{\widetilde{W}}$ -connected open set with $h_v^{\epsilon} \stackrel{\widetilde{\epsilon}}{\widetilde{e}} B_PSW$ -Co is a B_PS $\widetilde{\widetilde{W}}$ -connected open set with $h_v^{\epsilon} \stackrel{\widetilde{\epsilon}}{\widetilde{e}} B_PSW$ -Co is a B_PS $\widetilde{\widetilde{W}}$ -connected open set with $h_v^{\epsilon} \stackrel{\widetilde{\epsilon}}{\widetilde{e}} B_PSW$ -Co is a B_PS $\widetilde{\widetilde{W}}$ -connected open set with $h_v^{\epsilon} \stackrel{\widetilde{\epsilon}}{\widetilde{e}} B_PSW$ -Co is a B_PS $\widetilde{\widetilde{W}}$ -connected open set with $h_v^{\epsilon} \stackrel{\widetilde{\epsilon}}{\widetilde{e}} B_PSW$ -Co is a B_PS $\widetilde{\widetilde{W}}$ -connected open set with $h_v^{\epsilon} \stackrel{\widetilde{\epsilon}}{\widetilde{e}} B_PSW$ -Co is a B_PS $\widetilde{\widetilde{W}}$ -connected open set with $h_v^{\epsilon} \stackrel{\widetilde{\epsilon}}{\widetilde{e}} B_PSW$ -Co is a B_PS $\widetilde{\widetilde{W}}$ -connected open set with $h_v^{\epsilon} \stackrel{\widetilde{\epsilon}}{\widetilde{e}} B_PSW$ -Co is a B_PS $\widetilde{\widetilde{W}}$ -connected open set with $h_v^{\epsilon} \stackrel{\widetilde{\epsilon}}{\widetilde{e}} B_PSW$ -Co is a B_PS $\widetilde{\widetilde{W}}$ -connected open set with $h_v^{\epsilon} \stackrel{\widetilde{\epsilon}}{\widetilde{e}} B_PSW$ -Co is a B_PS $\widetilde{\widetilde{W}}$ -connected open set with $h_v^{\epsilon} \stackrel{\widetilde{\epsilon}}{\widetilde{e}} B_PSW$ -Co is a B_PS $\widetilde{\widetilde{W}}$ -connected open set with $h_v^{\epsilon} \stackrel{\widetilde{\epsilon}}{\widetilde{e}} B_PSW$ -Co is a B_PS $\widetilde{\widetilde{W}}$ -connected open set with $h_v^{\epsilon} \stackrel{\widetilde{\epsilon}}{\widetilde{e}} B_PSW$ -Co is a B_PS $\widetilde{\widetilde{W}}$ -connected open set with $h_v^{\epsilon} \stackrel{\widetilde{\epsilon}}{\widetilde{e}} B_PSW$ -Co is a B_PS $\widetilde{\widetilde{W}}$ -connected open set with $h_v^{\epsilon} \stackrel{\widetilde{\epsilon}}{\widetilde{e}} B_PSW$ -Co is a B_PS -Co is a

Theorem 5.9. Let $(\check{\Pi}, \widetilde{\widetilde{W}}, \check{\pi}, \neg \check{\pi})$ be a B_PSWS , then

- (i) The family of all distinct B_PS $\widetilde{\widetilde{W}}$ -components of a B_PSPs of $(\widetilde{\check{\underline{L}}}, \Phi, \check{\pi})$ forms a partition of $(\widetilde{\check{\underline{L}}}, \Phi, \check{\pi})$.
- (ii) For every B_PS $\widetilde{\widetilde{W}}$ -component B_PSW - $Co(\hbar_v^{\epsilon})$, we have B_PSW - $Co(\hbar_v^{\epsilon}) = B_PSW$ - clB_PSW - $Co(\hbar_v^{\epsilon})$.

Proof.

