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SmartSLA is an innovative model-driven framework that automates the generation and
deployment of blockchain-based Service Level Agreements (SLAs) in cloud
environments. It addresses the limitations of manual and centralized SLA management—
such as lack of transparency, high complexity, and susceptibility to human error—by
integrating Model-Driven Engineering (MDE) with blockchain technology. The
framework consists of three core components: (1) an Ecore-based metamodel that
formally defines SLA elements and policies, (2) a graphical modeling editor for intuitive
SLA design, and (3) an automated code generator that produces executable Solidity
contracts for Ethereum deployment. The framework’s applicability was evaluated
through eight industrial case studies across diverse cloud domains, including networking,
storage, 10T, and disaster recovery. Results demonstrate full automation of the SLA
lifecycle with substantial reduction in design effort and consistent model-to-code
transformation accuracy. Structural comparisons with five existing modeling languages
confirm balanced design quality, achieving moderate maintainability, high
understandability, and sufficient extensibility. By bridging SLA specification and
blockchain enforcement, SmartSLA provides a unified, scalable, and transparent solution
for automated SLA management, strengthening operational reliability and advancing the
integration of MDE and blockchain in industrial cloud ecosystems.
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l. Introduction

In the past decade, cloud computing has emerged as a
critical infrastructure for modern industries and service-
oriented enterprises, offering unprecedented scalability,
flexibility, and cost efficiency [1]. As organizations
increasingly rely on cloud platforms, ensuring service
quality, transparency, and accountability has become a
fundamental requirement [2].

Service Level Agreements (SLAs) are the primary
mechanism for formalizing quality expectations—such as
availability, performance, and reliability—between
providers and consumers [3]. However, traditional SLA
management remains largely manual and centralized,
limiting its effectiveness in dynamic and distributed
environments [4, 5]. These limitations reduce transparency,
hinder automation, and increase the risk of operational
failures in industrial applications.

Blockchain-based smart contracts have been proposed as
a decentralized and tamper-proof approach to enforce SLAs
[6]. While promising, their practical adoption is hindered by
the technical expertise required for smart contract
programming and deployment [7]. Bridging the gap between
high-level SLA specification and low-level blockchain
enforcement therefore remains a critical challenge.

To address this challenge, we propose SmartSLA, an
innovative model-driven framework that automates the
transformation of SLA specifications into executable smart
contracts. Leveraging Model-Driven Engineering (MDE),
SmartSLA enables SLA logic to be expressed at a high level
of abstraction and automatically translated into Solidity
code. The framework comprises three key components: (1)
an Ecore-based metamodel capturing SLA concepts, (2) a
graphical modeling environment that facilitates SLA design
for both technical and non-technical users, and (3) an
automated code generator targeting Ethereum-compatible
blockchains. This integration reduces programming errors,
promotes standardization, and supports reliable SLA
enforcement across diverse domains.

Unlike prior studies that focus exclusively on either SLA
modeling languages or smart contract description
frameworks, SmartSLA unifies both perspectives into a
single, end-to-end solution. To evaluate its novelty and
effectiveness, the study is guided by the following research
questions:

RQ1: Can SmartSLA effectively automate the generation
of smart contracts from high-level SLA specifications across
diverse cloud domains?

RQ2: To what extent does SmartSLA reduce design effort
and improve reliability compared to manual or template-
based approaches?
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RQ3: How does the SmartSLA metamodel compare with
existing SLA and smart contract languages in terms of
maintainability, understandability, and extensibility?

By addressing these questions, the paper highlights the
scientific and practical contributions of SmartSLA to the
automation of SLA lifecycle management. The remainder of
the paper is organized as follows: Section II introduces the
conceptual background, Section III reviews related work,
Section IV presents the SmartSLA framework, Section V
discusses evaluation results, and Section VI concludes with
future directions.

11. Background

This section lays the conceptual foundation of the
SmartSLA framework by examining its three core pillars:
smart contracts, service-level agreements, and model-driven
engineering.

A. Smart Contracts

Smart contracts are self-executing programs deployed on
blockchain platforms such as Ethereum. They automatically
enforce predefined business rules without the need for
intermediaries, leveraging blockchain immutable and
distributed ledger to ensure transparent and verifiable
execution [6, 8]. In SLA enforcement, smart contracts can
continuously monitor metrics such as uptime, latency, or
error rates, and autonomously trigger actions—Ilike applying
penalties or initiating alerts—upon detecting violations [9].

Although languages such as Solidity enable the
development of smart contract logic, writing such contracts
remains prone to programming errors and requires high
technical proficiency [10, 11]. This complexity often limits
their adoption in real-world industrial and service settings.

In the SmartSLA framework, smart contracts form the
core enforcement layer, and are generated automatically
from high-level models, reducing human error and technical
barriers while ensuring SLA terms are enforced in a
trustworthy and decentralized manner.

B. Service Level Agreements (SLAs)

SLAs are formal contracts that define the service quality
expectations and obligations between cloud providers and
consumers [3]. These agreements typically cover
quantifiable metrics such as availability, response time, and
throughput, as well as enforcement policies and penalty
structures [2].

