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SmartSLA is an innovative model-driven framework that automates the generation and 

deployment of blockchain-based Service Level Agreements (SLAs) in cloud 

environments. It addresses the limitations of manual and centralized SLA management—

such as lack of transparency, high complexity, and susceptibility to human error—by 

integrating Model-Driven Engineering (MDE) with blockchain technology. The 

framework consists of three core components: (1) an Ecore-based metamodel that 

formally defines SLA elements and policies, (2) a graphical modeling editor for intuitive 

SLA design, and (3) an automated code generator that produces executable Solidity 

contracts for Ethereum deployment. The framework’s applicability was evaluated 

through eight industrial case studies across diverse cloud domains, including networking, 

storage, IoT, and disaster recovery. Results demonstrate full automation of the SLA 

lifecycle with substantial reduction in design effort and consistent model-to-code 

transformation accuracy. Structural comparisons with five existing modeling languages 

confirm balanced design quality, achieving moderate maintainability, high 

understandability, and sufficient extensibility. By bridging SLA specification and 

blockchain enforcement, SmartSLA provides a unified, scalable, and transparent solution 

for automated SLA management, strengthening operational reliability and advancing the 

integration of MDE and blockchain in industrial cloud ecosystems.  
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I. Introduction 

In the past decade, cloud computing has emerged as a 

critical infrastructure for modern industries and service-

oriented enterprises, offering unprecedented scalability, 

flexibility, and cost efficiency [1]. As organizations 

increasingly rely on cloud platforms, ensuring service 

quality, transparency, and accountability has become a 

fundamental requirement [2]. 

Service Level Agreements (SLAs) are the primary 

mechanism for formalizing quality expectations—such as 

availability, performance, and reliability—between 

providers and consumers [3]. However, traditional SLA 

management remains largely manual and centralized, 

limiting its effectiveness in dynamic and distributed 

environments [4, 5]. These limitations reduce transparency, 

hinder automation, and increase the risk of operational 

failures in industrial applications. 

Blockchain-based smart contracts have been proposed as 

a decentralized and tamper-proof approach to enforce SLAs 

[6]. While promising, their practical adoption is hindered by 

the technical expertise required for smart contract 

programming and deployment [7]. Bridging the gap between 

high-level SLA specification and low-level blockchain 

enforcement therefore remains a critical challenge. 

To address this challenge, we propose SmartSLA, an 

innovative model-driven framework that automates the 

transformation of SLA specifications into executable smart 

contracts. Leveraging Model-Driven Engineering (MDE), 

SmartSLA enables SLA logic to be expressed at a high level 

of abstraction and automatically translated into Solidity 

code. The framework comprises three key components: (1) 

an Ecore-based metamodel capturing SLA concepts, (2) a 

graphical modeling environment that facilitates SLA design 

for both technical and non-technical users, and (3) an 

automated code generator targeting Ethereum-compatible 

blockchains. This integration reduces programming errors, 

promotes standardization, and supports reliable SLA 

enforcement across diverse domains. 

Unlike prior studies that focus exclusively on either SLA 

modeling languages or smart contract description 

frameworks, SmartSLA unifies both perspectives into a 

single, end-to-end solution. To evaluate its novelty and 

effectiveness, the study is guided by the following research 

questions: 

RQ1: Can SmartSLA effectively automate the generation 

of smart contracts from high-level SLA specifications across 

diverse cloud domains? 

RQ2: To what extent does SmartSLA reduce design effort 

and improve reliability compared to manual or template-

based approaches? 

RQ3: How does the SmartSLA metamodel compare with 

existing SLA and smart contract languages in terms of 

maintainability, understandability, and extensibility? 

By addressing these questions, the paper highlights the 

scientific and practical contributions of SmartSLA to the 

automation of SLA lifecycle management. The remainder of 

the paper is organized as follows: Section II introduces the 

conceptual background, Section III reviews related work, 

Section IV presents the SmartSLA framework, Section V 

discusses evaluation results, and Section VI concludes with 

future directions. 

II. Background 

This section lays the conceptual foundation of the 

SmartSLA framework by examining its three core pillars: 

smart contracts, service-level agreements, and model-driven 

engineering. 

A. Smart Contracts 

Smart contracts are self-executing programs deployed on 

blockchain platforms such as Ethereum. They automatically 

enforce predefined business rules without the need for 

intermediaries, leveraging blockchain immutable and 

distributed ledger to ensure transparent and verifiable 

execution [6, 8]. In SLA enforcement, smart contracts can 

continuously monitor metrics such as uptime, latency, or 

error rates, and autonomously trigger actions—like applying 

penalties or initiating alerts—upon detecting violations [9]. 

Although languages such as Solidity enable the 

development of smart contract logic, writing such contracts 

remains prone to programming errors and requires high 

technical proficiency [10, 11]. This complexity often limits 

their adoption in real-world industrial and service settings. 

In the SmartSLA framework, smart contracts form the 

core enforcement layer, and are generated automatically 

from high-level models, reducing human error and technical 

barriers while ensuring SLA terms are enforced in a 

trustworthy and decentralized manner. 