- (i) Let $\{B_PSW\text{-}Co(\hbar_v^{\epsilon}): \ \hbar_v^{\epsilon} \ \widetilde{\widetilde{\widetilde{\epsilon}}} \ (\widetilde{\widetilde{\mathfrak{U}}}, \Phi, \check{\pi})\}$ be a family of all distinct $B_PS \ \widetilde{\widetilde{W}}$ -components of $(\widetilde{\widetilde{\mathfrak{U}}}, \Phi, \check{\pi})$. Clearly, $(\widetilde{\widetilde{\mathfrak{U}}}, \Phi, \check{\pi}) = \widetilde{\widetilde{\widetilde{U}}} \ \{B_PSW\text{-}Co(\hbar_v^{\epsilon}): \hbar_v^{\epsilon} \ \widetilde{\widetilde{\widetilde{\varepsilon}}} \ (\widetilde{\widetilde{\mathfrak{U}}}, \Phi, \check{\pi})\}$. Suppose that there are two distinct B_PSPs \hbar_v^{ϵ} and $\hbar_{v'}^{\prime\epsilon'}$ such that $B_PSW\text{-}Co(\hbar_v^{\epsilon}) \ \widetilde{\widetilde{C}} \ B_PSW\text{-}Co(\hbar_{v'}^{\prime\epsilon'}) \neq (\Phi, \check{\xi}, \check{\pi})$. By Proposition 4.6, $(\check{\zeta}, \check{\xi}, \check{\pi})$ $= B_PSW\text{-}Co(\hbar_v^{\epsilon}) \ \widetilde{\widetilde{U}} \ B_PSW\text{-}Co(\hbar_{v'}^{\prime\epsilon'})$ is a $B_PS \ \widetilde{\widetilde{W}}$ -connected set. This contradicts that $B_PSW\text{-}Co(\hbar_v^{\epsilon})$ and $B_PSW\text{-}Co(\hbar_{v'}^{\prime\epsilon'})$ are the largest $B_PS \ \widetilde{\widetilde{W}}$ -connected sets containing \hbar_v^{ϵ} and $\hbar_{v'}^{\prime\epsilon'}$ respectively. Hence $B_PSW\text{-}Co(\hbar_v^{\epsilon}) \ \widetilde{\widetilde{C}} \ B_PSW\text{-}Co(\hbar_{v'}^{\epsilon\prime}) = (\Phi, \check{\xi}, \check{\pi})$.
- (ii) Since $B_PSW\text{-}Co(\hbar_v^{\epsilon})$ is a $B_PS\overset{\widetilde{\widetilde{W}}}{\widetilde{W}}$ -connected and $B_PSW\text{-}Co(\hbar_v^{\epsilon})\overset{\widetilde{\widetilde{\subset}}}{\widetilde{\subseteq}}B_PSW\text{-}clB_PSW\text{-}Co(\hbar_v^{\epsilon})$, it follows since Proposition 3.18 that $B_PSW\text{-}clB_PSW\text{-}Co(\hbar_v^{\epsilon})$ is a $B_PS\overset{\widetilde{\widetilde{W}}}{\widetilde{W}}$ -connected set also. Since $B_PSW\text{-}Co(\hbar_v^{\epsilon})$ is the largest $B_PS\overset{\widetilde{\widetilde{W}}}{\widetilde{W}}$ -connected set containing \hbar_v^{ϵ} . Hence, $B_PSW\text{-}Co(\hbar_v^{\epsilon})=B_PSW\text{-}clB_PSW\text{-}Co(\hbar_v^{\epsilon})$.

6 $B_PS \stackrel{\circ}{\widetilde{W}}$ -Compact Spaces

Because of the compactness property importance, this section researches it in B_PSWSs with some essential theorems.

Definition 6.1. A family $\check{\Delta} = \{(\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi}) : (\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi}) \in \widetilde{\widetilde{W}}\}_{\delta \in \Delta}$ of B_PSW -open sets on $\check{\coprod}$ is said to be a B_PSW -open cover of a B_PSS $(\check{\zeta}, \check{\xi}, \check{\pi})$ if, $(\check{\zeta}, \check{\xi}, \check{\pi}) \in \widetilde{\widetilde{\Box}}_{\delta \in \Delta}$ $(\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi})$. Furthermore, a B_PS subcover is a subfamily of $\{(\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi})\}_{\delta \in \Delta}$ which is also a B_PSW -open cover.

Definition 6.2. A B_PS subset $(\check{\zeta}, \check{\xi}, \check{\pi})$ of $(\widetilde{\check{\Pi}}, \Phi, \check{\pi})$ is known as a bipolar soft weak compact set, denoted as a B_PS $\widetilde{\widetilde{W}}$ -compact set, if each B_PSW -open cover of $(\check{\zeta}, \check{\xi}, \check{\pi})$ has a finite B_PS subcover.

Definition 6.3. A B_PSWS $(\check{\Pi}, \widetilde{\widetilde{W}}, \check{\pi}, \neg \check{\pi})$ is said to be B_PS $\widetilde{\widetilde{W}}$ -compact space if $(\widetilde{\check{\Pi}}, \Phi, \check{\pi})$ is a B_PS $\widetilde{\widetilde{W}}$ -compact subset of itself.