However, conventional SLA management is still heavily
manual, centralized, and reactive, making it slow to detect
and respond to violations—especially in multi-tenant and
hybrid cloud environments [4]. Such inefficiencies reduce
transparency and may erode trust between service parties [5].
The increasing complexity of distributed systems has
amplified the need for SLA enforcement mechanisms that
are automated, auditable, and trustworthy [12, 13].
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The SmartSLA framework addresses this need by
reengineering SLA structure through formal modeling, thus
promoting automation, improving clarity, and enabling
integration with intelligent service platforms.

C. Model-Driven Engineering (MDE)

Model-Driven Engineering (MDE) is a development
methodology that abstracts software systems into formal
models to facilitate automated code generation, structural
analysis, and design validation [7]. Central to MDSE is the
creation of a metamodel, which formally defines domain-
specific constructs and their relationships—for instance,
SLA components such as parties, performance metrics, and
compliance policies [14].

By enabling high-level design and transformation into
executable code, MDSE empowers domain experts to define
sophisticated service agreements without needing deep
programming knowledge [15]. In SmartSLA, this is realized
through an Ecore-based metamodel and a graphical
modeling tool built with Sirius [16], enabling the intuitive
construction of SLA models.

These models are then automatically translated into
executable Solidity code [17], bridging the conceptual and
implementation layers of SLA enforcement. This approach
reduces development effort, enhances reliability, and ensures
consistency across SLA definitions deployed in blockchain-
backed cloud infrastructures.

I11. Related works

The integration of blockchain technology with Service
Level Agreement (SLA) management has attracted
significant attention in recent years. This section reviews
state-of-the-art approaches related to blockchain-based SLA
enforcement, smart contract modeling, and model-driven
frameworks, highlighting their contributions and limitations
in relation to the SmartSLA framework.

Nguyen et al. [18] introduced PenChain, a blockchain-
based platform that enables automatic SLA enforcement
with embedded penalty rules. Their system uses smart
contracts to execute SLAs and ranks service providers based
on compliance and reputation, demonstrating its
effectiveness in precision agriculture and automotive
industries. Alzubaidi et al. [19] proposed a formal SLA
representation model, IRAFUTAL, enabling blockchain-
based SLA lifecycle management via Hyperledger Fabric.
Their framework supports negotiation, monitoring, billing,
and enforcement, addressing the complexity of multi-phase
SLA management.

In response to the lack of standardization in asynchronous
service agreements, Oriol et al. [20] proposed a quality
model aligned with ISO/IEC 25010 and a domain-specific
language for asynchronous SLAs using WS-Agreement
standards. Their solution, integrated into AsyncAPI and
extended through tooling, facilitates SLA specification and
enforcement in IoT and cyber-physical systems.
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Maatougui et al. [21] proposed a component-based
contractual approach for designing and formally specifying
self-adaptive systems with respect to Quality of Service
(QoS) contracts. Their method leverages Model-Driven
Engineering to model system structure and behavior and
employs the Maude formal language to generate executable
specifications that enable runtime monitoring and
adaptation. By clearly separating user-defined QoS
requirements from internal system parameters, their model
simplifies complexity and enhances reusability. They
validated their approach through a firefighting system case
study, demonstrating how adaptation strategies are triggered
to ensure continuous QoS compliance in dynamic contexts.

Cambronero et al. [22] introduced CloudCost, a UML-
based profile designed to model cloud infrastructures and
user interactions with respect to Service Level Agreements,
aiming to improve cloud provider profitability. Their
approach distinguishes between regular and high-priority
users, integrating parameters such as resource costs,
discounts, and compensations into the SLA model. They also
developed MSCC, a modeling tool that supports the creation,
validation, and simulation of cloud scenarios using the
Simcan2Cloud simulator. Through a comprehensive case
study involving different workloads and infrastructure
configurations, they demonstrated how pricing strategies and
user types influence provider income, offering insights into
effective SLA-driven resource management.

Several survey-based studies provide broader overviews.
Saghaier et al. [23] and Hamdi et al. [24] analyzed SLA
monitoring solutions across various sectors, such as cloud
computing and 6G networks, underscoring the potential of
smart contracts in detecting violations and managing
compensation. Mahapatra et al. [25] proposed a secure
blockchain framework for IoT-Fog-Cloud environments,
addressing critical challenges such as trust and
authentication.

Azzahra and Nugraha [26] implemented a smart contract-
based SLA management system for IT services in higher
education, illustrating benefits such as improved monitoring
and reduced processing time, albeit with higher operational
costs. Tang et al. [27] extended this idea to the tourism
industry with TSLA, a framework that leverages oracles and
smart contracts to detect provider misbehavior and enforce
penalties.

