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Abstract  
An Intrusion Detection System (IDS) is a vital security mechanism that monitors network or system 

activities to detect and mitigate malicious behaviors. By identifying threats such as unauthorized 

access or sabotage, the IDS responds promptly to prevent further compromise, ensuring system 

integrity. These vulnerabilities are especially pronounced in mobile ad hoc networks (MANETs), 

where the dynamic topology and lack of centralized control make robust authentication and key 

agreement critical components of network security. Conventional two-factor authentication 

schemes, while widely used, often fall short against attacks such as smart card loss, offline password 

guessing, identity spoofing, and replay attacks. These weaknesses expose networks to significant 

risks, necessitating advanced detection mechanisms. To address these challenges, this paper 

proposes a novel hybrid metaheuristic approach integrated with elliptic curve cryptography (ECC) 

for enhanced two-factor authentication in MANETs. The proposed method optimizes malicious node 

detection by combining metaheuristic optimization techniques with ECC’s lightweight, secure key 

exchange. This approach significantly improves detection accuracy, increases the number of active 

nodes, and optimizes residual energy, thereby enhancing both security and operational efficiency. 

Simulation results demonstrate that the proposed system outperforms existing methods in identifying 

malicious nodes while maintaining energy efficiency, making it particularly suited for resource-

constrained MANETs. By addressing the limitations of traditional authentication schemes, this 

hybrid approach offers a robust solution for securing dynamic and vulnerable network environments, 

paving the way for more resilient intrusion detection systems in dynamic networks.  
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1.

 

Introduction

 

An Intrusion Detection System (IDS) is a vital security 

mechanism that monitors computer networks to detect and 

mitigate malicious activities, such as unauthorized access, 

data collection, or port scanning, which could compromise 

system integrity or enable sabotage (Chander et al., 2019). 

IDSs can be classified based on criteria like detection 

methods (e.g., signature-based or anomaly-based) or 

deployment types (e.g., host-based or network-based), as 

shown in Figure 1.

 

Anomaly-based intrusion detection systems (IDSs) 

identify malicious behaviors by distinguishing them from 

normal system activities. When network traffic exceeds a 

predefined threshold separating normal and abnormal 

behavior, the system generates an alert for a potential 

attack, though this approach often results in a high false 

alarm rate. In contrast, signature-based IDSs rely on 

patterns of known intrusions, transforming the detection 

process into a classification task that accurately identifies 

learned attack patterns with a low false alarm rate. Hybrid 

IDSs combine these approaches, first using signature-based 

techniques to detect known attacks and then applying 

anomaly-based methods to identify novel attacks absent 

from the database (Chander, 2020). Host-based IDSs 

(HIDS), installed on individual systems, monitor only the 

network interface card’s information exchange. This 

method is costly, lacks compatibility with all

 

operating 

systems, and often fails to detect widespread network 

attacks. Conversely, Network-based IDSs (NIDS) analyze 

both incoming packets and transmitted data, offering 

broader attack detection (Chander, 2020b). IDSs can also 

be categorized by processing structure: centralized 

(processing occurs on a single system) or distributed (each 

system processes packets independently). Additionally, 

they are classified by response behavior—active (e.g., 

redirecting attackers to a honeypot) or passive—and by 

data sources used for detection. Temporal aspects further 

divide IDSs into real-time (continuous packet examination) 

or periodic (snapshot-based analysis) systems (Aluvala et 

al., 2016).

 
 

Fig.

 

1. Different categories of intrusion detection systems

 

Mobile ad hoc networks (MANETs) face significant 

challenges in secure service usage and information 

exchange due to their reliance on insecure wireless media, 

which are vulnerable to attacks such as eavesdropping, 

spoofing, data modification, and deletion. Ensuring 

security, data integrity, and user anonymity during 

transmission is paramount. Various remote authentication 

schemes have been proposed, including single-factor 

(password-based), two-factor (password and smart card), 

and three-factor (password, smart card, and biometrics) 

authentication, alongside key agreement protocols (Sadri & 

Asaar, 2021). Three-factor authentication is generally more 

secure due to biometrics’ unique properties, such as 

resistance to spoofing and their constant association with 

the user, combined with a large state space that complicates 

unauthorized access. However, implementing 

authentication in insecure environments risks 

vulnerabilities, including:

 



 

Accessing unauthorized stored data via stolen 

smart cards.