Example 6.4. Let $\check{\Pi} = \mathbb{N}$ be the set of all natural numbers, $\check{\pi} = \{\epsilon\}$ and $\widetilde{\widetilde{W}} = \{(\Phi, \widetilde{\widetilde{\Pi}}, \check{\pi}), (\check{\zeta}_n, \check{\xi}_n, \check{\pi}) : n \in \mathbb{N}\}$ where,

$$\begin{array}{l} (\check{\zeta}_{1},\check{\xi}_{1},\check{\pi}) = \{ (\epsilon,\{1,2\},\mathbb{N}\setminus\{1,2\}) \}, \\ (\check{\zeta}_{2},\check{\xi}_{2},\check{\pi}) = \{ (\epsilon,\{1,3\},\mathbb{N}\setminus\{1,3\}) \}, \\ (\check{\zeta}_{3},\check{\xi}_{3},\check{\pi}) = \{ (\epsilon,\{1,4\},\mathbb{N}\setminus\{1,4\}) \}, \\ & \cdot \\ & \cdot \\ & \cdot \\ \end{array}$$

Then, a B_PSWS ($\check{\coprod}$, $\widetilde{\widetilde{W}}$, $\check{\pi}$, $\neg\check{\pi}$) is not B_PS $\widetilde{\widetilde{W}}$ -compact, since ($\widetilde{\check{\coprod}}$, Φ , $\check{\pi}$) = $\widetilde{\widetilde{\bigcup}}_{n\in\mathbb{N}}$ ($\check{\zeta}_n$, $\check{\xi}_n$, $\check{\pi}$). Whereas ($\widetilde{\check{\coprod}}$, Φ , $\check{\pi}$) \neq $\widetilde{\widetilde{\bigcup}}_{i=1}^n$ ($\check{\zeta}_i$, $\check{\xi}_i$, $\check{\pi}$).

Remark 6.5. Let $\check{\coprod}$ be a finite universe set and let $(\widetilde{\check{\coprod}}, \Phi, \check{\pi}) \stackrel{\widetilde{\widetilde{\in}}}{\widetilde{\widetilde{W}}}.$ If B_PS union of some B_PSW -open sets is $(\widetilde{\check{\coprod}}, \Phi, \check{\pi})$, then $(\widetilde{\check{\coprod}}, \Phi, \check{\pi})$ is B_PSW -compact space.

Example 6.6. Let $\check{\coprod} = \{h_1, h_2, h_3\}, \check{\pi} = \{\epsilon\}$ and

$$\widetilde{\widetilde{W}} = \{(\Phi, \widetilde{\check{\Pi}}, \check{\pi}), (\check{\zeta}_1, \check{\xi}_1, \check{\pi}), (\check{\zeta}_2, \check{\xi}_2, \check{\pi}), (\check{\zeta}_3, \check{\xi}_3, \check{\pi})\}$$

be a B_PSWS over $\check{\coprod}$ where $(\check{\zeta}_1,\check{\xi}_1,\check{\pi}),\,(\check{\zeta}_2,\check{\xi}_2,\check{\pi}),\,(\check{\zeta}_3,\check{\xi}_3,\check{\pi})$ $\stackrel{\widetilde{\epsilon}}{\in} B_PSS(\check{\coprod}),$ defined as follows

$$(\check{\zeta}_{1}, \check{\xi}_{1}, \check{\pi}) = \{(\epsilon, \{\hbar_{1}\}, \{\hbar_{2}\})\},\$$

$$(\check{\zeta}_{2}, \check{\xi}_{2}, \check{\pi}) = \{(\epsilon, \{\hbar_{2}\}, \{\hbar_{3}\})\} \text{ and }$$

$$(\check{\zeta}_{3}, \check{\xi}_{3}, \check{\pi}) = \{(\epsilon, \{\hbar_{3}\}, \{\hbar_{1}\})\}.$$

Then, a B_PSWS ($\check{\coprod}$, $\widetilde{\widetilde{W}}$, $\check{\pi}$, $\neg\check{\pi}$) is B_PS $\widetilde{\widetilde{W}}$ -compact.

Remark 6.7. Every B_PSW -closed subset of a B_PS $\widetilde{\widetilde{W}}$ -compact space is not necessarily B_PS $\widetilde{\widetilde{W}}$ -compact.