B. Service Level Agreements (SLAs) 

SLAs are formal contracts that define the service quality 

expectations and obligations between cloud providers and 

consumers [3]. These agreements typically cover 

quantifiable metrics such as availability, response time, and 

throughput, as well as enforcement policies and penalty 

structures [2]. 

However, conventional SLA management is still heavily 

manual, centralized, and reactive, making it slow to detect 

and respond to violations—especially in multi-tenant and 

hybrid cloud environments [4]. Such inefficiencies reduce 

transparency and may erode trust between service parties [5]. 

The increasing complexity of distributed systems has 

amplified the need for SLA enforcement mechanisms that 

are automated, auditable, and trustworthy [12, 13]. 
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The SmartSLA framework addresses this need by 

reengineering SLA structure through formal modeling, thus 

promoting automation, improving clarity, and enabling 

integration with intelligent service platforms. 

C. Model-Driven Engineering (MDE) 

Model-Driven Engineering (MDE) is a development 

methodology that abstracts software systems into formal 

models to facilitate automated code generation, structural 

analysis, and design validation [7]. Central to MDSE is the 

creation of a metamodel, which formally defines domain-

specific constructs and their relationships—for instance, 

SLA components such as parties, performance metrics, and 

compliance policies [14]. 

By enabling high-level design and transformation into 

executable code, MDSE empowers domain experts to define 

sophisticated service agreements without needing deep 

programming knowledge [15]. In SmartSLA, this is realized 

through an Ecore-based metamodel and a graphical 

modeling tool built with Sirius [16], enabling the intuitive 

construction of SLA models. 

These models are then automatically translated into 

executable Solidity code [17], bridging the conceptual and 

implementation layers of SLA enforcement. This approach 

reduces development effort, enhances reliability, and ensures 

consistency across SLA definitions deployed in blockchain-

backed cloud infrastructures. 

 

III. Related works 

The integration of blockchain technology with Service 

Level Agreement (SLA) management has attracted 

significant attention in recent years. This section reviews 

state-of-the-art approaches related to blockchain-based SLA 

enforcement, smart contract modeling, and model-driven 

frameworks, highlighting their contributions and limitations 

in relation to the SmartSLA framework. 

Nguyen et al. [18] introduced PenChain, a blockchain-

based platform that enables automatic SLA enforcement 

with embedded penalty rules. Their system uses smart 

contracts to execute SLAs and ranks service providers based 

on compliance and reputation, demonstrating its 

effectiveness in precision agriculture and automotive 

industries. Alzubaidi et al. [19] proposed a formal SLA 

representation model, IRAFUTAL, enabling blockchain-

based SLA lifecycle management via Hyperledger Fabric. 

Their framework supports negotiation, monitoring, billing, 

and enforcement, addressing the complexity of multi-phase 

SLA management. 

In response to the lack of standardization in asynchronous 

service agreements, Oriol et al. [20] proposed a quality 

model aligned with ISO/IEC 25010 and a domain-specific 

language for asynchronous SLAs using WS-Agreement 

standards. Their solution, integrated into AsyncAPI and 

extended through tooling, facilitates SLA specification and 

enforcement in IoT and cyber-physical systems.  

Maatougui et al. [21] proposed a component-based 

contractual approach for designing and formally specifying 

self-adaptive systems with respect to Quality of Service 

(QoS) contracts. Their method leverages Model-Driven 

Engineering to model system structure and behavior and 

employs the Maude formal language to generate executable 

specifications that enable runtime monitoring and 

adaptation. By clearly separating user-defined QoS 

requirements from internal system parameters, their model 

simplifies complexity and enhances reusability. They 

validated their approach through a firefighting system case 

study, demonstrating how adaptation strategies are triggered 

to ensure continuous QoS compliance in dynamic contexts. 

Cambronero et al. [22] introduced CloudCost, a UML-

based profile designed to model cloud infrastructures and 

user interactions with respect to Service Level Agreements, 

aiming to improve cloud provider profitability. Their 

approach distinguishes between regular and high-priority 

users, integrating parameters such as resource costs, 

discounts, and compensations into the SLA model. They also 

developed MSCC, a modeling tool that supports the creation, 

validation, and simulation of cloud scenarios using the 

Simcan2Cloud simulator. Through a comprehensive case 

study involving different workloads and infrastructure 

configurations, they demonstrated how pricing strategies and 

user types influence provider income, offering insights into 

effective SLA-driven resource management. 

Several survey-based studies provide broader overviews. 

Saghaier et al. [23] and Hamdi et al. [24] analyzed SLA 

monitoring solutions across various sectors, such as cloud 

computing and 6G networks, underscoring the potential of 

smart contracts in detecting violations and managing 

compensation. Mahapatra et al. [25] proposed a secure 

blockchain framework for IoT-Fog-Cloud environments, 

addressing critical challenges such as trust and 

authentication. 

Azzahra and Nugraha [26] implemented a smart contract-

based SLA management system for IT services in higher 

education, illustrating benefits such as improved monitoring 

and reduced processing time, albeit with higher operational 

costs. Tang et al. [27] extended this idea to the tourism 

industry with TSLA, a framework that leverages oracles and 

smart contracts to detect provider misbehavior and enforce 

penalties. 