Souei et al. [28] developed a distributed directory for
smart contracts based on a unified description language
(UDL-SC), enabling semantic-based search and selection of
contracts based on legal, performance, and gas usage
attributes. In another model-driven engineering approach,
Hamdagqa et al. [10] introduced a reference model for smart
contracts in 2020 by analyzing the characteristics of three
platforms: Hyperledger Composer, Azure Blockchain
Workbench, and Ethereum. The proposed model was
designed as a framework that enables developers to model
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and generate the structural code of smart contracts across
different blockchain platforms. To validate their approach,
they applied the framework to three case studies,
demonstrating its capability to generate executable code for
the target platforms. Furthermore, the authors extended the
reference model into a more advanced version, iContractML
2.0 [11]. In addition to supporting the generation of smart
contract behavior, this version also facilitates the creation of
structural and deployment artifacts by employing templates
for commonly used functions.

In cloud service discovery, Nabli et al. [13] proposed the
Cloud Services Description Ontology (CSDO) using
Linked-USDL, supporting the publication and selection of
cloud services. Similarly, Kamel et al. [12] applied reactive
system theory to model and verify SLA lifecycle behavior in
cloud-based environments, emphasizing formal verification.

Furthermore, studies like those by Battula et al. [29] on
fog computing and Cedillo et al. [30] in AAL environments
confirm the growing trend toward SLA automation using
blockchain. However, these solutions often focus on specific
domains, lack comprehensive modeling environments, or
require significant technical expertise.

Makwe et al. [31] propose a broker-based SLA framework
for laaS clouds that improves provider selection and
monitoring, reducing violation rates and enhancing resource
utilization. Booth et al. [32] present a blockchain-based
library that generates smart contracts from SLAs for IoT
monitoring, ensuring reliable violation detection in
healthcare scenarios. Muntaha et al. [33] design a hybrid
blockchain framework for SLA management in 5G
networks, combining Hyperledger and Ethereum to improve
resource sharing and enforcement. Solis et al. [34] introduce
MICAAL, a DSL for modeling microservices in Ambient
Assisted Living systems, supporting modularity and
scalability in IoT healthcare.

Unlike previous work, SmartSLA provides an integrated,
model-driven framework featuring a metamodel, a graphical
modeling editor based on Sirius, and automated smart
contract code generation in Solidity. This design bridges the
gap between SLA specification and deployment, making the
process accessible to non-experts while
consistency, extensibility, and operational automation. Table
I provides a comparison of related work with our proposed
solution (SmartSLA).

TABLE | Comparison of Related Work

ensuring
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Survey, Comparative

- v
[24] General (Survey-based) Analysis
[25] ToT-Fog-Cloud v Security Framework
[26] Higher Education v Smart Contracts
. Smart Contracts +
v
[27] Tourism Oracle
[28] General v UDL-SC
[29] Fog Computing v Various
Ambient Assisted Living .
4
[30] (AAL) Various
[31] TaaS Cloud, CSP Selection X Broker model
[32] IoT, Patient Monitoring v Java Library
[33] 5G Resource Sharing v Game theory
[34] Ambient Assisted Living x DSL, Ecore2Service
SmartSLA  Cloud SLA v Graphical model to

Solidity

Study Application Domain Blockchain  Modeling Type
[10, 11] General v Ecore to Solidity
[12] Cloud x Reactive systems
[13] Cloud x Linked-USDL
Precision Agriculture,

18] AutomotivegManufacturing g Smart Contracts
[19] 10T v Formal Modeling
[20] Asynchronous SLA x DSL, AsyncAPI

. Model-Driven
[21] Self-adaptive systems x Engineering (Maude)
[22] Cloud Infrastructure x UML, Simcan2Cloud
23] Multiple domains (Cloud, Survey / Comparative

10T, 6G)

Analysis

1V. SmartSLA: A Model-Driven Framework for
SLA Code Generation

In complex and dynamic cloud-based environments,
managing Service Level Agreements is essential not only for
ensuring service quality but also for maintaining operational
continuity and cost efficiency—key concerns in industrial
and service domains. However, conventional approaches to
SLA management often suffer from fragmentation, manual
configuration steps, and limited adaptability to rapidly
evolving service structures.

To address these limitations, we introduce SmartSLA, a
model-driven framework that facilitates the standardized and
automated definition, customization, and execution of SLAs.
The framework consists of three key components: a
metamodel that formally defines the structure of smart
SLAs, a graphical editor that simplifies SLA modeling for
technical and non-technical users alike, and a code
generation engine that automatically produces executable
smart contracts for deployment in blockchain environments.
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By integrating these components, SmartSLA supports
seamless SLA management across cloud-based platforms,
and promotes reduced design complexity, higher reusability,
and quicker deployment—all of which are highly relevant
for industrial decision-making systems, enterprise platforms,
and service coordination in large-scale infrastructures.