Example 6.8. Let $\check{\Pi} = \mathbb{N}$, $\check{\pi} = \{\epsilon\}$ and

$$\widetilde{\widetilde{W}} = \{ (\Phi, \widetilde{\check{\mathbf{H}}}, \check{\check{\pi}}), (\check{\zeta}_0, \check{\xi}_0, \check{\pi}), (\check{\zeta}_1, \check{\xi}_1, \check{\pi}), (\check{\zeta}_n, \check{\xi}_n, \check{\pi}) : n \in \mathbb{N} \setminus \{1\} \}$$

be a B_PSWS over $\check{\Pi}$ where $(\check{\zeta}_0,\check{\xi}_0,\check{\pi}),\,(\check{\zeta}_1,\check{\xi}_1,\check{\pi}),\,(\check{\zeta}_n,\check{\xi}_n,\check{\pi})$ $\stackrel{\widetilde{\epsilon}}{\tilde{\epsilon}}$ $B_PSS(\check{\Pi}),$ defined as follows

$$\begin{split} &(\check{\zeta}_{0},\check{\xi}_{0},\check{\pi}) = \{(\epsilon,\{1,4,5,\ldots\},\{2,3\})\},\\ &(\check{\zeta}_{1},\check{\xi}_{1},\check{\pi}) = \{(\epsilon,\{1\},\{2,3,4,5,\ldots\})\} \ and\\ &(\check{\zeta}_{n},\check{\xi}_{n},\check{\pi}) = \{(\epsilon,\{2,3,4,5,\ldots,n\},\{1\}) : n \in \mathbb{N} \setminus \{1\}\}. \end{split}$$

Then, a B_PSWS $(\check{\Pi}, \widetilde{\widetilde{W}}, \check{\pi}, \neg \check{\pi})$ is B_PS $\widetilde{\widetilde{W}}$ -compact. But the B_PSW -closed set $\{(\epsilon, \{2, 3, 4, 5, ...\}, \{1\})\}$ is not a B_PS $\widetilde{\widetilde{W}}$ -compact set, since the family $\{(\check{\zeta}_n, \check{\xi}_n, \check{\pi}) : n \in \mathbb{N} \setminus \{1\}\}$ is a B_PSW -open cover of $\{(\epsilon, \{2, 3, 4, 5, ...\}, \{1\})\}$. That is

$$\{(\epsilon,\{2,3,4,5,\ldots\},\{1\})\}\stackrel{\widetilde{\cong}}{\widetilde{\subset}} \widetilde{\widetilde{\cup}}_{n\in\mathbb{N}\backslash\{1\}}\ (\check{\zeta}_n,\check{\xi}_n,\check{\pi}).$$

Then this B_PSW -open cover has no finite B_PS subcover. That is

$$\{(\epsilon, \{2, 3, 4, 5, \ldots\}, \{1\})\} \stackrel{\approx}{\widetilde{\mathcal{Z}}} \stackrel{\sim}{\widetilde{\mathcal{O}}}_{n=2}^{k} (\check{\zeta}_n, \check{\xi}_n, \check{\pi}), \text{ for } k \in \mathbb{N} \setminus \{1\}.$$

Proposition 6.9. If $(\check{\Pi}, \widetilde{\widetilde{W}}, \check{\pi}, \neg \check{\pi})$ is a B_PS $\widetilde{\widetilde{W}}$ -compact space, then $(\check{\Pi}, \widetilde{W}, \check{\pi})$ is an S \widetilde{W} -compact space.

Proof. Straightforward. \Box

Proposition 6.10. If $(\check{\Pi}, \widetilde{W}, \check{\pi})$ is an S \widetilde{W} -compact space and $(\check{\Pi}, \widetilde{\widetilde{W}}, \check{\pi}, \neg \check{\pi})$ is a B_PSWS constructed since Theorem 2.24, then $(\check{\Pi}, \widetilde{\widetilde{W}}, \check{\pi}, \neg \check{\pi})$ is a B_PS $\widetilde{\widetilde{W}}$ -compact space.

Proof. Let $(\check{\Pi}, \widetilde{W}, \check{\pi})$ be an S \widetilde{W} -compact space and $\check{\Delta} = \{(\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi})\}_{\delta \in \Delta}$ be a B_PSW -open cover of $(\widetilde{\check{\Pi}}, \Phi, \check{\pi})$. That is

$$(\widetilde{\check{\underline{\mathbf{H}}}}, \Phi, \check{\boldsymbol{\pi}}) \stackrel{\widetilde{\simeq}}{\subseteq} \widetilde{\widecheck{\boldsymbol{\mathcal{U}}}}_{\delta \in \Delta} \ (\check{\boldsymbol{\zeta}}_{\delta}, \check{\boldsymbol{\xi}}_{\delta}, \check{\boldsymbol{\pi}}).$$