Souei et al. [28] developed a distributed directory for 

smart contracts based on a unified description language 

(UDL-SC), enabling semantic-based search and selection of 

contracts based on legal, performance, and gas usage 

attributes. In another model-driven engineering approach, 

Hamdaqa et al. [10] introduced a reference model for smart 

contracts in 2020 by analyzing the characteristics of three 

platforms: Hyperledger Composer, Azure Blockchain 

Workbench, and Ethereum. The proposed model was 

designed as a framework that enables developers to model 
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and generate the structural code of smart contracts across 

different blockchain platforms. To validate their approach, 

they applied the framework to three case studies, 

demonstrating its capability to generate executable code for 

the target platforms. Furthermore, the authors extended the 

reference model into a more advanced version, iContractML 

2.0 [11]. In addition to supporting the generation of smart 

contract behavior, this version also facilitates the creation of 

structural and deployment artifacts by employing templates 

for commonly used functions. 

In cloud service discovery, Nabli et al. [13] proposed the 

Cloud Services Description Ontology (CSDO) using 

Linked-USDL, supporting the publication and selection of 

cloud services. Similarly, Kamel et al. [12] applied reactive 

system theory to model and verify SLA lifecycle behavior in 

cloud-based environments, emphasizing formal verification. 

Furthermore, studies like those by Battula et al. [29] on 

fog computing and Cedillo et al. [30] in AAL environments 

confirm the growing trend toward SLA automation using 

blockchain. However, these solutions often focus on specific 

domains, lack comprehensive modeling environments, or 

require significant technical expertise. 

Makwe et al. [31] propose a broker-based SLA framework 

for IaaS clouds that improves provider selection and 

monitoring, reducing violation rates and enhancing resource 

utilization. Booth et al. [32] present a blockchain-based 

library that generates smart contracts from SLAs for IoT 

monitoring, ensuring reliable violation detection in 

healthcare scenarios. Muntaha et al. [33] design a hybrid 

blockchain framework for SLA management in 5G 

networks, combining Hyperledger and Ethereum to improve 

resource sharing and enforcement. Solis et al. [34] introduce 

MICAAL, a DSL for modeling microservices in Ambient 

Assisted Living systems, supporting modularity and 

scalability in IoT healthcare.  

Unlike previous work, SmartSLA provides an integrated, 

model-driven framework featuring a metamodel, a graphical 

modeling editor based on Sirius, and automated smart 

contract code generation in Solidity. This design bridges the 

gap between SLA specification and deployment, making the 

process accessible to non-experts while ensuring 

consistency, extensibility, and operational automation. Table 

I provides a comparison of related work with our proposed 

solution (SmartSLA).  

TABLE I Comparison of Related Work 
Study Application Domain Blockchain Modeling Type 

[10, 11] General  Ecore to Solidity 

[12] Cloud  Reactive systems 

[13] Cloud  Linked-USDL 

[18] 
Precision Agriculture,  

Automotive Manufacturing 
 Smart Contracts 

[19] IoT  Formal Modeling 

[20] Asynchronous SLA  DSL, AsyncAPI 

[21] Self-adaptive systems  
Model-Driven 

Engineering (Maude) 

[22] Cloud Infrastructure  UML, Simcan2Cloud 

[23] 
Multiple domains (Cloud, 

IoT, 6G) 
 

Survey / Comparative 

Analysis 

[24] General (Survey-based)  
Survey, Comparative 

Analysis 

[25] IoT-Fog-Cloud  Security Framework 

[26] Higher Education  Smart Contracts 

[27]  Tourism  
Smart Contracts + 

Oracle 

[28] General  UDL-SC 

[29] Fog Computing  Various 

[30] 
Ambient Assisted Living 

(AAL) 
 Various 

[31] IaaS Cloud, CSP Selection  Broker model 

[32] IoT, Patient Monitoring  Java Library 

[33] 5G Resource Sharing  Game theory  

[34] Ambient Assisted Living  DSL, Ecore2Service 

SmartSLA Cloud SLA  
Graphical model to 

Solidity 

 

IV. SmartSLA: A Model-Driven Framework for 

SLA Code Generation 

In complex and dynamic cloud-based environments, 

managing Service Level Agreements is essential not only for 

ensuring service quality but also for maintaining operational 

continuity and cost efficiency—key concerns in industrial 

and service domains. However, conventional approaches to 

SLA management often suffer from fragmentation, manual 

configuration steps, and limited adaptability to rapidly 

evolving service structures. 

To address these limitations, we introduce SmartSLA, a 

model-driven framework that facilitates the standardized and 

automated definition, customization, and execution of SLAs. 

The framework consists of three key components: a 

metamodel that formally defines the structure of smart 

SLAs, a graphical editor that simplifies SLA modeling for 

technical and non-technical users alike, and a code 

generation engine that automatically produces executable 

smart contracts for deployment in blockchain environments. 
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By integrating these components, SmartSLA supports 

seamless SLA management across cloud-based platforms, 

and promotes reduced design complexity, higher reusability, 

and quicker deployment—all of which are highly relevant 

for industrial decision-making systems, enterprise platforms, 

and service coordination in large-scale infrastructures. 