 



 

Eavesdropping, modifying, deleting, 

retransmitting, or redirecting exchanged 

messages.

 



 

Discovering passwords and user IDs due to 

limited state spaces, solvable in polynomial time.

 



 

Leaking confidential information by legitimate 

users to external attackers through insider attacks.

 

To address these challenges, this paper proposes a hybrid 

metaheuristic approach for detecting malicious nodes in 

intrusion detection systems, leveraging two-factor 

authentication and key agreement based on elliptic curve 

cryptography (ECC) in MANETs. Users authenticate and 

establish keys via the Session Initiation Protocol (SIP) to 

access servers securely. This approach effectively 

establishes a robust framework for securing dynamic, 

resource-constrained MANETs by enhancing detection 

accuracy, node activity, and energy efficiency, as validated 

through simulations.
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2.
 
Literature Review

 

The rapid proliferation of emerging technologies, such as 

the Internet of Things (IoT), wireless sensor networks 

(WSNs), vehicular ad hoc networks (VANETs), and cloud-

assisted systems, has driven innovation while introducing 

significant security and performance challenges. Research 

in authentication, intrusion detection, cryptography, and 

optimization-based solutions is critical to ensuring system 

integrity, reliability, and efficiency. This review 

synthesizes recent advancements in authentication 

protocols, intrusion detection frameworks, and 

optimization-driven approaches across IoT, VANETs, and 

MANETs, emphasizing lightweight cryptographic 

techniques, meta-heuristic optimization, and artificial 

intelligence (AI)-based security solutions.
 

Intrusion detection systems (IDS) are pivotal for securing 

dynamic network environments. Genetic algorithm-based 

feature selection, as employed by Xue et al. (2021), Jiang 

(2020), Wu et al. (2021b), Far et al. (2021), and Meshram 

et al. (2021), enhances IDS efficiency by automatically 

selecting relevant features and reducing dimensionality. 

These approaches often combine genetic algorithms with 

support vector machines (SVM) or other classifiers to 

improve real-time intrusion detection, though Far et al. 

(2021) noted high false positive rates requiring classifier 

modifications. Similarly, Kantola et al. (2020) optimized 

SVM parameters using genetic algorithms alongside kernel 

principal component analysis (KPCA) for preprocessing, 

achieving robust intrusion detection. Naveena and Reddy 

(2016) and Shrivastava et al. (2015) also utilized genetic 

algorithms for IDS in MANETs, leveraging linear genetic 

programming and evaluation theory to model and classify 

network intrusions effectively.
 

Deep learning-based IDS approaches have gained traction 

for their robustness. Shams et al. (2023) developed a flow-

based IDS for VANETs using a Context-Aware Feature 

Extraction-Based Convolutional Neural Network 

(CAFECNN), which collects data from vehicles and 

Roadside Units (RSUs) with synthetic datasets generated 

via Network Simulator 3 (ns-3) and Simulation of Urban 

Mobility (SUMO). Similarly, dos Santos et al. (2025) 

proposed IoTSafe, a fog-based IoT security platform 

integrating deep learning for attack detection, achieving 

99.57% accuracy and 99.66% precision. Saviour and 

Samiappan (2023) proposed a Chronological 

Anticoronavirus Optimization-based Deep Residual 

Network (CACVO-DRN) for intrusion detection, 

combining optimization and deep learning for high 

performance. Bagirathan et al. (2025) introduced an 

Ensemble Long Short-Term Memory (ELSTM) model for 

VANETs, evaluating trust and node parameters like data 

forwarding rate and link quality to detect malicious nodes 

with improved accuracy. Deivakani et al. (2024) applied a 

Precise Probability Genetic Algorithm (PPGA) and 

Stacked Recurrent Long Short-Term Memory (SRLSTM) 

to enhance attack detection in MANETs using features like 

Received Signal Strength Indication (RSSI) from NSL-

KDD and CICIDS-2017 datasets. Sarangi et al. (2025) 

utilized a Residual Recurrent Neural Network (Res-RNN) 

with Enhanced African Rhinoceros Optimization (EARO) 

for trust-aware multicast routing in MANETs, 

outperforming baseline models like DNN and 1DCNN. 

Mansouri et al. (2025) proposed a federated learning and 

blockchain-based IDS for VANETs, enabling privacy-

preserving distributed model training.
 

Authentication remains a cornerstone of network security. 