Then, $\check{\Pi} = \bigcup \{\check{\zeta}_{\delta}(\epsilon)\}_{\delta \in \Delta}$ for all $\epsilon \in \check{\pi}$. Since $(\check{\Pi}, \widetilde{W}, \check{\pi})$ is an S \widetilde{W} -compact space, then $\check{\Pi} = \bigcup \{\check{\zeta}_{\delta_i}(\epsilon) : i = 1, 2, ..., n\}_{\delta_i \in \Delta}$. Since $\check{\xi}(\neg \epsilon) = \check{\Pi} \setminus \check{\zeta}(\epsilon)$ for all $\epsilon \in \check{\pi}$, then $\Phi = \cap \{\check{\xi}_{\delta_i}(\neg \epsilon) : i = 1, 2, ..., n\}_{\delta_i \in \Delta}$. Hence, $(\check{\widetilde{\Pi}}, \Phi, \check{\pi})$ $\widetilde{\widetilde{\Xi}}$ $\widetilde{\widetilde{U}}_{i=1}^n$ $(\check{\zeta}_{\delta_i}, \check{\xi}_{\delta_i}, \check{\pi})$. Therefore, $(\check{\Pi}, \widetilde{\widetilde{W}}, \check{\pi}, \neg \check{\pi})$ is $B_P S$ $\widetilde{\widetilde{W}}$ -compact. \square

Theorem 6.11. Let $(\check{\Pi}, \widetilde{\widetilde{W}}_1, \check{\pi}, \neg \check{\pi})$ and $(\check{\Pi}, \widetilde{\widetilde{W}}_2, \check{\pi}, \neg \check{\pi})$ be B_PSWSs . Then

- (i) $If(\check{\Pi},\widetilde{\widetilde{W}}_2,\check{\pi},\neg\check{\pi})$ is a B_PS $\widetilde{\widetilde{W}}_2$ -compact space on $\check{\Pi}$ and $\widetilde{\widetilde{W}}_1$ $\overset{\sim}{\subseteq}$ $\widetilde{\widetilde{W}}_2$. Then $(\check{\Pi},\widetilde{\widetilde{W}}_1,\check{\pi},\neg\check{\pi})$ is a B_PS $\widetilde{\widetilde{W}}_1$ -compact space on $\check{\Pi}$.
- (ii) If $(\check{\amalg}, \widetilde{\widetilde{W}}_1, \check{\pi}, \neg \check{\pi})$ is not B_PS $\widetilde{\widetilde{W}}_1$ -compact space on $\check{\amalg}$ and $\widetilde{\widetilde{W}}_1$ $\widetilde{\subseteq}$ $\widetilde{\widetilde{W}}_2$. Then $(\check{\amalg}, \widetilde{\widetilde{W}}_2, \check{\pi}, \neg \check{\pi})$ is also not B_PS $\widetilde{\widetilde{W}}_2$ -compact space on $\check{\amalg}$.

Proof.

(i) Let $\check{\Delta} = \{(\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi})\}_{\delta \in \Delta}$ be a B_PSW_1 -open cover of $(\widetilde{\check{\Pi}}, \Phi, \check{\pi})$ in $(\check{\Pi}, \widetilde{\widetilde{W}}_1, \check{\pi}, \neg \check{\pi})$. Since $\widetilde{\widetilde{W}}_1 \overset{\widetilde{\subset}}{\subseteq} \widetilde{\widetilde{W}}_2$, then $\check{\Delta} = \{(\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi})\}_{\delta \in \Delta}$ is the B_PSW_2 -open cover of $(\widetilde{\check{\Pi}}, \Phi, \check{\pi})$ by the B_PSW_2 -open sets of $(\check{\Pi}, \widetilde{\widetilde{W}}_2, \check{\pi}, \neg \check{\pi})$. Since $(\check{\Pi}, \widetilde{\widetilde{W}}_2, \check{\pi}, \neg \check{\pi})$ is a $B_PS \overset{\widetilde{\smile}}{\widetilde{W}}_2$ -compact space. Thus,

$$(\widetilde{\check{\Pi}}, \Phi, \check{\pi}) \stackrel{\widetilde{\cong}}{\subseteq} \widetilde{\bigcup}_{\delta=1}^{n} (\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi}), \text{ for some } \delta_{1}, \delta_{2}, ..., \delta_{n} \in \Delta.$$

Therefore, $(\check{\amalg},\widetilde{\widetilde{W_1}},\check{\pi},\neg\check{\pi})$ is a B_PS $\widetilde{\widetilde{W}}_1$ -compact space.

(ii) Let $(\check{\Pi}, \widetilde{\widetilde{W}}_1, \check{\pi}, \neg \check{\pi})$ be not B_PS $\widetilde{\widetilde{W}}_1$ -compact space on $\check{\Pi}$ and $\widetilde{\widetilde{W}}_1 \overset{\sim}{\subseteq} \widetilde{\widetilde{W}}_2$. Assume if possible $(\check{\Pi}, \widetilde{\widetilde{W}}_2, \check{\pi}, \neg \check{\pi})$ is a B_PS $\widetilde{\widetilde{W}}_2$ -compact space on $\check{\Pi}$. By (i), $(\check{\Pi}, \widetilde{\widetilde{W}}_1, \check{\pi}, \neg \check{\pi})$ is also a B_PS $\widetilde{\widetilde{W}}_1$ -compact. This is a contradiction. Hence, $(\check{\Pi}, \widetilde{\widetilde{W}}_2, \check{\pi}, \neg \check{\pi})$ is not B_PS $\widetilde{\widetilde{W}}_2$ -compact space on $\check{\Pi}$.