 

A. Core Concepts 

SmartSLA is founded on three core concepts that underpin 

its modeling and automation capabilities: 

 Metamodeling: At the heart of the framework lies 

a formal Ecore-based metamodel that serves as the 

foundation for the domain-specific modeling language. 

This metamodel defines the core elements of SLAs—

including service objectives, penalty rules, compliance 

terms, and provider-consumer roles—in a structured 

and extensible way. It enables model validation and 

reuse across diverse service settings. 

 Smart Contracts: Using blockchain technology, 

SmartSLA converts SLA models into smart contracts, 

which are self-executing programs that enforce SLA 

conditions such as uptime guarantees or compensation 

clauses. This ensures transparency, auditability, and 

operational reliability without requiring manual 

oversight [6]. 

 Model Transformation and Code Generation: 

Through model-to-text transformation techniques, 

SmartSLA automatically generates Solidity code for 

deployment on Ethereum-compatible platforms. This 

reduces development time and technical effort while 

allowing organizations to incorporate SLA enforcement 

into automated, industrial-grade workflows. 

By combining these pillars, the SmartSLA framework 

bridges the gap between high-level service design and low-

level contract execution, providing a robust, industry-

aligned tool for SLA management in distributed cloud 

infrastructures. 

 

B. The SmartSLA Metamodel 

The formal definition outlining the structure and various 

constituent parts of a smart SLA is provided by the 

SmartSLA metamodel, which aligns with the Ecore standard. 

This metamodel offers a precise outline of the classes, 

detailing their relationships, assigned responsibilities, and 

defining attributes. It essentially forms the vital foundation 

required for building valid SmartSLA models. A visual 

depiction of the proposed SmartSLA metamodel structure 

can be found in Fig. 1. 

The SLAContract class serves as the root of the 

metamodel, representing the main container for all SLA-

related elements. It stores general contract metadata (such as 

name, duration, and version) and aggregates all core 

components, including service objectives, parties, 

constraints, enforcement mechanisms, resolution policies, 

and audit logs. 

Party represents the actors involved in the agreement—

namely the provider and consumer. It includes attributes 

such as address and reputationScore, and is connected to the 

contract, notifications, and change requests. 

The abstract class SLAConstraint generalizes various 

SLA condition types. Its concrete subclasses include: 

 

Fig. 1. The SmartSLA metamodel 

 

 

 

Fig. 2. The Graphical Editor Implemented in Sirius 
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 SecurityRequirement, which defines encryption, 

access control, and audit needs; 

 ComplianceRequirement, which specifies 

external standards and verification methods; 

 ServiceObjective, which defines measurable 

targets (e.g., performance or availability) and is 

linked to a specific CloudSource, describing the 

underlying infrastructure (such as a VM, storage, 

or IoT device) using the CloudSourceType 

enumeration. 

The EnforcementElement abstract class captures rule-

based enforcement logic and is inherited by: 

 Penalty, which applies predefined actions upon 

contract violation; 

 Incentive, which defines rewards for compliance; 

 Notification, which alerts parties under specified 

conditions. 

To model SLA dynamics and evolution, the 

ChangeRequest class captures proposed modifications, 

while VersionControl maintains version history. The 

SLAHistory class records past events (e.g., violations or 

updates) and is linked to the contract via audit logs. 

Conflict and termination handling are modeled through 

the abstract ResolutionElement, which is extended by: 

 TerminationCondition, defining reasons and 

consequences for SLA cancellation; 

 DisputeResolution, specifying procedures and 

legal aspects for resolving conflicts; 

 EscalationPolicy, indicating how service breaches 

are escalated based on severity and response time. 

Overall, the SmartSLA metamodel provides a modular 

and extensible structure that covers key aspects of SLA 

management, supporting formal modeling, enforcement 

automation, and traceability. 

C. Graphical Editor 

To promote accessibility for users with limited technical 

or programming backgrounds, a graphical modeling editor 

was developed as part of the SmartSLA framework. Serving 

as an interactive interface for SLA model creation, the editor 

enables users to define, visualize, and manage SLA 

structures directly based on the SmartSLA metamodel. It was 

implemented using the Sirius framework, which supports the 

development of domain-specific graphical editors within the 

Eclipse ecosystem. 

The editor provides a user-friendly, drag-and-drop 

environment where users can construct SLA models by 

placing visual elements—such as Party, ServiceObjective, or 

Penalty—onto a design canvas. Each element corresponds 

directly to a metamodel class and can be configured using a 

dedicated properties panel. For instance, a user can define a 

ServiceObjective with a response time metric and a 

performance threshold (e.g., 300ms), then link it to a specific 

CloudSource, such as a serverless function. 

To streamline the modeling process, the editor includes a 

tool palette containing all available SLA elements, each 

with a distinctive icon for clarity. Users define relationships 

between elements visually, while the editor automatically 

enforces conformance with the underlying metamodel. 

Additionally, validation mechanisms ensure that models are 

semantically and structurally correct, and the editor can 

support the automatic generation of preliminary smart 

contract code from compliant models. 

This visual interface significantly reduces complexity, 

enhances modeling efficiency, and encourages broader 

adoption of formal SLA specification methods across 

industrial and service-oriented domains. Fig. 2 illustrates the 

editor’s interface and its alignment with the core SmartSLA 

concepts. 