Wang et al. (2018) introduced a password-based remote 

user authentication scheme, highlighting vulnerabilities in 

single-factor authentication. Gupta et al. (2021) proposed a 

two-factor authentication scheme using passwords and 

smart cards, requiring server validation to enhance 

security. However, Sharma and Nidhi (2020) noted 

vulnerabilities in similar pass-card-based schemes to 

impersonation and spoofing attacks. Wazid et al. (2017) 

reviewed authentication schemes, identifying persistent 

vulnerabilities to temporary information threats and 

password invalidation issues. Wang et al. (2025) proposed 

a UAV–vehicle cooperative authentication scheme for 

VANETs, using Trusted Centers of Authority to mitigate 

single points of failure and reduce computational overhead.
 

Optimization algorithms enhance routing and security in 

dynamic networks. Nivedita et al. (2025) developed a 

cluster-based routing protocol for MANETs using density-

based Adaptive Soft Clustering (DAS) and Elk Herd 

Optimization (EHO) for stable cluster head selection. Their 

ASGO-TSPCPTrustNet algorithm calculates multi-

attribute trust values and optimizes routes using the 

Adaptive Snow Geese Optimization Algorithm (ASGO), 

integrated with a Stacked Convolutional Sequential 

Autoregressive Encoding Network (SCSAEN) for 

intrusion detection. Huang et al. (2025) introduced a 

lightweight wormhole detection algorithm for MANETs 

using the Address Resolution Protocol (ARP) with the 

AODV protocol, achieving high detection rates with 

minimal computational overhead. Prasad et al. (2023) 

proposed a comprehensive MANET IDS framework with 

a fuzzy logic-based performance reliability evaluation 

model, addressing trade-offs in statistical performance due 

to imbalanced sample ratios. Qi and Chen (2021) 

developed an efficient rule generator for denial-of-service 

attacks, though its applicability is limited to specific attack 

types. Table 1 summarizes some of the researches.
 

The reviewed studies highlight significant progress in 

securing dynamic network environments like IoT, 

VANETs, and MANETs through advanced intrusion 

detection, authentication protocols, and optimization-

driven routing. However, critical gaps remain, particularly 

in MANETs, where dynamic topologies and resource 

constraints heighten vulnerabilities to attacks such as smart 

card loss, offline password guessing, identity spoofing, and 

replay attacks. Conventional two-factor authentication 

schemes often fail to provide robust protection, and 

existing intrusion detection systems struggle to balance 

high detection accuracy with energy efficiency in resource-

limited settings.
 

To address these challenges, this study proposes a novel 

hybrid metaheuristic approach integrated with elliptic 

curve cryptography for enhanced two-factor authentication 

in MANETs. By combining metaheuristic optimization 

with lightweight, secure key exchange, the proposed 

method improves malicious node detection, boosts 
 

detection accuracy, increases active node counts, and 

optimizes residual energy. Simulation results demonstrate 

superior performance over existing methods, offering a 

robust and efficient solution for securing dynamic, 

resource-constrained networks and advancing resilient 

intrusion detection systems.
 

 

Journal of Optimization in Industrial Engineering,Vol.18, Issue 2, Summer & Autumn 2025, 161-170

Yahya Shahin Barsim Barsim  & et al / A hybrid metaheuristic approach to optimize …



164 

 

Table 1

 

Comparison of Different Authentication Methods and

 

User Authenticity

  

Authors

 

Pros

 

Cons

 

Wazid et al. (2017)

 
Comprehensive analysis of authentication 

vulnerabilities

 
Identifies persistent threats and password invalidation issues

 

Islam et al. (2017)

 
Provides dynamic identity for enhanced user 

authentication

 Vulnerable to offline password guessing, impersonation, 

denial of service; lacks session key provision

 

Wang et al. (2018)

 

Simple and lightweight authentication process

 

Susceptible to security pitfalls in single-factor authentication

 

Gope et al. (2018)

 
Computationally efficient due to hash function 

use

 Susceptible to forward secrecy issues and offline password 

guessing

 

Yang et al. (2019)

 

Facilitates server-side validation

 
Vulnerable to impersonation, insider threats, and server 

spoofing

 

Sharma & Nidhi 

(2020)

 
Resistant to smart card theft threats

 
Vulnerable to user impersonation, server spoofing, offline 

password guessing, insider threats

 

Wang et al. (2020)

 

Simplifies user authentication process

 
Lacks impersonation resistance, user tracking, and password 

change verification

 

Gupta et al. (2021)

 

Enhances security through dual verification

 

Requires physical card reader, increasing complexity

 

Zou et al. (2022)

 
Supports smart card integration for enhanced 

security

 Susceptible to smart card theft; does not ensure user 

anonymity

 

Wang et al. (2022)

 
Lightweight design for resource-constrained 

environments

 
Lacks resistance to offline password guessing attacks

 

Saviour & 

Samiappan (2023)

 
High performance in secure authentication

 

Complex implementation due to deep learning integration

 

dos Santos et al. 