A. Core Concepts
SmartSLA is founded on three core concepts that underpin
its modeling and automation capabilities:

e Metamodeling: At the heart of the framework lies
a formal Ecore-based metamodel that serves as the
foundation for the domain-specific modeling language.
This metamodel defines the core elements of SLAs—
including service objectives, penalty rules, compliance
terms, and provider-consumer roles—in a structured
and extensible way. It enables model validation and
reuse across diverse service settings.

e Smart Contracts: Using blockchain technology,
SmartSLA converts SLA models into smart contracts,
which are self-executing programs that enforce SLA
conditions such as uptime guarantees or compensation
clauses. This ensures transparency, auditability, and
operational reliability without requiring manual
oversight [6].

e Model Transformation and Code Generation:
Through model-to-text transformation techniques,
SmartSLA automatically generates Solidity code for
deployment on Ethereum-compatible platforms. This
reduces development time and technical effort while
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allowing organizations to incorporate SLA enforcement
into automated, industrial-grade workflows.

By combining these pillars, the SmartSLA framework
bridges the gap between high-level service design and low-
level contract execution, providing a robust, industry-
aligned tool for SLA management in distributed cloud
infrastructures.

B. The SmartSLA Metamodel

The formal definition outlining the structure and various
constituent parts of a smart SLA is provided by the
SmartSLA metamodel, which aligns with the Ecore standard.
This metamodel offers a precise outline of the classes,
detailing their relationships, assigned responsibilities, and
defining attributes. It essentially forms the vital foundation
required for building valid SmartSLA models. A visual
depiction of the proposed SmartSLA metamodel structure
can be found in Fig. 1.

The SLAContract class serves as the root of the
metamodel, representing the main container for all SLA-
related elements. It stores general contract metadata (such as
name, duration, and version) and aggregates all core
components, including service objectives, parties,
constraints, enforcement mechanisms, resolution policies,
and audit logs.

Party represents the actors involved in the agreement—
namely the provider and consumer. It includes attributes
such as address and reputationScore, and is connected to the
contract, notifications, and change requests.

The abstract class SLAConstraint generalizes various
SLA condition types. Its concrete subclasses include:
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e  SecurityRequirement, which defines encryption,
access control, and audit needs;

e  ComplianceRequirement, which specifies
external standards and verification methods;

e ServiceObjective, which defines measurable
targets (e.g., performance or availability) and is
linked to a specific CloudSource, describing the
underlying infrastructure (such as a VM, storage,
or IoT device) using the CloudSourceType
enumeration.

The EnforcementElement abstract class captures rule-
based enforcement logic and is inherited by:

e  Penalty, which applies predefined actions upon
contract violation;

e Incentive, which defines rewards for compliance;

e Notification, which alerts parties under specified
conditions.

To model SLA dynamics and evolution, the
ChangeRequest class captures proposed modifications,
while VersionControl maintains version history. The
SLAHistory class records past events (e.g., violations or
updates) and is linked to the contract via audit logs.

Conflict and termination handling are modeled through
the abstract ResolutionElement, which is extended by:

e  TerminationCondition, defining reasons and
consequences for SLA cancellation;

e DisputeResolution, specifying procedures and
legal aspects for resolving conflicts;

e EscalationPolicy, indicating how service breaches
are escalated based on severity and response time.

Overall, the SmartSLA metamodel provides a modular
and extensible structure that covers key aspects of SLA
management, supporting formal modeling, enforcement
automation, and traceability.

C. Graphical Editor

To promote accessibility for users with limited technical
or programming backgrounds, a graphical modeling editor
was developed as part of the SmartSLA framework. Serving
as an interactive interface for SLA model creation, the editor
enables users to define, visualize, and manage SLA
structures directly based on the SmartSLA metamodel. It was
implemented using the Sirius framework, which supports the
development of domain-specific graphical editors within the
Eclipse ecosystem.

The editor provides a user-friendly, drag-and-drop
environment where users can construct SLA models by
placing visual elements—such as Party, ServiceObjective, or
Penalty—onto a design canvas. Each element corresponds
directly to a metamodel class and can be configured using a
dedicated properties panel. For instance, a user can define a
ServiceObjective with a response time metric and a
performance threshold (e.g., 300ms), then link it to a specific
CloudSource, such as a serverless function.
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To streamline the modeling process, the editor includes a
tool palette containing all available SLA elements, each
with a distinctive icon for clarity. Users define relationships
between elements visually, while the editor automatically
enforces conformance with the underlying metamodel.
Additionally, validation mechanisms ensure that models are
semantically and structurally correct, and the editor can
support the automatic generation of preliminary smart
contract code from compliant models.

This visual interface significantly reduces complexity,
enhances modeling efficiency, and encourages broader
adoption of formal SLA specification methods across
industrial and service-oriented domains. Fig. 2 illustrates the
editor’s interface and its alignment with the core SmartSLA
concepts.

Built on the Sirius framework, the editor provides notable
flexibility for tailoring visual representations and adeptly
handles differing levels of complexity. Its key benefits
include significantly reducing design complexity for users
without a technical background, substantially accelerating
the SLA creation process, and ensuring strict adherence to
the SmartSLA metamodel, which is vital for guaranteeing
the structural soundness of the resulting models.

