
Copyright © Author(s).

Publisher: Islamic Azad University – Zanjan Branch

J IMPCS (2025) 21: 13-24

 DOI 10.71856/IMPCS.2025.1217575

SmartSLA: A Graphical Modeling-Based Approach to SLA

Management with Automatic Code Generation on Blockchain

Platforms

Jalal Fazilat1, Leila Samimi Dehkordi2*, Delaram Nikbakht Nasrabadi3, Abbas Horri4

1. MSc. Student, Department of Computer Engineering, Shahrekord University, Shahrekord, Iran.

2. Assistant Professor, Department of Computer Engineering, Shahrekord University, Shahrekord, Iran.

*Corresponding Author, samimi@sku.ac.ir

3. Master Graduated, Department of Computer Engineering,, Shahrekord University, Shahrekord, Iran.

4. Assistant Professor, Department of Computer Engineering, Shahrekord University, Shahrekord, Iran.

Article Info ABSTRACT

Article history:

Received: 11 Aug 2025

Accepted: 21 Sep 2025

Keywords:

Blockchain,

Cloud Computing,

Model Driven Engineering,

Service Level Agreement,

Smart Contract.

SmartSLA is an innovative model-driven framework that automates the generation and

deployment of blockchain-based Service Level Agreements (SLAs) in cloud

environments. It addresses the limitations of manual and centralized SLA management—

such as lack of transparency, high complexity, and susceptibility to human error—by

integrating Model-Driven Engineering (MDE) with blockchain technology. The

framework consists of three core components: (1) an Ecore-based metamodel that

formally defines SLA elements and policies, (2) a graphical modeling editor for intuitive

SLA design, and (3) an automated code generator that produces executable Solidity

contracts for Ethereum deployment. The framework’s applicability was evaluated

through eight industrial case studies across diverse cloud domains, including networking,

storage, IoT, and disaster recovery. Results demonstrate full automation of the SLA

lifecycle with substantial reduction in design effort and consistent model-to-code

transformation accuracy. Structural comparisons with five existing modeling languages

confirm balanced design quality, achieving moderate maintainability, high

understandability, and sufficient extensibility. By bridging SLA specification and

blockchain enforcement, SmartSLA provides a unified, scalable, and transparent solution

for automated SLA management, strengthening operational reliability and advancing the

integration of MDE and blockchain in industrial cloud ecosystems.

Research Paper

sanad.iau.ir/Journal/impcs/Article/1217575
mailto:samimi@sku.ac.ir

14 SmartSLA: A Graphical Modeling-Based Approach to SLA Management /Fazilat, et al

I. Introduction

In the past decade, cloud computing has emerged as a

critical infrastructure for modern industries and service-

oriented enterprises, offering unprecedented scalability,

flexibility, and cost efficiency [1]. As organizations

increasingly rely on cloud platforms, ensuring service

quality, transparency, and accountability has become a

fundamental requirement [2].

Service Level Agreements (SLAs) are the primary

mechanism for formalizing quality expectations—such as

availability, performance, and reliability—between

providers and consumers [3]. However, traditional SLA

management remains largely manual and centralized,

limiting its effectiveness in dynamic and distributed

environments [4, 5]. These limitations reduce transparency,

hinder automation, and increase the risk of operational

failures in industrial applications.

Blockchain-based smart contracts have been proposed as

a decentralized and tamper-proof approach to enforce SLAs

[6]. While promising, their practical adoption is hindered by

the technical expertise required for smart contract

programming and deployment [7]. Bridging the gap between

high-level SLA specification and low-level blockchain

enforcement therefore remains a critical challenge.

To address this challenge, we propose SmartSLA, an

innovative model-driven framework that automates the

transformation of SLA specifications into executable smart

contracts. Leveraging Model-Driven Engineering (MDE),

SmartSLA enables SLA logic to be expressed at a high level

of abstraction and automatically translated into Solidity

code. The framework comprises three key components: (1)

an Ecore-based metamodel capturing SLA concepts, (2) a

graphical modeling environment that facilitates SLA design

for both technical and non-technical users, and (3) an

automated code generator targeting Ethereum-compatible

blockchains. This integration reduces programming errors,

promotes standardization, and supports reliable SLA

enforcement across diverse domains.

Unlike prior studies that focus exclusively on either SLA

modeling languages or smart contract description

frameworks, SmartSLA unifies both perspectives into a

single, end-to-end solution. To evaluate its novelty and

effectiveness, the study is guided by the following research

questions:

RQ1: Can SmartSLA effectively automate the generation

of smart contracts from high-level SLA specifications across

diverse cloud domains?

RQ2: To what extent does SmartSLA reduce design effort

and improve reliability compared to manual or template-

based approaches?

RQ3: How does the SmartSLA metamodel compare with

existing SLA and smart contract languages in terms of

maintainability, understandability, and extensibility?

By addressing these questions, the paper highlights the

scientific and practical contributions of SmartSLA to the

automation of SLA lifecycle management. The remainder of

the paper is organized as follows: Section II introduces the

conceptual background, Section III reviews related work,

Section IV presents the SmartSLA framework, Section V

discusses evaluation results, and Section VI concludes with

future directions.

II. Background

This section lays the conceptual foundation of the

SmartSLA framework by examining its three core pillars:

smart contracts, service-level agreements, and model-driven

engineering.

A. Smart Contracts

Smart contracts are self-executing programs deployed on

blockchain platforms such as Ethereum. They automatically

enforce predefined business rules without the need for

intermediaries, leveraging blockchain immutable and

distributed ledger to ensure transparent and verifiable

execution [6, 8]. In SLA enforcement, smart contracts can

continuously monitor metrics such as uptime, latency, or

error rates, and autonomously trigger actions—like applying

penalties or initiating alerts—upon detecting violations [9].

Although languages such as Solidity enable the

development of smart contract logic, writing such contracts

remains prone to programming errors and requires high

technical proficiency [10, 11]. This complexity often limits

their adoption in real-world industrial and service settings.

In the SmartSLA framework, smart contracts form the

core enforcement layer, and are generated automatically

from high-level models, reducing human error and technical

barriers while ensuring SLA terms are enforced in a

trustworthy and decentralized manner.

B. Service Level Agreements (SLAs)

SLAs are formal contracts that define the service quality

expectations and obligations between cloud providers and

consumers [3]. These agreements typically cover

quantifiable metrics such as availability, response time, and

throughput, as well as enforcement policies and penalty

structures [2].