(2025)

 High accuracy (99.57%) and precision (99.66%) 

in secure authentication

 Requires fog infrastructure, increasing deployment 

complexity

 

Wang et al. (2025)

 
Mitigates single points of failure, reduces 

computational overhead

 Dependent on Trusted Centers of Authority for 

implementation

 

3.

 

Methodology 

 

In this section, a hybrid meta-heuristic approach is 

presented using local information collected by a Particle 

Swarm Optimization algorithm based on genetic 

algorithms for identifying malicious nodes for intrusion 

detection based on two-factor authentication using elliptic 

curve cryptography in mobile ad hoc networks. This 

approach not only detects intrusions but also reduces 

energy consumption, allowing malicious packets to be 

removed from the network in the shortest possible time.

 

In the Particle Swarm Optimization algorithm, each

 

particle has a position, a velocity vector, and a fitness 

function (Daneshvar et al., 2021). The velocity vector 

determines the movement direction of the particle, while 

the fitness function specifies the new position of the 

particle. Over time, particles

 

accelerate towards those with 

higher fitness criteria that are in the same communication 

group. Assuming the search space is D-dimensional, the i-

th particle and its velocity are represented by D-

dimensional vectors as Xi = (xi1, xi2, … , xiD)Tand Vi =
(vi1, vi2, … , viD)T respectively, while the best position seen 

among the previous positions of the i-th particle is denoted 

as Pi = (pi1, pi2, … , piD)T. The parameter g is also used to 

represent the best particle in the population. Therefore, the 

best position seen in the entire population is represented by 

the vector Pg = (pg1, pg2, … , pgD)T. The update of the 

velocity and position of particles at each stage of the 

population's movement is as equation (1):

 

vid(t + 1) = w. vid(t) + c1. rand(pid(t) − xid(t))

+ c2. rand (pgd(t) − xid(t))

 

xid(t + 1) = xid(t) + vid(t + 1)

 

 i = 1,2, … , N    و   d = 1,2, … , D

 
(1)

 

In the genetic algorithm, a population of chromosomes is 

initially created randomly, and their fitness is calculated 

(Daneshvar et al., 2020; Homayounfar et al., 2020; Salahi 

                                                          

 

1

 

Node Degree

 

et al., 2020; Salahi et al., 2021). Then, through crossover 

and mutation operators, a new population with higher 

fitness values is generated (Nahavandi et al., 2021; Tavakol 

et al., 2023). The intrusion detection system consists of two 

main phases: the first phase involves rule generation using 

the audit data network, and the second phase involves 

selecting the responses with the highest fitness value and 

the best set of rules for identifying intruders. The reason for 

choosing the combined approach of particle swarm 

algorithms and genetic algorithms in this paper is that the 

particle swarm algorithm finds the best global value, which 

can influence the movement of other particles and lead to

 

rapid convergence (Asgharizadeh et al., 2022), while the 

genetic algorithm can share information among 

chromosomes (Kazemi et al., 2024). Thus, this 

combination enhances the ability to search globally and 

escape local optimal solutions, contributing to better 

results. A parent generated during the particle swarm 

algorithm is used to produce another parent using crossover 

and mutation operators in the genetic algorithm, and 

ultimately, the next repeated parent is generated through 

elitist selection. The K-means method is used to 

dynamically adapt cluster centres and improve 

convergence. In this paper, the population size (number of 

particles), inertia weight (W), maximum speed (Vmax), 

learning factors (c1, c2), crossover rate, and mutation rate 

are initialized, and the fitness value of each particle for 

survival in the network is calculated based on variables 

such as location, energy, network connectivity1

 

(number of 

neighbors), and the number of survival occurrences of each 

particle2.