Built on the Sirius framework, the editor provides notable 

flexibility for tailoring visual representations and adeptly 

handles differing levels of complexity. Its key benefits 

include significantly reducing design complexity for users 

without a technical background, substantially accelerating 

the SLA creation process, and ensuring strict adherence to 

the SmartSLA metamodel, which is vital for guaranteeing 

the structural soundness of the resulting models. 

D. Integration and Code Generation 

The strength of the SmartSLA framework really lies in 

how seamlessly the metamodel and the graphical editor are 

integrated. The metamodel formally defines the abstract 

syntax of the modeling language. In parallel, the editor 

provides a user-friendly interface, as a concrete syntax of the 

SmartSLA language, allowing the creation of instances (the 

models). The underlying model-driven framework 

(Sirius/Ecore) facilitates this integration, ensuring the 

workflow is cohesive and smooth. 

Users design an SLA visually in the editor, and each 

graphical element corresponds directly to an instance of a 

metamodel-defined class or relationship. The editor enforces 

the rules of the metamodel using validation, stopping users 

from creating structurally incorrect or inconsistent SLA 

definitions. This model can then be utilized for automated 

code generation. 

The conversion of a SmartSLA model into executable 

smart contract code is usually carried out using model-to-text 

languages like Epsilon Generation Language (EGL). As 

depicted in Fig. 3, this automated generation approach 

greatly lessens both the manual effort involved and the 

chance of introducing errors during the creation of 

deployable smart contracts from the higher-level SLA 

definition. 
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Fig.3. Transformation from SmartSLA model to Smart 

Contract Code via EGL program. 

This integrated approach reduces design errors, increases 

efficiency, and makes SLA modeling accessible to a wider 

range of stakeholders, from technical developers to cloud 

service managers. 

E. SmartSLA Model Deployment 

The final stage of the SmartSLA framework focuses on the 

deployment of automatically generated smart contracts onto 

blockchain platforms for real-time SLA enforcement [8]. 

This phase transforms the modeled SLA specifications into 

operational assets that can autonomously monitor service 

performance and enforce contractual terms without manual 

intervention [9].  

Smart contracts generated from the SmartSLA models can 

be deployed on platforms such as Ethereum, where they 

continuously track compliance with defined service 

objectives. Upon detecting a violation or fulfillment, the 

contracts trigger predefined actions—such as penalties, 

notifications, or rewards—ensuring that SLA terms are 

enforced in a consistent and transparent manner. 

The deployment environment includes integrated audit 

logging mechanisms, enabling full traceability and post-

execution verification of SLA activities [11]. Designed with 

ease of integration in mind, the deployment process requires 

minimal manual configuration, making it suitable for 

seamless adoption in industrial cloud infrastructures [15]. 

This deployment capability completes the end-to-end 

lifecycle of SLA management—spanning from abstract 

modeling and validation to executable contract generation 

and live operation. By supporting fully automated, traceable, 

and scalable SLA enforcement, SmartSLA offers a practical 

and efficient solution for managing service reliability in 

modern distributed systems. 

V. Evaluation 

To assess the effectiveness of the SmartSLA framework, a 

two-fold evaluation was conducted focusing on both its 

applicability in diverse cloud service domains (Section 5.1) 

and its structural modeling characteristics in comparison 

with existing SLA metamodels (Section 5.2). This evaluation 

aims to demonstrate the framework's practical utility, 

flexibility, and degree of automation in supporting SLA 

definition and enforcement across industrial-scale service 

environments. 

A. Applicability Evaluation 

To answer RQ1 and RQ2, eight case studies were modeled 

and automatically transformed into Solidity contracts, 

confirming the end-to-end automation capability of the 

SmartSLA framework. These case studies were chosen to 

reflect real-world scenarios where SLA modeling and 

automation are essential for operational efficiency, 

reliability, and service quality assurance. Each case involved 

designing a complete SLA model using the SmartSLA 

graphical editor, validating its structure through EMF 

representation, and automatically generating executable 

Solidity smart contracts through an EGL-based code 

generator. 

The use cases are as follows: 

1. Cloud Data Analytics: SLAs were designed to manage 

data processing quality, focusing on throughput, latency, and 

accuracy. This domain is critical for real-time decision-

making and data-intensive industrial applications such as 

predictive maintenance or fraud detection in financial 

services. 

2. Cloud Database: Here, the SLA addressed transactional 

integrity, availability, and recovery time. Database services 

form the backbone of many enterprise applications and 

require high reliability and performance guarantees, 

especially in sectors like banking and e-commerce. 

3. Cloud Network: An SLA centered on latency and packet 

loss, suitable for time-sensitive systems such as VoIP, video 

conferencing, and industrial IoT communication 

frameworks. This case demonstrates the need for tightly 

controlled service metrics in latency-critical environments. 

4. Cloud Storage: We modeled SLAs prioritizing data 

durability, access time, and encryption compliance. These 

SLAs are highly relevant in legal, medical, and financial 

industries where secure data retention and retrieval are 

paramount. 

5. Cloud Infrastructure (IaaS): SLAs focused on virtual 

machine availability and resource provisioning speed. This 

case supports general-purpose compute environments, 

which are foundational for most enterprise digital 

infrastructure. 