However, conventional SLA management is still heavily

manual, centralized, and reactive, making it slow to detect

and respond to violations—especially in multi-tenant and

hybrid cloud environments [4]. Such inefficiencies reduce

transparency and may erode trust between service parties [5].

The increasing complexity of distributed systems has

amplified the need for SLA enforcement mechanisms that

are automated, auditable, and trustworthy [12, 13].

15 SmartSLA: A Graphical Modeling-Based Approach to SLA Management /Fazilat, et al

The SmartSLA framework addresses this need by

reengineering SLA structure through formal modeling, thus

promoting automation, improving clarity, and enabling

integration with intelligent service platforms.

C. Model-Driven Engineering (MDE)

Model-Driven Engineering (MDE) is a development

methodology that abstracts software systems into formal

models to facilitate automated code generation, structural

analysis, and design validation [7]. Central to MDSE is the

creation of a metamodel, which formally defines domain-

specific constructs and their relationships—for instance,

SLA components such as parties, performance metrics, and

compliance policies [14].

By enabling high-level design and transformation into

executable code, MDSE empowers domain experts to define

sophisticated service agreements without needing deep

programming knowledge [15]. In SmartSLA, this is realized

through an Ecore-based metamodel and a graphical

modeling tool built with Sirius [16], enabling the intuitive

construction of SLA models.

These models are then automatically translated into

executable Solidity code [17], bridging the conceptual and

implementation layers of SLA enforcement. This approach

reduces development effort, enhances reliability, and ensures

consistency across SLA definitions deployed in blockchain-

backed cloud infrastructures.

III. Related works

The integration of blockchain technology with Service

Level Agreement (SLA) management has attracted

significant attention in recent years. This section reviews

state-of-the-art approaches related to blockchain-based SLA

enforcement, smart contract modeling, and model-driven

frameworks, highlighting their contributions and limitations

in relation to the SmartSLA framework.

Nguyen et al. [18] introduced PenChain, a blockchain-

based platform that enables automatic SLA enforcement

with embedded penalty rules. Their system uses smart

contracts to execute SLAs and ranks service providers based

on compliance and reputation, demonstrating its

effectiveness in precision agriculture and automotive

industries. Alzubaidi et al. [19] proposed a formal SLA

representation model, IRAFUTAL, enabling blockchain-

based SLA lifecycle management via Hyperledger Fabric.

Their framework supports negotiation, monitoring, billing,

and enforcement, addressing the complexity of multi-phase

SLA management.

In response to the lack of standardization in asynchronous

service agreements, Oriol et al. [20] proposed a quality

model aligned with ISO/IEC 25010 and a domain-specific

language for asynchronous SLAs using WS-Agreement

standards. Their solution, integrated into AsyncAPI and

extended through tooling, facilitates SLA specification and

enforcement in IoT and cyber-physical systems.

Maatougui et al. [21] proposed a component-based

contractual approach for designing and formally specifying

self-adaptive systems with respect to Quality of Service

(QoS) contracts. Their method leverages Model-Driven

Engineering to model system structure and behavior and

employs the Maude formal language to generate executable

specifications that enable runtime monitoring and

adaptation. By clearly separating user-defined QoS

requirements from internal system parameters, their model

simplifies complexity and enhances reusability. They

validated their approach through a firefighting system case

study, demonstrating how adaptation strategies are triggered

to ensure continuous QoS compliance in dynamic contexts.

Cambronero et al. [22] introduced CloudCost, a UML-

based profile designed to model cloud infrastructures and

user interactions with respect to Service Level Agreements,

aiming to improve cloud provider profitability. Their

approach distinguishes between regular and high-priority

users, integrating parameters such as resource costs,

discounts, and compensations into the SLA model. They also

developed MSCC, a modeling tool that supports the creation,

validation, and simulation of cloud scenarios using the

Simcan2Cloud simulator. Through a comprehensive case

study involving different workloads and infrastructure

configurations, they demonstrated how pricing strategies and

user types influence provider income, offering insights into

effective SLA-driven resource management.

Several survey-based studies provide broader overviews.

Saghaier et al. [23] and Hamdi et al. [24] analyzed SLA

monitoring solutions across various sectors, such as cloud

computing and 6G networks, underscoring the potential of

smart contracts in detecting violations and managing

compensation. Mahapatra et al. [25] proposed a secure

blockchain framework for IoT-Fog-Cloud environments,

addressing critical challenges such as trust and

authentication.

Azzahra and Nugraha [26] implemented a smart contract-

based SLA management system for IT services in higher

education, illustrating benefits such as improved monitoring

and reduced processing time, albeit with higher operational

costs. Tang et al. [27] extended this idea to the tourism

industry with TSLA, a framework that leverages oracles and

smart contracts to detect provider misbehavior and enforce

penalties.

Souei et al. [28] developed a distributed directory for

smart contracts based on a unified description language

(UDL-SC), enabling semantic-based search and selection of

contracts based on legal, performance, and gas usage

attributes. In another model-driven engineering approach,

Hamdaqa et al. [10] introduced a reference model for smart

contracts in 2020 by analyzing the characteristics of three

platforms: Hyperledger Composer, Azure Blockchain

Workbench, and Ethereum. The proposed model was

designed as a framework that enables developers to model

16 SmartSLA: A Graphical Modeling-Based Approach to SLA Management /Fazilat, et al

and generate the structural code of smart contracts across

different blockchain platforms. To validate their approach,

they applied the framework to three case studies,

demonstrating its capability to generate executable code for

the target platforms. Furthermore, the authors extended the

reference model into a more advanced version, iContractML

2.0 [11]. In addition to supporting the generation of smart

contract behavior, this version also facilitates the creation of

structural and deployment artifacts by employing templates

for commonly used functions.

In cloud service discovery, Nabli et al. [13] proposed the

Cloud Services Description Ontology (CSDO) using

Linked-USDL, supporting the publication and selection of

cloud services. Similarly, Kamel et al. [12] applied reactive

system theory to model and verify SLA lifecycle behavior in

cloud-based environments, emphasizing formal verification.

Furthermore, studies like those by Battula et al. [29] on

fog computing and Cedillo et al. [30] in AAL environments

confirm the growing trend toward SLA automation using

blockchain. However, these solutions often focus on specific

domains, lack comprehensive modeling environments, or

require significant technical expertise.