 

The two-factor authentication-based intrusion detection 

approach using elliptic curve cryptography in mobile ad 

hoc networks is designed to invoke the particle swarm 

optimization algorithm based on genetic algorithms for 

identifying malicious nodes. It includes five phases:

 

2 Head Count 
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1. System Initialization: including the selection of an 

elliptic curve equation and a base point by the server, 

selection of a private key and a public key by the server, 

selection of three one-way mixed equations by the server, 

and server publication.

 

2. Registration Phase: generating a random secret number 

and sending it along with the user ID (𝐼𝐷𝑢) and identity 

password (𝐻1(𝑃𝑊𝑢‖𝑏𝑢) ∗ 𝑃) by the user to the server over 

a secure communication channel, server verification of 

user ID and identity password, calculation 𝐴𝐼𝐷𝑢 =
(𝑞𝑠 + 1) ∗ 𝐻1(𝑃𝑊𝑢‖𝑏𝑢) ∗ 𝑃

 

and 𝐵𝐼𝐷𝑢 =
𝐻2(𝐻1(𝐼𝐷𝑢)‖𝐻1(𝑃𝑊𝑢‖𝑏𝑢) ∗𝑃)

 

using one-way mixed 

functions by the server, storing {𝐴𝐼𝐷𝑢 , 𝐵𝐼𝐷𝑢}

 

in a secure 

channel by the server, and receiving the smart card 

containing {𝐴𝐼𝐷𝑢 , 𝐵𝐼𝐷𝑢 , 𝑏𝑢}

 

by the user.

 

3. Login Phase: placing the smart card in the card reader by 

the user, calculating 𝐵𝐼𝐷𝑢 =
𝐻2(𝐻1(𝐼𝐷𝑢)‖(𝐻1(𝑃𝑊𝑢‖𝑏𝑢) ∗ 𝑃)

 

and verifying 𝐵𝐼𝐷𝑢 =
𝐵𝐼𝐷𝑢

́  by the user, randomly selecting 𝑟𝑢 and calculating 

𝑇𝐼𝐷𝑢 = 𝐴𝐼𝐷𝑢 − 𝐻1(𝑃𝑊𝑢‖𝑏𝑢) ∗ 𝑃 , 𝑀 = 𝑟𝑢 ∗ 𝑄𝑠

 

and 

𝐶𝐼𝐷𝑢 = 𝐼𝐷𝑢 ⊕ 𝐻2(𝑀‖𝑇𝐼𝐷𝑢), 𝐷𝐼𝐷𝑢 = 𝑀 +
𝐻1(𝑃𝑊𝑢‖𝑏𝑢) ∗ 𝑃

 

and 𝐸𝐼𝐷𝑢 = 𝐻3(𝐼𝐷𝑢‖𝑀‖𝑅)

 

until R=𝑟𝑢 ∗
𝑃

 

is provided, sending the login request message 𝑀1 =
{𝐶𝐼𝐷𝑢 , 𝐷𝐼𝐷𝑢 , 𝐸𝐼𝐷𝑢 , 𝑅}

 

by the user.

 

4. Key Agreement and Confirmation Phase: calculating 

𝑇𝐼𝐷𝑢 = 𝑞𝑠 ∗ (𝑃𝑊𝑢‖𝑏𝑢) ∗

𝑃 , 𝑀 = 𝑞𝑠 ∗ 𝑅 , 𝐻1(𝑃𝑊𝑢 ‖𝑏𝑢) ∗ 𝑃 = 𝐷𝐼𝐷𝑢 − 𝑀́́ , verifying 

𝐼𝐷𝑢 = 𝐶𝐼𝐷𝑢 ⊕ 𝐻2(𝑀́‖𝑇𝐼𝐷́ 𝑢) and 𝐻3(𝐼𝐷𝑢‖𝑀́‖𝑅) =

𝐸𝐼𝐷𝑢  by the server, user authentication confirmation by the 

server, selecting a random secret number 𝑟𝑠

 

and calculating 

𝑆 = 𝑟𝑠 ∗ 𝑃 و 𝑇 = 𝑆 + 𝑀́و 𝐻𝑠 = 𝐻2(𝑆‖𝑇𝐼𝐷́ 𝑢)