D. Integration and Code Generation

The strength of the SmartSLA framework really lies in
how seamlessly the metamodel and the graphical editor are
integrated. The metamodel formally defines the abstract
syntax of the modeling language. In parallel, the editor
provides a user-friendly interface, as a concrete syntax of the
SmartSLA language, allowing the creation of instances (the
models). The underlying model-driven framework
(Sirius/Ecore) facilitates this integration, ensuring the
workflow is cohesive and smooth.

Users design an SLA visually in the editor, and each
graphical element corresponds directly to an instance of a
metamodel-defined class or relationship. The editor enforces
the rules of the metamodel using validation, stopping users
from creating structurally incorrect or inconsistent SLA
definitions. This model can then be utilized for automated
code generation.

The conversion of a SmartSLA model into executable
smart contract code is usually carried out using model-to-text
languages like Epsilon Generation Language (EGL). As
depicted in Fig. 3, this automated generation approach
greatly lessens both the manual effort involved and the
chance of introducing errors during the creation of
deployable smart contracts from the higher-level SLA
definition.
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@ smartSLAZ2solidity.egl %
1%
2 Load metamodel and model
"Starting EGL template execution”.println();
4 var sla = smartSLA!SLAContract.allInstances().first;
"Processing SLAContract: ".concat(sla.name).println();
6 %]

8 // SPDX-License-Identifier: MIT
9 pragma solidity *8.8.8;

1 contract [%=sla.nameX] {

/{ Struct Definitions
struct Party {

string role;

address wallet;

uint256 reputationScore;

}

struct CloudResource {
string resourceType;
string identifier;
string provider;

PO MR N R R S R

4 }
<

9 Console * T Properties % Error Log ¥ Problems @ Profiling & Tools

Epsilon
Starting EGL template execution

Processing SLAContract: CloudNetworkSLA_vl.l

Adding Party: Provider

Adding Party: Consumer

Adding ServiceObjective: Latency

Adding Penalty: Latency > 5ems

Adding Incentive: Latency under threshold for 9@ days

Adding TerminationCondition: Continuous network underperformance

Fig.3. Transformation from SmartSLA model to Smart
Contract Code via EGL program.

This integrated approach reduces design errors, increases
efficiency, and makes SLA modeling accessible to a wider
range of stakeholders, from technical developers to cloud
service managers.

E. SmartSLA Model Deployment

The final stage of the SmartSLA framework focuses on the
deployment of automatically generated smart contracts onto
blockchain platforms for real-time SLA enforcement [8].
This phase transforms the modeled SLA specifications into
operational assets that can autonomously monitor service
performance and enforce contractual terms without manual
intervention [9].

Smart contracts generated from the SmartSLA models can
be deployed on platforms such as Ethereum, where they
continuously track compliance with defined service
objectives. Upon detecting a violation or fulfillment, the
contracts trigger predefined actions—such as penalties,
notifications, or rewards—ensuring that SLA terms are
enforced in a consistent and transparent manner.

The deployment environment includes integrated audit
logging mechanisms, enabling full traceability and post-
execution verification of SLA activities [11]. Designed with
ease of integration in mind, the deployment process requires
minimal manual configuration, making it suitable for
seamless adoption in industrial cloud infrastructures [15].

This deployment capability completes the end-to-end
lifecycle of SLA management—spanning from abstract
modeling and validation to executable contract generation
and live operation. By supporting fully automated, traceable,
and scalable SLA enforcement, SmartSLA offers a practical
and efficient solution for managing service reliability in
modern distributed systems.

V. Evaluation

To assess the effectiveness of the SmartSLA framework, a
two-fold evaluation was conducted focusing on both its
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applicability in diverse cloud service domains (Section 5.1)
and its structural modeling characteristics in comparison
with existing SLA metamodels (Section 5.2). This evaluation
aims to demonstrate the framework's practical utility,
flexibility, and degree of automation in supporting SLA
definition and enforcement across industrial-scale service
environments.
A. Applicability Evaluation

To answer RQ1 and RQ2, eight case studies were modeled
and automatically transformed into Solidity contracts,
confirming the end-to-end automation capability of the
SmartSLA framework. These case studies were chosen to
reflect real-world scenarios where SLA modeling and
automation are essential for operational efficiency,
reliability, and service quality assurance. Each case involved
designing a complete SLA model using the SmartSLA
graphical editor, validating its structure through EMF
representation, and automatically generating executable
Solidity smart contracts through an EGL-based code
generator.

The use cases are as follows:

1. Cloud Data Analytics: SLAs were designed to manage
data processing quality, focusing on throughput, latency, and
accuracy. This domain is critical for real-time decision-
making and data-intensive industrial applications such as
predictive maintenance or fraud detection in financial
services.

2. Cloud Database: Here, the SLA addressed transactional
integrity, availability, and recovery time. Database services
form the backbone of many enterprise applications and
require high reliability and performance guarantees,
especially in sectors like banking and e-commerce.

3. Cloud Network: An SLA centered on latency and packet
loss, suitable for time-sensitive systems such as VoIP, video
conferencing, and industrial IoT communication
frameworks. This case demonstrates the need for tightly
controlled service metrics in latency-critical environments.