Makwe et al. [31] propose a broker-based SLA framework

for IaaS clouds that improves provider selection and

monitoring, reducing violation rates and enhancing resource

utilization. Booth et al. [32] present a blockchain-based

library that generates smart contracts from SLAs for IoT

monitoring, ensuring reliable violation detection in

healthcare scenarios. Muntaha et al. [33] design a hybrid

blockchain framework for SLA management in 5G

networks, combining Hyperledger and Ethereum to improve

resource sharing and enforcement. Solis et al. [34] introduce

MICAAL, a DSL for modeling microservices in Ambient

Assisted Living systems, supporting modularity and

scalability in IoT healthcare.

Unlike previous work, SmartSLA provides an integrated,

model-driven framework featuring a metamodel, a graphical

modeling editor based on Sirius, and automated smart

contract code generation in Solidity. This design bridges the

gap between SLA specification and deployment, making the

process accessible to non-experts while ensuring

consistency, extensibility, and operational automation. Table

I provides a comparison of related work with our proposed

solution (SmartSLA).

TABLE I Comparison of Related Work
Study Application Domain Blockchain Modeling Type

[10, 11] General  Ecore to Solidity

[12] Cloud  Reactive systems

[13] Cloud  Linked-USDL

[18]
Precision Agriculture,

Automotive Manufacturing
 Smart Contracts

[19] IoT  Formal Modeling

[20] Asynchronous SLA  DSL, AsyncAPI

[21] Self-adaptive systems 
Model-Driven

Engineering (Maude)

[22] Cloud Infrastructure  UML, Simcan2Cloud

[23]
Multiple domains (Cloud,

IoT, 6G)


Survey / Comparative

Analysis

[24] General (Survey-based) 
Survey, Comparative

Analysis

[25] IoT-Fog-Cloud  Security Framework

[26] Higher Education  Smart Contracts

[27] Tourism 
Smart Contracts +

Oracle

[28] General  UDL-SC

[29] Fog Computing  Various

[30]
Ambient Assisted Living

(AAL)
 Various

[31] IaaS Cloud, CSP Selection  Broker model

[32] IoT, Patient Monitoring  Java Library

[33] 5G Resource Sharing  Game theory

[34] Ambient Assisted Living  DSL, Ecore2Service

SmartSLA Cloud SLA 
Graphical model to

Solidity

IV. SmartSLA: A Model-Driven Framework for

SLA Code Generation

In complex and dynamic cloud-based environments,

managing Service Level Agreements is essential not only for

ensuring service quality but also for maintaining operational

continuity and cost efficiency—key concerns in industrial

and service domains. However, conventional approaches to

SLA management often suffer from fragmentation, manual

configuration steps, and limited adaptability to rapidly

evolving service structures.

To address these limitations, we introduce SmartSLA, a

model-driven framework that facilitates the standardized and

automated definition, customization, and execution of SLAs.

The framework consists of three key components: a

metamodel that formally defines the structure of smart

SLAs, a graphical editor that simplifies SLA modeling for

technical and non-technical users alike, and a code

generation engine that automatically produces executable

smart contracts for deployment in blockchain environments.

17 SmartSLA: A Graphical Modeling-Based Approach to SLA Management /Fazilat, et al

By integrating these components, SmartSLA supports

seamless SLA management across cloud-based platforms,

and promotes reduced design complexity, higher reusability,

and quicker deployment—all of which are highly relevant

for industrial decision-making systems, enterprise platforms,

and service coordination in large-scale infrastructures.

A. Core Concepts

SmartSLA is founded on three core concepts that underpin

its modeling and automation capabilities:

 Metamodeling: At the heart of the framework lies

a formal Ecore-based metamodel that serves as the

foundation for the domain-specific modeling language.

This metamodel defines the core elements of SLAs—

including service objectives, penalty rules, compliance

terms, and provider-consumer roles—in a structured

and extensible way. It enables model validation and

reuse across diverse service settings.

 Smart Contracts: Using blockchain technology,

SmartSLA converts SLA models into smart contracts,

which are self-executing programs that enforce SLA

conditions such as uptime guarantees or compensation

clauses. This ensures transparency, auditability, and

operational reliability without requiring manual

oversight [6].

 Model Transformation and Code Generation:

Through model-to-text transformation techniques,

SmartSLA automatically generates Solidity code for

deployment on Ethereum-compatible platforms. This

reduces development time and technical effort while

allowing organizations to incorporate SLA enforcement

into automated, industrial-grade workflows.

By combining these pillars, the SmartSLA framework

bridges the gap between high-level service design and low-

level contract execution, providing a robust, industry-

aligned tool for SLA management in distributed cloud

infrastructures.

B. The SmartSLA Metamodel

The formal definition outlining the structure and various

constituent parts of a smart SLA is provided by the

SmartSLA metamodel, which aligns with the Ecore standard.

This metamodel offers a precise outline of the classes,

detailing their relationships, assigned responsibilities, and

defining attributes. It essentially forms the vital foundation

required for building valid SmartSLA models. A visual

depiction of the proposed SmartSLA metamodel structure

can be found in Fig. 1.

The SLAContract class serves as the root of the

metamodel, representing the main container for all SLA-

related elements. It stores general contract metadata (such as

name, duration, and version) and aggregates all core

components, including service objectives, parties,

constraints, enforcement mechanisms, resolution policies,

and audit logs.

Party represents the actors involved in the agreement—

namely the provider and consumer. It includes attributes

such as address and reputationScore, and is connected to the

contract, notifications, and change requests.

The abstract class SLAConstraint generalizes various

SLA condition types. Its concrete subclasses include:

Fig. 1. The SmartSLA metamodel

Fig. 2. The Graphical Editor Implemented in Sirius

18 SmartSLA: A Graphical Modeling-Based Approach to SLA Management /Fazilat, et al

 SecurityRequirement, which defines encryption,

access control, and audit needs;

 ComplianceRequirement, which specifies

external standards and verification methods;

 ServiceObjective, which defines measurable

targets (e.g., performance or availability) and is

linked to a specific CloudSource, describing the

underlying infrastructure (such as a VM, storage,

or IoT device) using the CloudSourceType

enumeration.

The EnforcementElement abstract class captures rule-

based enforcement logic and is inherited by:

 Penalty, which applies predefined actions upon

contract violation;

 Incentive, which defines rewards for compliance;

 Notification, which alerts parties under specified

conditions.

To model SLA dynamics and evolution, the

ChangeRequest class captures proposed modifications,

while VersionControl maintains version history. The

SLAHistory class records past events (e.g., violations or

updates) and is linked to the contract via audit logs.