 

by the server, 

sending confirmation message 𝑀2 = {𝑇, 𝐻𝑠} to the user by 

the server, calculating 𝑆 = 𝑇 −

𝑀, 𝐻𝑠 = 𝐻2(𝑆‖𝐻1(𝑃𝑊𝑢‖𝑏𝑢) ∗ 𝑄𝑠)́ , and verifying 𝐻́𝑠 =
𝐻𝑠  by the user, issuing user login confirmation by the 

server, sending message 𝑀3 = {𝐻𝑅𝑆}

 

that 𝐻𝑅𝑆 =
𝐻2(𝑅‖𝑆) by user,

 

calculating 𝐻́𝑅𝑆 = 𝐻2(𝑅‖𝑆)

 

and 

comparing it with 𝐻𝑅𝑆, and if this equality holds, issuing 

entry permission by the server, calculating the key 𝑠𝑘 =

𝐻3(𝐼𝐷𝑢‖𝑇𝐼𝐷𝑢‖𝑟𝑢 ∗ 𝑆)𝑎𝑛𝑑 𝑠𝑘 =  𝐻3(𝐼𝐷𝑢‖𝑇𝐼𝐷́ 𝑢‖𝑟𝑢 ∗ 𝑅)

 

by the user and server.

 

5. Password Change Phase: entering 𝐼𝐷𝑢

 

and 𝑃𝑊𝑢

 

by the 

user, calculating 𝐵𝐼𝐷́ 𝑢 = 𝐻2(𝐻1(𝐼𝐷𝑢)‖(𝐻1(𝑃𝑊𝑢‖𝑏𝑢) ∗
𝑃))

 

and comparing it with 𝐵𝐼𝐷𝑢by the card reader, if 

equality holds, entering 𝑃𝑊𝑢
𝑛𝑒𝑤

 

by the user, calculating 

𝐴𝐼𝐷𝑢
𝑛𝑒𝑤 = 𝐻1(𝑃𝑊𝑢‖𝑏𝑢)−1 ∗ 𝐴𝐼𝐷𝑢 ∗ 𝐻1(𝑃𝑊𝑢

𝑛𝑒𝑤‖𝑏𝑢)

 

and 

𝐵𝐼𝐷𝑢
𝑛𝑒𝑤 = 𝐻2(𝐻1(𝐼𝐷𝑢)‖𝐻1(𝑃𝑊𝑢

𝑛𝑒𝑤‖𝑏𝑢) ∗ 𝑃) by the card 

reader, and replacing 𝐴𝐼𝐷𝑢

 

and 𝐵𝐼𝐷𝑢with 𝐴𝐼𝐷𝑢
𝑛𝑒𝑤

 

and 

𝐵𝐼𝐷𝑢
𝑛𝑒𝑤by the smart card. In Table 2, the notations of the 

proposed approach are displayed.

 
 

Table 2

 

Notations of the Proposed Approach

 

S

 

Server

 

U

 

User

 

(𝑞𝑠, 𝑄𝑠)

 

Public and private key pairs of the server so that 𝑄𝑠 =
𝑞𝑠∗𝑃

 

𝐼𝐷𝑢

 

User Identity

 

𝑃𝑊𝑢

 

User Password

 

𝐻1(. )

 

The one-way complex function such as 𝐻1: 0, 1∗ → 𝐺𝑝

 

𝐻2(. )

 

The one-way complex function such as 𝐻2: 𝐺𝑝 ∗ 𝐺𝑝 →

𝑍𝑝
∗

 

𝐻3(. )

 

The one-way complex function such as 𝐻3: {0,1}∗ ∗
𝐺𝑝 ∗ 𝐺𝑝 → {0,1}𝑘

 

𝑟𝑢

 

User-selected secret number

 

𝑟𝑠

 

Secret number selected by the server

 

𝐸𝑝(𝑎, 𝑏)

 

Defined Elliptical Chart in a Finite Range

 
 

Figure 2 shows the flowchart of the proposed approach.

 

 

  

Fig.