6. Disaster Recovery: Key SLA terms included Recovery 

Point Objective (RPO) and Recovery Time Objective (RTO). 

This use case is critical in sectors requiring business 

continuity, such as healthcare, public safety, and enterprise 

risk management. 

7. Internet of Things (IoT): The SLA included metrics for 

sensor responsiveness and data availability. This case 
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supports industrial and smart city environments where high 

uptime and real-time sensor data are essential. 

8. Serverless Computing: SLAs were modeled around 

function execution time, scalability, and cost optimization. 

Serverless environments are vital in cost-sensitive 

deployments like mobile backends, APIs, and microservices. 

In all cases, users leveraged the graphical interface to 

construct SLA models using SmartSLA’s drag-and-drop 

tooling.  

Table II presents the numbers of classes, attributes, and 

relationships that were defined in each case model. 

Importantly, each model was used to generate executable 

smart contract code via a 265-line EGL script. This 

automated translation from graphical SLA design to Solidity 

code showcases the system’s end-to-end automation 

capability. While the number of lines of code (LOC) varies 

across case studies, the consistent generation of deployable 

contracts underlines the robustness of the approach. 

 

TABLE II Comparison of SLA Model 

Complexity Metrics across Eight Case Studies 

Case Study #C #R #A LOC 

Data Analytics 18 13 57 125 

Cloud Database 16 11 51 125 

Cloud Network 14 9 41 120 

Cloud Storage 14 9 41 120 

Cloud Infrastructure 14 9 41 120 

Disaster Recovery 15 10 46 135 

Internet of Things  18 13 57 135 

Serverless Computing 17 12 54 135 

The variation in generated LOC corresponds directly to 

model complexity. Regarding RQ2, the evaluation shows 

that SmartSLA significantly reduces manual coding effort 

and minimizes human errors by automating contract 

generation. 

To further illustrate the modeling effort and complexity 

across case studies, Fig. 4 presents a comparative bar chart 

visualizing the number of classes, relationships, attributes, 

and generated lines of code (LOC) for each cloud domain. 

The diagram reveals that case studies such as IoT, Cloud 

Analytics, and Serverless Computing exhibit higher 

structural complexity, with correspondingly increased LOC 

in their generated smart contracts. Conversely, scenarios like 

Cloud Network and Cloud Storage show relatively lower 

complexity and shorter generated code. This visualization 

supports the quantitative findings presented in Tables 2, 

demonstrating the SmartSLA framework's capacity to scale 

across a range of modeling demands—from minimal to 

highly detailed SLA definitions—while maintaining 

automation consistency. 

 
Fig. 4. Comparative visualization of model complexity and 

generated code size across eight case studies. 

This comprehensive applicability evaluation confirms that 

SmartSLA is not only theoretically sound but also practically 

effective in diverse cloud-based industrial contexts. The 

combination of usability, automation, and domain versatility 

positions SmartSLA as a promising tool for smart SLA 

design and enforcement in modern service-oriented 

infrastructures. 

To complement the applicability assessment of 

SmartSLA, we measured the deployment cost of the 

generated smart contracts on the Ethereum platform. Eight 

representative SLA scenarios were deployed using the 

Remix IDE with a JavaScript VM. Table III summarizes the 

reported gas usage, transaction cost, and net execution cost 

for each case study. The results show that deployment costs 

range from approximately 1.3M gas (Cloud Network) to 

4.1M gas (Cloud Storage). This variation is aligned with the 

structural complexity of each SLA model, as contracts with 

more objectives and compliance requirements consume 

more gas during initialization. Overall, the results confirm 

that SmartSLA produces contracts with manageable 

overhead while preserving flexibility across diverse 

application domains. 

 

TABLE III Deployment costs for eight case studies 

Case Study Gas Transaction 

Cost 

Execution 

Cost 

Data Analytics 2,744,848 2,386,824 2,203,028 

Cloud Database 3,880,848 3,374,650 3,122,104 

Cloud Network 1,677,876 1,459,022 1,318,504 

Cloud Storage 4,153,580 3,611,808 3,333,494 

Cloud Infrastructure 2,294,582 1,995,288 1,829,256 

Disaster Recovery 3,031,938 2,636,467 2,466,451 

Internet of Things  2,165,891 1,883,383 1,725,925 

Serverless Computing 2,830,524 2,461,325 2,280,849 

 

B. Metamodel Structural Comparison 

To address RQ3, we conducted a quantitative comparison 

of the SmartSLA metamodel against five existing SLA and 

smart contract languages. Notably, these languages fall into 

two distinct categories: (I) SLA modeling languages, such as 

AsyncSLA [20], CloudCost [22], and QaSAS [21], which 

are designed to express and reason about service-level 

requirements in cloud environments, and (II) smart contract 
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description languages, such as iContractML [10] and 

iContractML 2.0 [11], which focus on the specification of 

blockchain-based contractual logic but do not address SLA 

concerns directly. 

Unlike these existing solutions, SmartSLA aims to bridge 

the gap between SLA modeling and smart contract 

generation, offering an integrated, model-driven solution 

that covers the entire lifecycle—from abstract SLA 

specification to executable blockchain code. To underscore 

this contribution, we compare the structural properties of 

SmartSLA’s metamodel with those of the aforementioned 

languages. 