Conflict and termination handling are modeled through

the abstract ResolutionElement, which is extended by:

 TerminationCondition, defining reasons and

consequences for SLA cancellation;

 DisputeResolution, specifying procedures and

legal aspects for resolving conflicts;

 EscalationPolicy, indicating how service breaches

are escalated based on severity and response time.

Overall, the SmartSLA metamodel provides a modular

and extensible structure that covers key aspects of SLA

management, supporting formal modeling, enforcement

automation, and traceability.

C. Graphical Editor

To promote accessibility for users with limited technical

or programming backgrounds, a graphical modeling editor

was developed as part of the SmartSLA framework. Serving

as an interactive interface for SLA model creation, the editor

enables users to define, visualize, and manage SLA

structures directly based on the SmartSLA metamodel. It was

implemented using the Sirius framework, which supports the

development of domain-specific graphical editors within the

Eclipse ecosystem.

The editor provides a user-friendly, drag-and-drop

environment where users can construct SLA models by

placing visual elements—such as Party, ServiceObjective, or

Penalty—onto a design canvas. Each element corresponds

directly to a metamodel class and can be configured using a

dedicated properties panel. For instance, a user can define a

ServiceObjective with a response time metric and a

performance threshold (e.g., 300ms), then link it to a specific

CloudSource, such as a serverless function.

To streamline the modeling process, the editor includes a

tool palette containing all available SLA elements, each

with a distinctive icon for clarity. Users define relationships

between elements visually, while the editor automatically

enforces conformance with the underlying metamodel.

Additionally, validation mechanisms ensure that models are

semantically and structurally correct, and the editor can

support the automatic generation of preliminary smart

contract code from compliant models.

This visual interface significantly reduces complexity,

enhances modeling efficiency, and encourages broader

adoption of formal SLA specification methods across

industrial and service-oriented domains. Fig. 2 illustrates the

editor’s interface and its alignment with the core SmartSLA

concepts.

Built on the Sirius framework, the editor provides notable

flexibility for tailoring visual representations and adeptly

handles differing levels of complexity. Its key benefits

include significantly reducing design complexity for users

without a technical background, substantially accelerating

the SLA creation process, and ensuring strict adherence to

the SmartSLA metamodel, which is vital for guaranteeing

the structural soundness of the resulting models.

D. Integration and Code Generation

The strength of the SmartSLA framework really lies in

how seamlessly the metamodel and the graphical editor are

integrated. The metamodel formally defines the abstract

syntax of the modeling language. In parallel, the editor

provides a user-friendly interface, as a concrete syntax of the

SmartSLA language, allowing the creation of instances (the

models). The underlying model-driven framework

(Sirius/Ecore) facilitates this integration, ensuring the

workflow is cohesive and smooth.

Users design an SLA visually in the editor, and each

graphical element corresponds directly to an instance of a

metamodel-defined class or relationship. The editor enforces

the rules of the metamodel using validation, stopping users

from creating structurally incorrect or inconsistent SLA

definitions. This model can then be utilized for automated

code generation.

The conversion of a SmartSLA model into executable

smart contract code is usually carried out using model-to-text

languages like Epsilon Generation Language (EGL). As

depicted in Fig. 3, this automated generation approach

greatly lessens both the manual effort involved and the

chance of introducing errors during the creation of

deployable smart contracts from the higher-level SLA

definition.

19 SmartSLA: A Graphical Modeling-Based Approach to SLA Management /Fazilat, et al

Fig.3. Transformation from SmartSLA model to Smart

Contract Code via EGL program.

This integrated approach reduces design errors, increases

efficiency, and makes SLA modeling accessible to a wider

range of stakeholders, from technical developers to cloud

service managers.

E. SmartSLA Model Deployment

The final stage of the SmartSLA framework focuses on the

deployment of automatically generated smart contracts onto

blockchain platforms for real-time SLA enforcement [8].

This phase transforms the modeled SLA specifications into

operational assets that can autonomously monitor service

performance and enforce contractual terms without manual

intervention [9].

Smart contracts generated from the SmartSLA models can

be deployed on platforms such as Ethereum, where they

continuously track compliance with defined service

objectives. Upon detecting a violation or fulfillment, the

contracts trigger predefined actions—such as penalties,

notifications, or rewards—ensuring that SLA terms are

enforced in a consistent and transparent manner.

The deployment environment includes integrated audit

logging mechanisms, enabling full traceability and post-

execution verification of SLA activities [11]. Designed with

ease of integration in mind, the deployment process requires

minimal manual configuration, making it suitable for

seamless adoption in industrial cloud infrastructures [15].

This deployment capability completes the end-to-end

lifecycle of SLA management—spanning from abstract

modeling and validation to executable contract generation

and live operation. By supporting fully automated, traceable,

and scalable SLA enforcement, SmartSLA offers a practical

and efficient solution for managing service reliability in

modern distributed systems.

V. Evaluation

To assess the effectiveness of the SmartSLA framework, a

two-fold evaluation was conducted focusing on both its

applicability in diverse cloud service domains (Section 5.1)

and its structural modeling characteristics in comparison

with existing SLA metamodels (Section 5.2). This evaluation

aims to demonstrate the framework's practical utility,

flexibility, and degree of automation in supporting SLA

definition and enforcement across industrial-scale service

environments.

A. Applicability Evaluation

To answer RQ1 and RQ2, eight case studies were modeled

and automatically transformed into Solidity contracts,

confirming the end-to-end automation capability of the

SmartSLA framework. These case studies were chosen to

reflect real-world scenarios where SLA modeling and

automation are essential for operational efficiency,

reliability, and service quality assurance. Each case involved

designing a complete SLA model using the SmartSLA

graphical editor, validating its structure through EMF

representation, and automatically generating executable

Solidity smart contracts through an EGL-based code

generator.

The use cases are as follows:

1. Cloud Data Analytics: SLAs were designed to manage

data processing quality, focusing on throughput, latency, and

accuracy. This domain is critical for real-time decision-

making and data-intensive industrial applications such as

predictive maintenance or fraud detection in financial

services.

2. Cloud Database: Here, the SLA addressed transactional

integrity, availability, and recovery time. Database services

form the backbone of many enterprise applications and

require high reliability and performance guarantees,

especially in sectors like banking and e-commerce.

3. Cloud Network: An SLA centered on latency and packet

loss, suitable for time-sensitive systems such as VoIP, video

conferencing, and industrial IoT communication

frameworks. This case demonstrates the need for tightly

controlled service metrics in latency-critical environments.