 

2. Proposed Approach Flowchart

 

1-

 

Start

 

3-

 

Data Preprocessing:

 

- Filter unwanted data

 

- Normalize data

 

4-

 

Initialize Population:

 

- Generate initial population for the genetic algorithm

 

- Randomly assign positions and velocities for particles

 
5-

 

Initial Evaluation:

 

- Evaluate particles based on the objective function

 

- Calculate costs and optimization degrees

 

7-

 

Particle Swarm Update:

 

- Update positions and velocities of particles based on 

personal and social experiences

 

- Use particle swarm optimization to find optimal 

positions 

 

6-

 

Genetic Operations: 

 

- Selection: Select the best particles for reproduction

 

- Crossover: Combine two particles to create new 

offspring

 

- Mutation: Make small changes in positions and velocities 

to create diversity

 

8-

 

Re-evaluation:

 

- Re-evaluate newly generated particles

 

- Calculate costs and optimization degrees

 
9-

 

Malicious Node Detection:

 

- Identify suspicious using optimization results

 

- Apply two-factor authentication for increased accuracy        

 

10-

 

Finish

 

10-

 

Preventive Actions:

 

- Isolate malicious nodes

 

- Update security protocols

 

2-

 

Data Collection:

 

-

 

Collect information from Nodes

 

-

 

Use Elliptic Curve Cryptography for data security 

 

-
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4.
 
Results and Discussion

 

In this section, the simulation of the proposed approach and 

the evaluation of its results are discussed. The energy of 

each node for transmitting information is based on 

relationship 𝐸𝑡𝑟𝑎𝑛𝑠 = {
𝑙𝐸𝑒𝑙𝑒𝑐 + 𝑙𝜀𝑓𝑠𝑑2      𝑑 < 𝑑𝑡ℎ

𝑙𝐸𝑒𝑙𝑒𝑐 + 𝑙𝜀𝑚𝑝𝑓𝑑4    𝑑 > 𝑑𝑡ℎ
, the 

received energy according to relationship 𝐸𝑟𝑒𝑐
 
= 𝑙𝐸𝑒𝑙𝑒𝑐, 

the threshold distance from relationship 𝑑𝑡ℎ = √𝜀𝑓𝑠
𝜀𝑚𝑝⁄ , 

and for calculating the cluster head nodes from relationship 

𝐸(𝐶𝐻𝑘) = 𝑁𝑘
 
× 𝑙

 
× 𝐸𝑒𝑙𝑒𝑐

 
+ (𝑁𝑘

 
+ 1) × 𝑙

 
× 𝐸𝐷𝐴

 
+ 𝑙

 
× 

(𝐸𝑒𝑙𝑒𝑐
 
+ ε𝑚𝑝𝑑) is used. Here ε𝑚𝑝

 
represents the amplifier 

energy, 𝑑𝑡ℎ
 
is the threshold distance and 𝐸𝐷𝐴

 
is the energy 

required for data aggregation.
 
The relationship 𝐸(𝐶𝐻𝑘) 

consists of three parts: the first part includes the energy 

spent on receiving packets, the second part relates to the 

energy spent on data aggregation and identifying malicious 

nodes, and the third part is the energy required to send 

packets to the main station.
 

 
In the proposed hybrid approach, malicious nodes within 

each cluster are identified from the existing nodes using the 

obtained information. Specifically, for each cluster, a node 

is randomly selected as an assistant, which is responsible 

for collecting information about location, energy, the 

number and degree of nodes, the best status so far, and 

other necessary parameters. This assistant node identifies 

the malicious node(s) and cuts off their communications 

with the other nodes in the cluster. For key agreement in 

the proposed approach, the user first sends a request 𝑀1 =

{𝐶𝐼𝐷𝑢 , 𝐷𝐼𝐷𝑢 ,𝐸𝐼𝐷𝑢 , 𝑅}
 
to the server. After receiving this 

request, the server checks the validity of 𝐻3(𝐼𝐷𝑢‖𝑀‖𝑅́ ) =

𝐸𝐼𝐷𝑢

 
and confirms the authentication by sending message 

𝑀2 = {𝑇, 𝐻𝑠}
 
to the user, granting access. The user then 

compares the value of 𝐻2(𝑆 ‖𝑇𝐼𝐷𝑢)́
 
with 𝐻𝑠

 
to access the 

server, confirms its legitimacy, and shares the key 𝑠𝑘 =
𝐻3(𝐼𝐷𝑢‖𝑇𝐼𝐷𝑢‖𝑟𝑢 ∗ 𝑆) =  𝐻3(𝐼𝐷𝑢‖𝑇𝐼𝐷𝑢). In the proposed 