The comparison uses both primary metrics (e.g., number 

of classes, attributes, relationships) and derived structural 

metrics, such as maximum depth of inheritance (DITmax), 

maximum fan-out (Fanoutmax), number of predecessor 

nodes (PRED), number of inherited features (INHF), and 

total number of features (NTF). Furthermore, three high-

level quality criteria—maintainability, understandability, 

and extensibility—were calculated using the following 

standard formulas: 

 

𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦

=
𝑁𝐶 +𝑁𝐴 +𝑁𝑅 +𝐷𝐼𝑇𝑀𝑎𝑥 + 𝐹𝑎𝑛𝑜𝑢𝑡𝑀𝑎𝑥

5
 

(1) 

𝑈𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
∑ 𝑃𝑅𝐸𝐷 + 1𝑁𝐶
𝐾=1

𝑁𝐶
 

(2) 

𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 =
𝐼𝑁𝐻𝐹

𝑁𝐹𝑇
 

(3) 

 

Here, a lower value in maintainability suggests better 

modularity and ease of management, a higher value in 

understandability indicates clearer inheritance structure, and 

a higher extensibility score reflects better support for model 

evolution through inheritance reuse. Table III presents the 

updated metric values for all six metamodels, including the 

revised SmartSLA values after incorporating abstract parent 

classes and reducing attribute redundancy. 

 

TABLE IV Comparison of SmartSLA metamodel with five other 

metamodels 
SmartSLA [10] [11] [21] [22] [20] Metric 

16 15 16 15 18 12 NC 

40 23 26 16 25 16 NA 

15 7 10 17 9 10 NR 

1 1 2 1 1 1 DITmax 

7 3 3 4 3 3 Fanoutmax 

1 3 3 1 1 1 PRED 

8 10 11 1 3 5 INHF 

57 30 36 33 34 26 NTF 

15.8 10.4 11.4 10.6 11.2 8.6 Maintainability 

1.563 1.6 1.5 1.13 1.389 1.3 Understandability 

0.14 0.333 0.305 0.03 0.09 0.192 extensibility 

Structural Analysis 

   With 16 classes (NC), SmartSLA sits within a moderate 

complexity range, indicating an appropriate level of 

abstraction for capturing SLA-specific constructs. However, 

it significantly surpasses others in attribute richness, with 40 

attributes (NA)—the highest among all six—underscoring 

its focus on detailed specification of service-level properties. 

The number of relationships (NR = 15) is also relatively 

high, reflecting a comprehensive linking of elements within 

the model. 

The inheritance structure is intentionally flat, with a 

DITmax of 1 and only one predecessor per class (PRED = 

1). This design choice promotes simplicity and makes the 

model easier to understand, especially for stakeholders 

unfamiliar with deep inheritance chains. In contrast, 

iContractML 2.0 shows a DITmax of 2, and both 

iContractML versions have PRED = 3, indicating slightly 

more complex hierarchies. 

SmartSLA's Fanoutmax of 7—the highest among the 

compared metamodels—results from the central 

SLAContract class referencing multiple associated 

components (e.g., objectives, penalties, security 

requirements). This design emphasizes centralized 

integration, making the contract structure semantically clear 

and modular. 

Quality Criteria 

As shown in Fig. 5, the Maintainability score of SmartSLA 

(15.8) is the highest in the comparison, due to its 

combination of high NA and Fanoutmax. Although a higher 

number of attributes and references increases the metric’s 

numerical value, it does not necessarily indicate poor 

structure. Instead, it reflects the design’s emphasis on rich 

detail and centralized coordination within the SLAContract 

class. This moderate maintainability suggests a trade-off 

between structural compactness and expressive modeling 

capacity. 

 
Fig. 5. Comparison of metamodels based on Maintainability. 

 

Fig. 6 reveals that the Understandability score of 

SmartSLA (1.563) is among the top three, nearly matching 

iContractML [11] (1.6) and surpassing CloudCost [22] and 

QaSAS [21]. Since the inheritance hierarchy is shallow, with 

minimal predecessor depth, the class structure remains 

straightforward. This enhances clarity for new users, 
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especially those unfamiliar with complex metamodel 

hierarchies, and facilitates ease of learning and onboarding. 

 
Fig. 6. Comparison of metamodels based on Understandability. 

Fig. 7 illustrates that On Extensibility, SmartSLA 

achieves a moderate score (0.14), better than CloudCost [22] 

(0.09) and QaSAS [21] (0.03), though lower than 

iContractML [11] (0.333). This reflects the limited reliance 

on inheritance for feature reuse, which is a known trade-off 

of the intentionally shallow class hierarchy. The extensibility 

could be improved in future versions by incorporating more 

systematic inheritance strategies for reusable SLA 

components. 

 
Fig. 7. Comparison of six metamodels based on Extensibility. 

Summary and Implications 

The SmartSLA metamodel demonstrates a balanced 

quality across key software criteria, showcasing its unique 

strengths and thoughtful design trade-offs. Its 

maintainability is moderate, because of a high number of 

attributes and a centralized structure with a moderate 

maximum fan-out. This reflects a focus on detailed and 

expressive SLA specifications. 