4. Cloud Storage: We modeled SLAs prioritizing data

durability, access time, and encryption compliance. These

SLAs are highly relevant in legal, medical, and financial

industries where secure data retention and retrieval are

paramount.

5. Cloud Infrastructure (IaaS): SLAs focused on virtual

machine availability and resource provisioning speed. This

case supports general-purpose compute environments,

which are foundational for most enterprise digital

infrastructure.

6. Disaster Recovery: Key SLA terms included Recovery

Point Objective (RPO) and Recovery Time Objective (RTO).

This use case is critical in sectors requiring business

continuity, such as healthcare, public safety, and enterprise

risk management.

7. Internet of Things (IoT): The SLA included metrics for

sensor responsiveness and data availability. This case

20 SmartSLA: A Graphical Modeling-Based Approach to SLA Management /Fazilat, et al

supports industrial and smart city environments where high

uptime and real-time sensor data are essential.

8. Serverless Computing: SLAs were modeled around

function execution time, scalability, and cost optimization.

Serverless environments are vital in cost-sensitive

deployments like mobile backends, APIs, and microservices.

In all cases, users leveraged the graphical interface to

construct SLA models using SmartSLA’s drag-and-drop

tooling.

Table II presents the numbers of classes, attributes, and

relationships that were defined in each case model.

Importantly, each model was used to generate executable

smart contract code via a 265-line EGL script. This

automated translation from graphical SLA design to Solidity

code showcases the system’s end-to-end automation

capability. While the number of lines of code (LOC) varies

across case studies, the consistent generation of deployable

contracts underlines the robustness of the approach.

TABLE II Comparison of SLA Model

Complexity Metrics across Eight Case Studies

Case Study #C #R #A LOC

Data Analytics 18 13 57 125

Cloud Database 16 11 51 125

Cloud Network 14 9 41 120

Cloud Storage 14 9 41 120

Cloud Infrastructure 14 9 41 120

Disaster Recovery 15 10 46 135

Internet of Things 18 13 57 135

Serverless Computing 17 12 54 135

The variation in generated LOC corresponds directly to

model complexity. Regarding RQ2, the evaluation shows

that SmartSLA significantly reduces manual coding effort

and minimizes human errors by automating contract

generation.

To further illustrate the modeling effort and complexity

across case studies, Fig. 4 presents a comparative bar chart

visualizing the number of classes, relationships, attributes,

and generated lines of code (LOC) for each cloud domain.

The diagram reveals that case studies such as IoT, Cloud

Analytics, and Serverless Computing exhibit higher

structural complexity, with correspondingly increased LOC

in their generated smart contracts. Conversely, scenarios like

Cloud Network and Cloud Storage show relatively lower

complexity and shorter generated code. This visualization

supports the quantitative findings presented in Tables 2,

demonstrating the SmartSLA framework's capacity to scale

across a range of modeling demands—from minimal to

highly detailed SLA definitions—while maintaining

automation consistency.

Fig. 4. Comparative visualization of model complexity and

generated code size across eight case studies.

This comprehensive applicability evaluation confirms that

SmartSLA is not only theoretically sound but also practically

effective in diverse cloud-based industrial contexts. The

combination of usability, automation, and domain versatility

positions SmartSLA as a promising tool for smart SLA

design and enforcement in modern service-oriented

infrastructures.

To complement the applicability assessment of

SmartSLA, we measured the deployment cost of the

generated smart contracts on the Ethereum platform. Eight

representative SLA scenarios were deployed using the

Remix IDE with a JavaScript VM. Table III summarizes the

reported gas usage, transaction cost, and net execution cost

for each case study. The results show that deployment costs

range from approximately 1.3M gas (Cloud Network) to

4.1M gas (Cloud Storage). This variation is aligned with the

structural complexity of each SLA model, as contracts with

more objectives and compliance requirements consume

more gas during initialization. Overall, the results confirm

that SmartSLA produces contracts with manageable

overhead while preserving flexibility across diverse

application domains.

TABLE III Deployment costs for eight case studies

Case Study Gas Transaction

Cost

Execution

Cost

Data Analytics 2,744,848 2,386,824 2,203,028

Cloud Database 3,880,848 3,374,650 3,122,104

Cloud Network 1,677,876 1,459,022 1,318,504

Cloud Storage 4,153,580 3,611,808 3,333,494

Cloud Infrastructure 2,294,582 1,995,288 1,829,256

Disaster Recovery 3,031,938 2,636,467 2,466,451

Internet of Things 2,165,891 1,883,383 1,725,925

Serverless Computing 2,830,524 2,461,325 2,280,849

B. Metamodel Structural Comparison

To address RQ3, we conducted a quantitative comparison

of the SmartSLA metamodel against five existing SLA and

smart contract languages. Notably, these languages fall into

two distinct categories: (I) SLA modeling languages, such as

AsyncSLA [20], CloudCost [22], and QaSAS [21], which

are designed to express and reason about service-level

requirements in cloud environments, and (II) smart contract

21 SmartSLA: A Graphical Modeling-Based Approach to SLA Management /Fazilat, et al

description languages, such as iContractML [10] and

iContractML 2.0 [11], which focus on the specification of

blockchain-based contractual logic but do not address SLA

concerns directly.

Unlike these existing solutions, SmartSLA aims to bridge

the gap between SLA modeling and smart contract

generation, offering an integrated, model-driven solution

that covers the entire lifecycle—from abstract SLA

specification to executable blockchain code. To underscore

this contribution, we compare the structural properties of

SmartSLA’s metamodel with those of the aforementioned

languages.

The comparison uses both primary metrics (e.g., number

of classes, attributes, relationships) and derived structural

metrics, such as maximum depth of inheritance (DITmax),

maximum fan-out (Fanoutmax), number of predecessor

nodes (PRED), number of inherited features (INHF), and

total number of features (NTF). Furthermore, three high-

level quality criteria—maintainability, understandability,

and extensibility—were calculated using the following

standard formulas:

𝑀𝑎𝑖𝑛𝑡𝑎𝑖𝑛𝑎𝑏𝑖𝑙𝑖𝑡𝑦

=
𝑁𝐶 +𝑁𝐴 +𝑁𝑅 +𝐷𝐼𝑇𝑀𝑎𝑥 + 𝐹𝑎𝑛𝑜𝑢𝑡𝑀𝑎𝑥

5

(1)

𝑈𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
∑ 𝑃𝑅𝐸𝐷 + 1𝑁𝐶
𝐾=1

𝑁𝐶

(2)

𝐸𝑥𝑡𝑒𝑛𝑠𝑖𝑏𝑖𝑙𝑖𝑡𝑦 =
𝐼𝑁𝐻𝐹

𝑁𝐹𝑇

(3)

Here, a lower value in maintainability suggests better

modularity and ease of management, a higher value in

understandability indicates clearer inheritance structure, and

a higher extensibility score reflects better support for model

evolution through inheritance reuse. Table III presents the

updated metric values for all six metamodels, including the

revised SmartSLA values after incorporating abstract parent

classes and reducing attribute redundancy.