4. Cloud Storage: We modeled SLAs prioritizing data
durability, access time, and encryption compliance. These
SLAs are highly relevant in legal, medical, and financial
industries where secure data retention and retrieval are
paramount.

5. Cloud Infrastructure (IaaS): SLAs focused on virtual
machine availability and resource provisioning speed. This
case supports general-purpose compute environments,
which are foundational for most enterprise digital
infrastructure.

6. Disaster Recovery: Key SLA terms included Recovery
Point Objective (RPO) and Recovery Time Objective (RTO).
This use case is critical in sectors requiring business
continuity, such as healthcare, public safety, and enterprise
risk management.

7. Internet of Things (IoT): The SLA included metrics for
sensor responsiveness and data availability. This case
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supports industrial and smart city environments where high
uptime and real-time sensor data are essential.

8. Serverless Computing: SLAs were modeled around
function execution time, scalability, and cost optimization.
Serverless environments are vital in cost-sensitive
deployments like mobile backends, APIs, and microservices.

In all cases, users leveraged the graphical interface to
construct SLA models using SmartSLA’s drag-and-drop
tooling.

Table II presents the numbers of classes, attributes, and
relationships that were defined in each case model.
Importantly, each model was used to generate executable
smart contract code via a 265-line EGL script. This
automated translation from graphical SLA design to Solidity
code showcases the system’s end-to-end automation
capability. While the number of lines of code (LOC) varies
across case studies, the consistent generation of deployable
contracts underlines the robustness of the approach.

TABLE Il Comparison of SLA Model
Complexity Metrics across Eight Case Studies

Case Study #C #R  #A LOC
Data Analytics 18 13 57 125
Cloud Database 16 11 51 125
Cloud Network 14 9 41 120
Cloud Storage 14 9 41 120

Cloud Infrastructure 14 9 41 120

Disaster Recovery 15 10 46 135

Internet of Things 18 13 57 135

Serverless Computing 17 12 54 135

The variation in generated LOC corresponds directly to
model complexity. Regarding RQ2, the evaluation shows
that SmartSLA significantly reduces manual coding effort
and minimizes human errors by automating contract
generation.

To further illustrate the modeling effort and complexity
across case studies, Fig. 4 presents a comparative bar chart
visualizing the number of classes, relationships, attributes,
and generated lines of code (LOC) for each cloud domain.
The diagram reveals that case studies such as IoT, Cloud
Analytics, and Serverless Computing exhibit higher
structural complexity, with correspondingly increased LOC
in their generated smart contracts. Conversely, scenarios like
Cloud Network and Cloud Storage show relatively lower
complexity and shorter generated code. This visualization
supports the quantitative findings presented in Tables 2,
demonstrating the SmartSLA framework's capacity to scale
across a range of modeling demands—from minimal to
highly detailed SLA definitions—while maintaining
automation consistency.
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Model Complexity and LOC across Cloud Case Studies

Fig. 4. Comparative visualization of model complexity and
generated code size across eight case studies.

This comprehensive applicability evaluation confirms that
SmartSLA is not only theoretically sound but also practically
effective in diverse cloud-based industrial contexts. The
combination of usability, automation, and domain versatility
positions SmartSLA as a promising tool for smart SLA
design and enforcement in modern service-oriented
infrastructures.

To complement the applicability assessment of
SmartSLA, we measured the deployment cost of the
generated smart contracts on the Ethereum platform. Eight
representative SLA scenarios were deployed using the
Remix IDE with a JavaScript VM. Table III summarizes the
reported gas usage, transaction cost, and net execution cost
for each case study. The results show that deployment costs
range from approximately 1.3M gas (Cloud Network) to
4.1M gas (Cloud Storage). This variation is aligned with the
structural complexity of each SLA model, as contracts with
more objectives and compliance requirements consume
more gas during initialization. Overall, the results confirm
that SmartSLA produces contracts with manageable
overhead while preserving flexibility across diverse
application domains.

TABLE 11l Deployment costs for eight case studies

Case Study Gas Transaction Execution
Cost Cost

Data Analytics 2,744,848 2,386,824 2,203,028
Cloud Database 3,880,848 3,374,650 3,122,104
Cloud Network 1,677,876 1,459,022 1,318,504
Cloud Storage 4,153,580 3,611,808 3,333,494
Cloud Infrastructure 2,294,582 1,995,288 1,829,256
Disaster Recovery 3,031,938 2,636,467 2,466,451
Internet of Things 2,165,891 1,883,383 1,725,925
Serverless Computing 2,830,524 2,461,325 2,280,849

B. Metamodel Structural Comparison

To address RQ3, we conducted a quantitative comparison
of the SmartSLA metamodel against five existing SLA and
smart contract languages. Notably, these languages fall into
two distinct categories: (I) SLA modeling languages, such as
AsyncSLA [20], CloudCost [22], and QaSAS [21], which
are designed to express and reason about service-level
requirements in cloud environments, and (II) smart contract
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description languages, such as iContractML [10] and
iContractML 2.0 [11], which focus on the specification of
blockchain-based contractual logic but do not address SLA
concerns directly.