Theorem 6.12. Let $(\check{Y},\widetilde{\widetilde{W}}_{\check{Y}},\check{\pi},\neg\check{\pi})$ be a B_PSWSS of $(\check{\coprod},\widetilde{\widetilde{W}},\check{\pi},\neg\check{\pi})$. Then $(\check{Y},\widetilde{\widetilde{W}}_{\check{Y}},\check{\pi},\neg\check{\pi})$ is a B_PS $\widetilde{\widetilde{W}}_{\check{Y}}$ -compact space if and only if every B_PSW -open cover of $(\check{Y},\Phi,\check{\pi})$ by B_PSW -open set in $(\check{\coprod},\widetilde{\widetilde{W}},\check{\pi},\neg\check{\pi})$ contains a finite B_PS subcover.

Proof. Let $(\check{Y}, \widetilde{\widetilde{W}}_{\check{Y}}, \check{\pi}, \neg \check{\pi})$ be a B_PS $\widetilde{\widetilde{W}}_{\check{Y}}$ -compact space and $\check{\Delta} = \{(\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi})\}_{\delta \in \Delta}$ be a B_PSW -open cover of $(\widetilde{\check{Y}}, \Phi, \check{\pi})$ by B_PSW -open set in $(\check{\Pi}, \widetilde{\widetilde{W}}, \check{\pi}, \neg \check{\pi})$. Now, $\check{Y} \subseteq \bigcup_{\delta \in \Delta} (\check{Y} \cap \check{\zeta}_{\delta}(\epsilon))$ for each $\epsilon \in \check{\pi}$ and $\phi \supseteq \bigcap_{\delta \in \Delta} (\check{Y} \cap \check{\xi}_{\delta}(\neg \epsilon))$ for each $\neg \epsilon \in \neg \check{\pi}$. Thus, $\check{\Delta}_Y = \{(\check{Y}\check{\zeta}_{\delta}, \check{Y}\check{\xi}_{\delta}, \check{\pi})\}_{\delta \in \Delta}$ is a B_PS $\widetilde{\widetilde{W}}_{\check{Y}}$ -open cover of $(\check{\check{Y}}, \Phi, \check{\pi})$. Since $(\check{Y}, \widetilde{\widetilde{W}}_{\check{Y}}, \check{\pi}, \neg \check{\pi})$ is a B_PS $\widetilde{\widetilde{W}}_{\check{Y}}$ -compact space, then there is a finite B_PS subcover, say, $\{(\check{Y}\check{\zeta}_{\delta_i}, \check{Y}\check{\xi}_{\delta}, \check{\pi})\}_{i=1}^n$ such that,

$$(\widetilde{\check{Y}}, \Phi, \check{\pi}) \stackrel{\widetilde{\widetilde{\subset}}}{\widetilde{\bigcup}} \widetilde{\widetilde{\bigcup}}_{i=1}^{n} (\check{Y} \check{\zeta}_{\delta_{i}}, \check{Y} \check{\xi}_{\delta_{i}}, \check{\pi}), \text{ for some } \delta_{1}, \delta_{2}, ..., \delta_{n} \in \Delta.$$

Thus, implies that $\{(\check{\zeta}_{\delta_i}, \check{\xi}_{\delta_i}, \check{\pi})\}_{i=1}^n$ is a finite B_PS subcover of $(\overset{\circ}{\check{Y}}, \Phi, \check{\pi})$ by B_PSW -open set in $(\check{\coprod}, \widetilde{\widetilde{W}}, \check{\pi}, \neg \check{\pi})$. Conversely, suppose $\check{\Delta}_{\check{Y}} = \{(\check{Y}\check{\zeta}_{\delta}, \check{Y}\check{\xi}_{\delta}, \check{\pi})\}_{\delta \in \Delta}$ which is a B_PS $\widetilde{\widetilde{W}}_{\check{Y}}$ -open cover of $(\overset{\circ}{\check{Y}}, \Phi, \check{\pi})$. Then, clearly $\check{\Delta}$ $= \{(\check{\zeta}_{\delta}, \check{\xi}_{\delta}, \check{\pi})\}_{\delta \in \Delta}$ is a B_PSW -open cover of $(\overset{\circ}{\check{Y}}, \Phi, \check{\pi})$ by B_PSW -open set in $(\check{\coprod}, \widetilde{\widetilde{W}}, \check{\pi}, \neg \check{\pi})$. Thus, by given hypothesis we have $\{(\check{\zeta}_{\delta_i}, \check{\xi}_{\delta}, \check{\pi})\}_{i=1}^n$ is a finite B_PS subcover of $(\overset{\circ}{\check{Y}}, \Phi, \check{\pi})$. Therefore, $(\check{Y}, \widetilde{\widetilde{W}}_{\check{Y}}, \check{\pi}, \neg \check{\pi})$ is a B_PS $\widetilde{\widetilde{W}}_{\check{Y}}$ -compact space. \Box