TABLE IV Comparison of SmartSLA metamodel with five other

metamodels
SmartSLA [10] [11] [21] [22] [20] Metric

16 15 16 15 18 12 NC

40 23 26 16 25 16 NA

15 7 10 17 9 10 NR

1 1 2 1 1 1 DITmax

7 3 3 4 3 3 Fanoutmax

1 3 3 1 1 1 PRED

8 10 11 1 3 5 INHF

57 30 36 33 34 26 NTF

15.8 10.4 11.4 10.6 11.2 8.6 Maintainability

1.563 1.6 1.5 1.13 1.389 1.3 Understandability

0.14 0.333 0.305 0.03 0.09 0.192 extensibility

Structural Analysis

 With 16 classes (NC), SmartSLA sits within a moderate

complexity range, indicating an appropriate level of

abstraction for capturing SLA-specific constructs. However,

it significantly surpasses others in attribute richness, with 40

attributes (NA)—the highest among all six—underscoring

its focus on detailed specification of service-level properties.

The number of relationships (NR = 15) is also relatively

high, reflecting a comprehensive linking of elements within

the model.

The inheritance structure is intentionally flat, with a

DITmax of 1 and only one predecessor per class (PRED =

1). This design choice promotes simplicity and makes the

model easier to understand, especially for stakeholders

unfamiliar with deep inheritance chains. In contrast,

iContractML 2.0 shows a DITmax of 2, and both

iContractML versions have PRED = 3, indicating slightly

more complex hierarchies.

SmartSLA's Fanoutmax of 7—the highest among the

compared metamodels—results from the central

SLAContract class referencing multiple associated

components (e.g., objectives, penalties, security

requirements). This design emphasizes centralized

integration, making the contract structure semantically clear

and modular.

Quality Criteria

As shown in Fig. 5, the Maintainability score of SmartSLA

(15.8) is the highest in the comparison, due to its

combination of high NA and Fanoutmax. Although a higher

number of attributes and references increases the metric’s

numerical value, it does not necessarily indicate poor

structure. Instead, it reflects the design’s emphasis on rich

detail and centralized coordination within the SLAContract

class. This moderate maintainability suggests a trade-off

between structural compactness and expressive modeling

capacity.

Fig. 5. Comparison of metamodels based on Maintainability.

Fig. 6 reveals that the Understandability score of

SmartSLA (1.563) is among the top three, nearly matching

iContractML [11] (1.6) and surpassing CloudCost [22] and

QaSAS [21]. Since the inheritance hierarchy is shallow, with

minimal predecessor depth, the class structure remains

straightforward. This enhances clarity for new users,

22 SmartSLA: A Graphical Modeling-Based Approach to SLA Management /Fazilat, et al

especially those unfamiliar with complex metamodel

hierarchies, and facilitates ease of learning and onboarding.

Fig. 6. Comparison of metamodels based on Understandability.

Fig. 7 illustrates that On Extensibility, SmartSLA

achieves a moderate score (0.14), better than CloudCost [22]

(0.09) and QaSAS [21] (0.03), though lower than

iContractML [11] (0.333). This reflects the limited reliance

on inheritance for feature reuse, which is a known trade-off

of the intentionally shallow class hierarchy. The extensibility

could be improved in future versions by incorporating more

systematic inheritance strategies for reusable SLA

components.

Fig. 7. Comparison of six metamodels based on Extensibility.

Summary and Implications

The SmartSLA metamodel demonstrates a balanced

quality across key software criteria, showcasing its unique

strengths and thoughtful design trade-offs. Its

maintainability is moderate, because of a high number of

attributes and a centralized structure with a moderate

maximum fan-out. This reflects a focus on detailed and

expressive SLA specifications.

For understandability, SmartSLA ranks among the top

compared to other metamodels, thanks to its streamlined, flat

structure. By avoiding deep inheritance layers, it keeps

relationships between core SLA elements clear and

straightforward, making it easier for non-professional

designers to work with the framework.

Its extensibility is moderate, suggesting room for

improvement in leveraging inheritance to make the

metamodel more adaptable. Future enhancements could

focus on refining this aspect to support more flexible reuse

of components without sacrificing simplicity.

What sets SmartSLA apart from other frameworks are

three standout features:

 Blending SLAs with Smart Contracts: Unlike other

languages that focus solely on either SLA modeling or

smart contract logic, SmartSLA seamlessly integrates

both. This unique combination enables automated,

blockchain-based enforcement of service agreements,

streamlining the entire SLA lifecycle.

 Simplified Design for Clarity: The flat structure

minimizes complexity, making the connections

between key elements—like service goals, penalties,

and parties—more intuitive. This clarity reduces the

learning curve and supports broader adoption across

technical and non-technical users.

 Detailed and Precise Modeling: With a rich set of

attributes, SmartSLA captures fine-grained details of

SLAs, from performance metrics to compliance rules.

This thoroughness ensures that the metamodel can

handle intricate service agreements with precision.

Overall, the evaluation confirms that SmartSLA meets its

design objectives by combining automation, structural

soundness, and cross-domain applicability, directly

addressing the research questions posed in Section I.

VI. Conclusion

A complete solution for the automated administration of

Service Level Agreements (SLAs) in cloud-based industrial

environments is offered by the SmartSLA framework.

SmartSLA overcomes the main drawbacks with traditional

SLA management, including manual implementation, a lack

of transparency, and specification complexity, by merging

model-driven engineering with blockchain technology. The

key components SmartSLA, i.e., a comprehensive

metamodel, an intuitive graphical editor, and a robust code

generator, enable non-professional developers to simply

specify, validate, and deploy executable smart contracts on

platforms such as Ethereum.

To demonstrate the applicability of the SmartSLA

framework eight mostly-common case studies in various

domains such as data analytics, cloud storage, IoT, and

disaster recovery were studied. By automatically converting

high-level models into Solidity smart contracts, SmartSLA

enhanced accuracy, decreased manual labor, and offered

domain-specific flexibility in all scenarios. The evaluation of

structural comparisons with three SLA modeling languages

and two smart contract metamodels show that SmartSLA has

a balanced design, with moderate maintainability, high

understandability, and sufficient extensibility.