Unlike these existing solutions, SmartSLA aims to bridge
the gap between SLA modeling and smart contract
generation, offering an integrated, model-driven solution
that covers the entire lifecycle—from abstract SLA
specification to executable blockchain code. To underscore
this contribution, we compare the structural properties of
SmartSLA’s metamodel with those of the aforementioned
languages.

The comparison uses both primary metrics (e.g., number
of classes, attributes, relationships) and derived structural
metrics, such as maximum depth of inheritance (DITmax),
maximum fan-out (Fanoutmax), number of predecessor
nodes (PRED), number of inherited features (INHF), and
total number of features (NTF). Furthermore, three high-
level quality criteria—maintainability, understandability,
and extensibility—were calculated using the following
standard formulas:

Maintainability 1)
_ NC+ NA+ NR + DITyq, + Fanoutyy
- 5
NC,PRED +1 2
Understandability = 211{_17 @
NC
Extensibility = INHF 3)
xtensibility = -

Here, a lower value in maintainability suggests better
modularity and ease of management, a higher value in
understandability indicates clearer inheritance structure, and
a higher extensibility score reflects better support for model
evolution through inheritance reuse. Table III presents the
updated metric values for all six metamodels, including the
revised SmartSLA values after incorporating abstract parent
classes and reducing attribute redundancy.

TABLE 1V Comparison of SmartSLA metamodel with five other

metamodels
Metric [20] [22] [21] [11]  [10]  SmartSLA

NC 12 18 15 16 15 16
NA 16 25 16 26 23 40
NR 10 9 17 10 7 15
DITmax 1 1 1 2 1 1
Fanoutmax 3 3 4 3 3 7
PRED 1 1 1 3 3 1
INHF 5 3 1 11 10 8
NTF 26 34 33 36 30 57
Maintainability 8.6 11.2 10.6 11.4 10.4 15.8
Understandability 1.3 1389  1.13 1.5 1.6 1.563
extensibility 0.192  0.09 0.03 0305 0.333 0.14

SmartSLA: A Graphical Modeling-Based Approach to SLA Management /Fazilat, et al

Structural Analysis

With 16 classes (NC), SmartSLA sits within a moderate
complexity range, indicating an appropriate level of
abstraction for capturing SLA-specific constructs. However,
it significantly surpasses others in attribute richness, with 40
attributes (NA)—the highest among all six—underscoring
its focus on detailed specification of service-level properties.
The number of relationships (NR = 15) is also relatively
high, reflecting a comprehensive linking of elements within
the model.

The inheritance structure is intentionally flat, with a
DITmax of 1 and only one predecessor per class (PRED =
1). This design choice promotes simplicity and makes the
model easier to understand, especially for stakeholders
unfamiliar with deep inheritance chains. In contrast,
iContractML 2.0 shows a DITmax of 2, and both
iContractML versions have PRED = 3, indicating slightly
more complex hierarchies.

SmartSLA's Fanoutmax of 7—the highest among the

compared metamodels—results from the central
SLAContract class referencing multiple associated
components  (e.g., objectives, penalties, security
requirements). This design emphasizes centralized

integration, making the contract structure semantically clear
and modular.

Quality Criteria

As shown in Fig. 5, the Maintainability score of SmartSLA
(15.8) is the highest in the comparison, due to its
combination of high NA and Fanoutm... Although a higher
number of attributes and references increases the metric’s
numerical value, it does not necessarily indicate poor
structure. Instead, it reflects the design’s emphasis on rich
detail and centralized coordination within the SLAContract
class. This moderate maintainability suggests a trade-off
between structural compactness and expressive modeling
capacity.

Maintainability Comparison
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Fig. 5. Comparison of metamodels based on Maintainability.

Fig. 6 reveals that the Understandability score of
SmartSLA (1.563) is among the top three, nearly matching
iContractML [11] (1.6) and surpassing CloudCost [22] and
QaSAS [21]. Since the inheritance hierarchy is shallow, with
minimal predecessor depth, the class structure remains
straightforward. This enhances clarity for new users,
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especially those unfamiliar with complex metamodel
hierarchies, and facilitates ease of learning and onboarding.

Understandability Comparison
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Fig. 6. Comparison of metamodels based on Understandability.

Fig. 7 illustrates that On Extensibility, SmartSLA
achieves a moderate score (0.14), better than CloudCost [22]
(0.09) and QaSAS [21] (0.03), though Ilower than
iContractML [11] (0.333). This reflects the limited reliance
on inheritance for feature reuse, which is a known trade-off
of the intentionally shallow class hierarchy. The extensibility
could be improved in future versions by incorporating more
systematic inheritance strategies for reusable SLA
components.

Extensibility Comparison
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Fig. 7. Comparison of six metamodels based on Extensibility.