7 Conclusions And Future Research

The aim of this paper was to define a new bipolar soft weak structure named bipolar soft weak connectedness and bipolar soft weak compactness, and to introduce the principles of bipolar soft weak locally connected and bipolar soft weak component. The fundamental concepts of B_PSWS , which are related to bipolar soft sets, are continuously presented and explored, as well as the definitions and examples needed to explain the concepts. Additionally, the paper has invalidated some B_PS $\widetilde{\widetilde{W}}$ -locally connected space and B_PS $\widetilde{\widetilde{W}}$ -component features in BSWSs. We provided a definition, demonstrated the way the ideas of B_PS $\widetilde{\widetilde{W}}$ -connected spaces and B_PS $\widetilde{\widetilde{W}}$ -connected are distinct, and explored the ways in which the B_PS $\widetilde{\widetilde{W}}$ -connected subsets are B_PS $\widetilde{\widetilde{W}}$ -components. Therefore, the main definitions and results of compactness in B_PSWSs were demonstrated.

Future research on bipolar soft weak structures may focus on several key areas, including continuous mappings and separation axioms.

Acknowledgements: "We would like to thank the reviewers for their thoughtful comments and efforts towards improving our manuscript."

Conflict of Interest: "The authors declare no conflict of interest."

References

- [1] Molodtsov D. Soft set theory–First results. Computers & Mathematics with Applications. 1999; 37(4-5): 19-31. DOI: https://doi.org/10.1016/S0898-1221(99)00056-5
- [2] Maji PK, Biswas R, Roy AR. Soft set theory. Computers & Mathematics with Applications. 2003; 45: 555-562. DOI: https://doi.org/10.1016/S0898-1221(03)00016-6
- [3] Ali MI, Feng F, Liu X, Min WK, Shabir M. On some new operations in soft set theory. *Computers & Mathematics with Applications*. 2009; 57(9): 1547-1553. DOI: https://doi.org/10.1016/j.camwa.2008.11.009
- [4] Shabir M, Naz M. On soft topological spaces. Computers & Mathematics with Applications. 2011; 61(7): 1786-1799. DOI: https://doi.org/10.1016/j.camwa.2011.02.006
- [5] Aygünoğlu A, Aygün H. Some notes on soft topological spaces. Neural Computing and Applications. 2012; 21: 113-119. DOI: https://doi.org/10.1007/s00521-011-0722-3
- [6] Ahmad B, Hussain S. On some structures of soft topology. *Mathematical Sciences*. 2012; 6: 1-7. DOI: https://doi.org/10.1186/2251-7456-6-64
- [7] Peyghan E, Samadi B, Tayebi A. Some results related to soft topological spaces. *Journal Facta Universitatis, Series: Mathematics and Informatics*. 2014; 29: 325-336. DOI: https://doi.org/10.48550/arXiv.1401.6933
- [8] Hussain S. A note on soft connectedness. *Journal of the Egyptian Mathematical Society*. 2015; 23(1): 6-11. DOI: https://doi.org/10.1016/j.joems.2014.02.003
- [9] Polat N, Yaylal G, Tanay B. Some results on soft element and soft topological space. *Mathematical Methods in the Applied Sciences*. 2019; 42(16): 5607-5614. DOI: https://doi.org/10.1002/mma.5778
- [10] Aydin T, Enginolu S. Some results on soft topological notions. *Journal of New Results in Science*. 2021; 10: 65-75. DOI: https://dergipark.org.tr/en/pub/jnrs/issue/62194/910337
- [11] Jafari S, Latif RM, Mohammad P, El-Bably MK. Soft topological spaces induced via soft relations. WSEAS Transactions on Mathematics. DOI: 2021; 20(1): 1-8. https://doi.org/10.37394/23206.2021.20.1
- [12] Al Ghour S. Soft homogeneous components and soft products. Fuzzy Information and Engineering. 2024; 16(1): 24-32. DOI: https://doi.org/10.26599/FIE.2023.9270029
- [13] Zakari AH, Ghareeb A, Omran S. On soft weak structures. Soft Computing. 2017; 21: 2553-2559. DOI: https://doi.org/10.1007/s00500-016-2136-8
- [14] Shabir M, Naz M. On bipolar soft sets. arXiv preprint. 2013. DOI: https://doi.org/10.48550/arXiv.1303.1344
- [15] ztrk TY. On bipolar soft topological spaces. Journal of New Theory. 2018; 20: 64-75. DOI: https://dergipark.org.tr/en/pub/jnt/issue/34781/395302
- [16] Saleh HY, Asaad BA, Mohammed RA. Bipolar soft generalized topological structures and their application in decision making. *European Journal of Pure and Applied Mathematics*. 2022; 15(2): 646-671. DOI: https://doi.org/10.29020/nybg.ejpam.v15i2.4353