Significantly, SmartSLA makes SLA automation

accessible to both technical and non-technical stakeholders

by bridging the gap between low-level blockchain

enforcement and high-level SLA modeling. It encourages

operational scalability, traceability, and reliability in cloud

23 SmartSLA: A Graphical Modeling-Based Approach to SLA Management /Fazilat, et al

infrastructures by supporting the entire SLA lifecycle, from

visual design to on-chain execution.

The evaluation results provide empirical answers to the

research questions: SmartSLA successfully automates

contract generation across domains (RQ1), reduces design

effort and improves reliability (RQ2), and achieves a

balanced metamodel structure with high understandability

and moderate extensibility compared to existing approaches

(RQ3).

To further advance the SmartSLA framework, several

directions can be pursued. Improving the adaptability of the

metamodel by introducing modular components, reusable

patterns, and enhanced inheritance strategies would

strengthen extensibility and allow customization for specific

industry requirements while maintaining overall system

stability.

Another promising line of development involves

enriching operational intelligence. Incorporating real-time

monitoring and advanced analytics would enable SmartSLA

to promptly react to service changes, while AI-driven

prediction techniques could support proactive detection and

resolution of potential SLA violations before they

materialize.

Expanding the platform to support a broader range of

blockchain technologies—including Hyperledger, Polkadot,

and lightweight Ethereum Layer-2 solutions—would

significantly enhance deployment flexibility and address the

diverse preferences of industrial adopters. At the same time,

exploring compliance- and regulation-oriented SLA

specifications could open opportunities in highly regulated

sectors such as finance, healthcare, and government. In

parallel, integrating SmartSLA with DevOps pipelines and

delivering a user-friendly web-based graphical editor would

improve accessibility and streamline practical adoption.

Importantly, the current evaluation has already quantified

the deployment cost of SmartSLA contracts across eight

representative case studies, demonstrating that the overhead

remains manageable and proportional to the structural

complexity of the SLA models. Building on this, future work

will extend the evaluation to runtime operations. In

particular, measuring the gas consumption of interactive

functions such as applyPenalty, addChangeRequest, and

logHistory under realistic workloads will provide a more

comprehensive picture of the operational overhead of

SmartSLA.

With these enhancements, SmartSLA is well positioned to

evolve into a robust and versatile framework for transparent,

automated, and scalable SLA management—an ideal fit for

the rapidly changing cloud environments of today.

REFRENCES

[1] P. Patel, A. H. Ranabahu, and A. P. Sheth, “Service level

agreement in cloud computing,” 2009.

[2] H. Zhou, X. Ouyang, Z. Ren, J. Su, C. de Laat, and Z.

Zhao, “A blockchain based witness model for

trustworthy cloud service level agreement enforcement,”

in IEEE INFOCOM 2019 - IEEE Conference on

Computer Communications, 2019, pp. 1567–1575.

doi:10.1109/INFOCOM.2019.8737580

[3] J. Skene, D. D. Lamanna, and W. Emmerich, “Precise

service level agreements,” in Proceedings of the 26th

International Conference on Software Engineering,

2004, pp. 179–188. doi: 10.5555/998675.999422

[4] A. R. Da Silva, “Model-driven engineering: A survey

supported by the unified conceptual model,” Computer

Languages, Systems & Structures, vol. 43, pp. 139–155,

2015. doi: 10.1016/j.cl.2015.06.001

[5] J. P. de Brito Gonçalves, R. L. Gomes, R. da Silva

Villaca, E. Municio, and J. Marquez-Barja, “A service

level agreement verification system using blockchains,”

in 2020 IEEE 11th International Conference on Software

Engineering and Service Science (ICSESS), 2020, pp.

541–544. doi: 10.1109/ICSESS49938.2020.9237735

[6] M. Nofer, P. Gomber, O. Hinz, and D. Schiereck,

“Blockchain,” Business & Information Systems

Engineering, vol. 59, no. 3, pp. 183–187, 2017. doi:

10.1007/s12599-017-0467-3

[7] Y. Ait Hsain, N. Laaz, and S. Mbarki, “Ethereum’s smart

contracts construction and development using model

driven engineering technologies: a review,” Procedia

Computer Science, vol. 184, pp. 785–790, 2021. doi:

10.1016/j.procs.2021.03.097

[8] W. Tan, H. Zhu, J. Tan, Y. Zhao, L. Da Xu, and K. Guo,

“A novel service level agreement model using

blockchain and smart contract for cloud manufacturing

in industry 4.0,” Enterprise Information Systems, vol. 16,

no. 12, p. 1939426, 2022. doi:

10.1080/17517575.2021.1939426

[9] R. B. Uriarte, H. Zhou, K. Kritikos, Z. Shi, Z. Zhao, and

R. De Nicola, “Distributed service‐level agreement

management with smart contracts and blockchain,”

Concurrency and Computation: Practice and

Experience, vol. 33, no. 14, p. e5800, 2021. doi:

10.1002/cpe.5800

[10] M. Hamdaqa, L. A. P. Metz, and I. Qasse, "icontractml:

A domain-specific language for modeling and deploying

smart contracts onto multiple blockchain platforms," in

Proceedings of the 12th System Analysis and Modelling

Conference, 2020, pp. 34-43. doi:

10.1145/3419804.3421454

[11] M. Hamdaqa, L. A. P. Met, and I. Qasse, “iContractML

2.0: A domain-specific language for modeling and

deploying smart contracts onto multiple blockchain

platforms,” Information and Software Technology, vol.

144, p. 106762, 2022. doi: 10.1016/j.infsof.2021.106762

[12] O. Kamel, A. Chaoui, G. Diaz, and M. Gharzouli, “SLA-

driven modeling and verifying cloud systems: A

bigraphical reactive systems-based approach,” Computer

Standards & Interfaces, vol. 74, p. 103483, 2021. doi:

10.1016/j.csi.2020.103483

[13] H. Nabli, R. Ben Djemaa, and I. Amous Ben Amor,

“Cloud services description ontology used for service

selection,” Service Oriented Computing and

Applications, vol. 16, no. 1, pp. 17–30, 2022. doi:

10.1007/s11761-021-00328-y

[14] Z. Zheng, S. Xie, H.-N. Dai, X. Chen, and H. Wang,

“Blockchain challenges and opportunities: A survey,”

International Journal of Web and Grid Services, vol. 14,

no. 4, pp. 352–375, 2018. doi:

10.1504/IJWGS.2018.095647

https://doi.org/10.1109/ICSESS49938.2020.9237735

24 SmartSLA: A Graphical Modeling-Based Approach to SLA Management /Fazilat, et al

[15] K. Upadhyay, R. Dantu, Y. He, S. Badruddoja, and A.