For understandability, SmartSLA ranks among the top 

compared to other metamodels, thanks to its streamlined, flat 

structure. By avoiding deep inheritance layers, it keeps 

relationships between core SLA elements clear and 

straightforward, making it easier for non-professional 

designers to work with the framework. 

Its extensibility is moderate, suggesting room for 

improvement in leveraging inheritance to make the 

metamodel more adaptable. Future enhancements could 

focus on refining this aspect to support more flexible reuse 

of components without sacrificing simplicity. 

What sets SmartSLA apart from other frameworks are 

three standout features: 

 Blending SLAs with Smart Contracts: Unlike other 

languages that focus solely on either SLA modeling or 

smart contract logic, SmartSLA seamlessly integrates 

both. This unique combination enables automated, 

blockchain-based enforcement of service agreements, 

streamlining the entire SLA lifecycle. 

 Simplified Design for Clarity: The flat structure 

minimizes complexity, making the connections 

between key elements—like service goals, penalties, 

and parties—more intuitive. This clarity reduces the 

learning curve and supports broader adoption across 

technical and non-technical users. 

 Detailed and Precise Modeling: With a rich set of 

attributes, SmartSLA captures fine-grained details of 

SLAs, from performance metrics to compliance rules. 

This thoroughness ensures that the metamodel can 

handle intricate service agreements with precision. 

Overall, the evaluation confirms that SmartSLA meets its 

design objectives by combining automation, structural 

soundness, and cross-domain applicability, directly 

addressing the research questions posed in Section I. 

 

VI. Conclusion 

A complete solution for the automated administration of 

Service Level Agreements (SLAs) in cloud-based industrial 

environments is offered by the SmartSLA framework. 

SmartSLA overcomes the main drawbacks with traditional 

SLA management, including manual implementation, a lack 

of transparency, and specification complexity, by merging 

model-driven engineering with blockchain technology. The 

key components SmartSLA, i.e., a comprehensive 

metamodel, an intuitive graphical editor, and a robust code 

generator, enable non-professional developers to simply 

specify, validate, and deploy executable smart contracts on 

platforms such as Ethereum. 

To demonstrate the applicability of the SmartSLA 

framework eight mostly-common case studies in various 

domains such as data analytics, cloud storage, IoT, and 

disaster recovery were studied. By automatically converting 

high-level models into Solidity smart contracts, SmartSLA 

enhanced accuracy, decreased manual labor, and offered 

domain-specific flexibility in all scenarios. The evaluation of 

structural comparisons with three SLA modeling languages 

and two smart contract metamodels show that SmartSLA has 

a balanced design, with moderate maintainability, high 

understandability, and sufficient extensibility. 

Significantly, SmartSLA makes SLA automation 

accessible to both technical and non-technical stakeholders 

by bridging the gap between low-level blockchain 

enforcement and high-level SLA modeling. It encourages 

operational scalability, traceability, and reliability in cloud 
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infrastructures by supporting the entire SLA lifecycle, from 

visual design to on-chain execution. 

The evaluation results provide empirical answers to the 

research questions: SmartSLA successfully automates 

contract generation across domains (RQ1), reduces design 

effort and improves reliability (RQ2), and achieves a 

balanced metamodel structure with high understandability 

and moderate extensibility compared to existing approaches 

(RQ3). 

To further advance the SmartSLA framework, several 

directions can be pursued. Improving the adaptability of the 

metamodel by introducing modular components, reusable 

patterns, and enhanced inheritance strategies would 

strengthen extensibility and allow customization for specific 

industry requirements while maintaining overall system 

stability. 

Another promising line of development involves 

enriching operational intelligence. Incorporating real-time 

monitoring and advanced analytics would enable SmartSLA 

to promptly react to service changes, while AI-driven 

prediction techniques could support proactive detection and 

resolution of potential SLA violations before they 

materialize. 

Expanding the platform to support a broader range of 

blockchain technologies—including Hyperledger, Polkadot, 

and lightweight Ethereum Layer-2 solutions—would 

significantly enhance deployment flexibility and address the 

diverse preferences of industrial adopters. At the same time, 

exploring compliance- and regulation-oriented SLA 

specifications could open opportunities in highly regulated 

sectors such as finance, healthcare, and government. In 

parallel, integrating SmartSLA with DevOps pipelines and 

delivering a user-friendly web-based graphical editor would 

improve accessibility and streamline practical adoption. 

Importantly, the current evaluation has already quantified 

the deployment cost of SmartSLA contracts across eight 

representative case studies, demonstrating that the overhead 

remains manageable and proportional to the structural 

complexity of the SLA models. Building on this, future work 

will extend the evaluation to runtime operations. In 

particular, measuring the gas consumption of interactive 

functions such as applyPenalty, addChangeRequest, and 

logHistory under realistic workloads will provide a more 

comprehensive picture of the operational overhead of 

SmartSLA. 

With these enhancements, SmartSLA is well positioned to 

evolve into a robust and versatile framework for transparent, 

automated, and scalable SLA management—an ideal fit for 

the rapidly changing cloud environments of today. 
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