Summary and Implications

The SmartSLA metamodel demonstrates a balanced
quality across key software criteria, showcasing its unique
strengths and  thoughtful design trade-offs. Its
maintainability is moderate, because of a high number of
attributes and a centralized structure with a moderate
maximum fan-out. This reflects a focus on detailed and
expressive SLA specifications.

For understandability, SmartSLA ranks among the top
compared to other metamodels, thanks to its streamlined, flat
structure. By avoiding deep inheritance layers, it keeps
relationships between core SLA elements clear and
straightforward, making it easier for non-professional
designers to work with the framework.

Its extensibility is moderate, suggesting room for
improvement in leveraging inheritance to make the
metamodel more adaptable. Future enhancements could
focus on refining this aspect to support more flexible reuse
of components without sacrificing simplicity.
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What sets SmartSLA apart from other frameworks are

three standout features:

e Blending SLAs with Smart Contracts: Unlike other
languages that focus solely on either SLA modeling or
smart contract logic, SmartSLA seamlessly integrates
both. This unique combination enables automated,
blockchain-based enforcement of service agreements,
streamlining the entire SLA lifecycle.

e Simplified Design for Clarity: The flat structure
minimizes complexity, making the connections
between key elements—Ilike service goals, penalties,
and parties—more intuitive. This clarity reduces the
learning curve and supports broader adoption across
technical and non-technical users.

e Detailed and Precise Modeling: With a rich set of
attributes, SmartSLA captures fine-grained details of
SLAs, from performance metrics to compliance rules.
This thoroughness ensures that the metamodel can
handle intricate service agreements with precision.

Overall, the evaluation confirms that SmartSLA meets its
design objectives by combining automation, structural
soundness, and cross-domain applicability, directly
addressing the research questions posed in Section I.

V1. Conclusion

A complete solution for the automated administration of
Service Level Agreements (SLAs) in cloud-based industrial
environments is offered by the SmartSLA framework.
SmartSLA overcomes the main drawbacks with traditional
SLA management, including manual implementation, a lack
of transparency, and specification complexity, by merging
model-driven engineering with blockchain technology. The
key components SmartSLA, ie., a comprehensive
metamodel, an intuitive graphical editor, and a robust code
generator, enable non-professional developers to simply
specify, validate, and deploy executable smart contracts on
platforms such as Ethereum.

To demonstrate the applicability of the SmartSLA
framework eight mostly-common case studies in various
domains such as data analytics, cloud storage, IoT, and
disaster recovery were studied. By automatically converting
high-level models into Solidity smart contracts, SmartSLA
enhanced accuracy, decreased manual labor, and offered
domain-specific flexibility in all scenarios. The evaluation of
structural comparisons with three SLA modeling languages
and two smart contract metamodels show that SmartSLA has
a balanced design, with moderate maintainability, high
understandability, and sufficient extensibility.

Significantly, SmartSLA makes SLA automation
accessible to both technical and non-technical stakeholders
by bridging the gap between low-level blockchain
enforcement and high-level SLA modeling. It encourages
operational scalability, traceability, and reliability in cloud
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infrastructures by supporting the entire SLA lifecycle, from
visual design to on-chain execution.

The evaluation results provide empirical answers to the
research questions: SmartSLA successfully automates
contract generation across domains (RQ1), reduces design
effort and improves reliability (RQ2), and achieves a
balanced metamodel structure with high understandability
and moderate extensibility compared to existing approaches
(RQ3).

To further advance the SmartSLA framework, several
directions can be pursued. Improving the adaptability of the
metamodel by introducing modular components, reusable
patterns, and enhanced inheritance strategies would
strengthen extensibility and allow customization for specific
industry requirements while maintaining overall system
stability.

Another promising line of development involves
enriching operational intelligence. Incorporating real-time
monitoring and advanced analytics would enable SmartSLA
to promptly react to service changes, while Al-driven
prediction techniques could support proactive detection and
resolution of potential SLA violations before they
materialize.

Expanding the platform to support a broader range of
blockchain technologies—including Hyperledger, Polkadot,
and lightweight Ethereum Layer-2 solutions—would
significantly enhance deployment flexibility and address the
diverse preferences of industrial adopters. At the same time,
exploring compliance- and regulation-oriented SLA
specifications could open opportunities in highly regulated
sectors such as finance, healthcare, and government. In
parallel, integrating SmartSLA with DevOps pipelines and
delivering a user-friendly web-based graphical editor would
improve accessibility and streamline practical adoption.

Importantly, the current evaluation has already quantified
the deployment cost of SmartSLA contracts across eight
representative case studies, demonstrating that the overhead
remains manageable and proportional to the structural
complexity of the SLA models. Building on this, future work
will extend the evaluation to runtime operations. In
particular, measuring the gas consumption of interactive
functions such as applyPenalty, addChangeRequest, and
logHistory under realistic workloads will provide a more
comprehensive picture of the operational overhead of
SmartSLA.

With these enhancements, SmartSLA is well positioned to
evolve into a robust and versatile framework for transparent,
automated, and scalable SLA management—an ideal fit for
the rapidly changing cloud environments of today.
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