Salau, “Can’t understand SLAs? Use the smart contract,”

in 2021 Third IEEE International Conference on Trust,

Privacy and Security in Intelligent Systems and

Applications (TPS-ISA), 2021, pp. 129–136. doi:

10.1109/TPSISA52974.2021.00015

[16] A. Breckel, J. Pietron, K. Juhnke, and M. Tichy, “A

domain-specific language and interactive user interface

for model-driven engineering of technology roadmaps,”

in 2020 46th Euromicro Conference on Software

Engineering and Advanced Applications (SEAA), 2020,

pp. 162–170. doi: 10.1109/SEAA51224.2020.00035

[17] I. Jiménez-Pastor, A. Garmendia, and J. de Lara,

“Scalable model exploration for model-driven

engineering,” Journal of Systems and Software, vol. 132,

pp. 204–225, 2017. doi: 10.1016/j.jss.2017.07.011

[18] T.-V. Nguyen, L.-S. Lê, S. A. Shah, S. Hameed, and D.

Draheim, “PenChain: A blockchain-based platform for

penalty-aware service provisioning,” IEEE Access, vol.

12, pp. 1005–1030, 2023. doi:

10.1109/ACCESS.2023.3344038

[19] A. Alzubaidi, K. Mitra, and E. Solaiman, “SLA

representation and awareness within blockchain in the

context of IoT,” IET, 2024. doi: 10.1049/PBPC027E_ch6

[20] M. Oriol, A. Gómez, and J. Cabot, “AsyncSLA: Towards

a service level agreement for asynchronous services,” in

Proceedings of the 39th ACM/SIGAPP Symposium on

Applied Computing, 2024, pp. 1781–1788. doi:

10.1145/3605098.3636074

[21] E. Maatougui, C. Bouanaka, and N. Zeghib, “Towards a

meta-model for quality-aware self-adaptive systems

design,” in Proceedings of the 3rd International

Workshop on Interplay of Model-Driven and

Component-Based Software Engineering co-located with

ACM/IEEE 19th International Conference on Model,

2016. url: https://ceur-ws.org/Vol-1723/2.pdf

[22] M.-E. Cambronero, A. Bernal, V. Valero, P. C. Cañizares,

and A. Núñez, “Profiling SLAs for cloud system

infrastructures and user interactions,” PeerJ Computer

Science, vol. 7, p. e513, 2021. doi: 10.7717/peerj-cs.513

[23] R. Sghaier, C. El Hog, R. Ben Djemaa, and L. Sliman,

“A review on SLA monitoring based on blockchain,” in

International Conference on Intelligent Systems Design

and Applications, 2023, pp. 458–467. doi: 10.1007/978-

3-031-64650-8_46

[24] N. Hamdi, C. El Hog, R. Ben Djemaa, and L. Sliman, “A

survey on SLA management using blockchain based

smart contracts,” in Intelligent Systems Design and

Applications (ISDA 2021), 2021. doi: 0.1007/978-3-030-

96308-8_132

[25] A. Mahapatra, K. Mishra, S. K. Majhi, and R. Pradhan,

“Blockchain in evolving computing paradigms: A

beginner’s guide for review and future directions,” in

2023 IEEE 11th Region 10 Humanitarian Technology

Conference (R10-HTC), 2023, pp. 595–602. doi:

10.1109/R10-HTC57504.2023.10461800

[26] Z. F. Azzahra and I. G. B. B. Nugraha, “Service-level

agreement management with blockchain-based smart

contract to improve the quality of IT service

management,” in Proceedings of the 2023 12th

International Conference on Software and Computer

Applications, 2023, pp. 260–266. doi:

10.1145/3587828.3587867

[27] W. Tang, J. Zhang, and R. Guo, “A blockchain-based for

trustworthy tourism service level agreement,” in 2023

3rd International Conference on Computer Science and

Blockchain (CCSB), 2023, pp. 195–199. doi:

10.1109/CCSB60789.2023.10398825

[28] W. B. S. Souei, C. El Hog, R. Ben Djemaa, L. Sliman,

and I. A. Ben Amor, “Towards smart contract distributed

directory based on the uniform description language,”

Journal of Computer Languages, vol. 77, p. 101225,

2023. doi: 10.1016/j.cola.2023.101225

[29] S. K. Battula, S. Garg, R. Naha, M. B. Amin, B. Kang,

and E. Aghasian, “A blockchain-based framework for

automatic SLA management in fog computing

environments,” The Journal of Supercomputing, vol. 78,

no. 15, pp. 16647–16677, 2022. doi: 10.1007/s11227-

022-04545-w

[30] P. Cedillo, E. Insfran, and S. M. Abrahao Gonzales,

“Monitoring cloud services through models at runtime: A

case in an ambient assisted living environment,” Journal

of Object Technology, vol. 21, no. 4, pp. 1–19, 2022. doi:

10.5381/jot.2022.21.4.a1

[31] A. Makwe, D. Sukheja, K. Ohri, and P. Kanungo, “SLA

aware CSP selection and resource monitoring framework

for infrastructure as a service cloud,” Service Oriented

Computing and Applications (SOCA), 2025. doi:

10.1007/s11761-025-00471-w.

[32] A. Booth, A. Alqahtani, and E. Solaiman, “IoT

Monitoring with Blockchain: Generating Smart

Contracts from Service Level Agreements,” Managing

Internet of Things Applications across Edge and Cloud

Data Centres, IET, 2024. doi:

10.48550/arXiv.2408.15016.

[33] S. T. Muntaha, Q. Z. Ahmed, F. A. Khan, Z. D. Zaharis,

and P. I. Lazaridis, “Hybrid Blockchain-Based Multi-

Operator Resource Sharing and SLA Management,”

IEEE Open Journal of the Communications Society, vol.

6, pp. 362–377, 2025. doi:

10.1109/OJCOMS.2024.3523362.

[34] W. V. Solis, P. Cedillo, and A. Kertesz, “MICAAL: A

Domain-Specific Language for Microservices in

Ambient Assisted Living,” IEEE Access, vol. 13, pp.

56255–56272, 2025. doi:

10.1109/ACCESS.2025.3555831.