- [17] Saleh HY, Asaad BA, Mohammed RA. Bipolar soft limit points in bipolar soft generalized topological spaces. *Mathematics and Statistics*. 2022; 10(6): 1264-1274. DOI: https://doi.org/10.13189/ms.2022.100612
- [18] Saleh HY, Asaad BA, Mohammed RA. Novel classes of bipolar soft generalized topological structures: compactness and homeomorphisms. Fuzzy Information and Engineering. 2024; 16(1): 49-73. DOI: https://doi.org/10.26599/FIE.2023.9270031
- [19] Shabir M, Bakhtawar A. Bipolar soft connected, bipolar soft disconnected and bipolar soft compact spaces. Songklanakarin Journal of Science and Technology. 2017; 39(3): 359-371. DOI: https://doi.org/10.14456/sjst-psu.2017.40
- [20] Demirta N, Dalkl O. Bipolar fuzzy soft set theory applied to medical diagnosis. *Turkish Journal of Mathematics and Computer Science*. 2024; 16(2): 314-324. DOI: https://doi.org/10.47000/tjmcs.1254943
- [21] Demir I, Saldaml M, Okurer M. Bipolar fuzzy soft filter and its application to multi-criteria group decision-making. Filomat. 2025; 39(10): 3297-3313. DOI: https://doi.org/10.2298/FIL2510297D
- [22] Hamad N, Al-Sharqi F, Romdhini M, Rodzi Z. Similarity measures of bipolar interval valued-fuzzy soft sets and their application in multi-criteria decision-making method. *Journal of Applied Mathematics and Informatics*. 2025; 43(3): 821-837. DOI: https://doi.org/10.14317/jami.2025.821
- [23] Saldaml M, Demir I. Proximity structures via the class of bipolar fuzzy soft sets. Filomat. 2025; 39(4): 1197-1211. DOI: https://doi.org/10.2298/FIL2504197S
- [24] Fadel A, Dzul-Kifli SC. Bipolar soft functions. *AIMS Mathematics*. 2021; 6(5): 4428-4446. DOI: https://doi.org/10.3934/math.2021262
- [25] Fadel A, Dzul-Kifli SC. Bipolar soft topological spaces. European Journal of Pure and Applied Mathematics. 2020; 13(2): 227-245. DOI: https://doi.org/10.29020/nybg.ejpam.v13i2.3645
- [26] Fujita T, Smarandache F. Directed n-superhypergraphs incorporating bipolar fuzzy information: a multitier framework for modelling bipolar uncertainty in complex networks. *Neutrosophic Sets and Systems*. 2025; 88: 164-183. DOI: https://doi.org/10.5281/zenodo.15775233
- [27] Fujita T, Smarandache F. Navigating bipolar indeterminacy: bipolar indetermSoft sets and bipolar indetermHyperSoft sets for knowledge representation. *International Journal of Neutrosophic Science*. 2026; 27(2): 204-222. DOI: https://doi.org/10.54216/IJNS.270218
- [28] Mohammed RA. Bipolar soft minimal structures. European Journal of Pure and Applied Mathematics. 2025; 18(2): 5928-5928. DOI: https://doi.org/10.29020/nybg.ejpam.v18i2.5928
- [29] M.Taher BS, Asaad BA. Topological properties of bipolar soft weak structures. Fuzzy Information and Engineering. 2025.

Bekas S. M.Taher

Department of Mathematics University of Zakho Zakho, Iraq E-mail: bekes81math@gmail.com

Baravan A. Asaad

Department of Mathematics University of Zakho Zakho, Iraq Department of Computer Science Cihan University Duhok, Iraq

E-mail: baravan.asaad@uoz.edu.krd

© By the Authors. Published by Islamic Azad University, Bandar Abbas Branch. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution 4.0 International (CC BY 4.0) http://creativecommons.org/licenses/by/4.0/