approach, forward secrecy is utilized, and even if the 

adversary 𝑆 = 𝑟𝑠 ∗ 𝑃 و 𝑅 = 𝑟𝑢 ∗ 𝑃 و 𝑆 = 𝑟𝑠 ∗ 𝑃
 
is aware of 

the public channel, they still
 
cannot access the secret key 

𝑠𝑘. The user's identity cannot be stored on the smart card 

and is identified by 𝐶𝐼𝐷𝑢 = 𝐼𝐷𝑢 ⊕ 𝐻2(𝑀‖𝑇𝐼𝐷𝑢), which 

changes with each passage. Even if the request message for 

passage is stolen by the adversary, without access to the 

server's secret key 𝑞𝑠and the user's password 𝑃𝑊𝑢, the 

user's identity remains secure. If a malicious user wants to 

remotely control the server anonymously, they need to 

generate a valid message 𝑀2 = {𝑇, 𝐻𝑠}
 
such that it includes 

𝑇 = 𝑆 + 𝑀́, 𝐻𝑠 = 𝐻2(𝑆‖𝑇𝐼𝐷́ 𝑢). This means they must 

have the values of 𝑀́
 

and 𝑇𝐼𝐷́ 𝑢to compute the valid 

message 𝑀2. However, without knowing the server's secret 

key and the user's password 𝑃𝑊𝑢, they cannot compute the 

value of 𝑀 =  𝑞𝑠 ∗ 𝑅́ , 𝑇𝐼𝐷́ 𝑢 = 𝑞𝑠 ∗ 𝐻1(𝑃𝑊𝑢‖𝑏𝑢). 

Therefore, the proposed approach is also secure against 

fraud threats. Internal threats refer to the possibility that a 

user may register multiple servers with the same identity 

and password, gaining access to other servers by 

impersonating their identity. However, in the proposed 

approach, during the registration phase, the user presents 

their identity, password, and 𝐻1(𝑃𝑊𝑢‖𝑏𝑢) ∗ 𝑃
 

to the 

server. Meanwhile, the server, facing the discrete logarithm 

problem, is unable to derive the password 𝑃𝑊𝑢from 

𝐻1(𝑃𝑊𝑢‖𝑏𝑢) ∗ 𝑃.
 
Additionally, in the event of the smart 

card being lost or stolen by a malicious user, the password 

cannot be guessed from 𝐴𝐼𝐷𝑢 and 𝐵𝐼𝐷𝑢, as the true identity 

𝐼𝐷𝑢  and password 𝑃𝑊𝑢

 
are necessary for passing through 

𝐵𝐼𝐷́ 𝑢 = 𝐵𝐼𝐷𝑢. The proposed approach also performs well 

against identity impersonation. If an adversary wants to 

impersonate a user to gain access to the server, they would 

need to possess the values of 𝑞𝑠, 𝐼𝐷𝑢 , and 𝑇𝐼𝐷𝑢. In the 

proposed approach, the periodic
 
key consists of 𝐼𝐷𝑢 , 𝑇𝐼𝐷𝑢, 

and 𝑟𝑢 ∗ 𝑟𝑠 ∗ 𝑃, where 𝑟𝑢

 
and 𝑟𝑠

 
are provided by the user and 

the server, respectively. This ensures that the key is pre-

selected or controlled. Even if 𝑟𝑢 and 𝑟𝑠are compromised, 

the adversary still cannot access
 

the key 𝑠𝑘 =
𝐻3(𝐼𝐷𝑢‖𝑇𝐼𝐷𝑢‖𝑟𝑢 ∗ 𝑟𝑠 ∗ 𝑃), as there is no way for them to 

compute 𝐼𝐷𝑢

 
and 𝑇𝐼𝐷𝑢.

 

The initial parameter settings for particle swarm 

optimization algorithms, genetic algorithms, and structural 

network parameters are shown in Table 3.
 

 

Table 3
 

Initial parameter settings for PSO, GA and structural network 

parameters
 

Parameter
 

Value
 

 
α3

 
0.3

 

 
α2

 
0.4

 

 
α1

 
0.2

 

T
 

200
 

N
 

100
 

W
 

0.4-1.2
 

C1

  
2

 

C2

  
2

 

Mutation Rate
 

0.3
 

 
Elec

 
50 nJ/bit

 

Efs
 

10 pJ/bit/ 𝑚
 

Εmpf
 

0.0013 pJ/bit/ 𝑚4
 

 

The criteria examined in this section include the average 

remaining energy, variance of remaining energy, number 

of alive nodes, and percentage of lost messages, which will 

be discussed in the following results.
 

-
 

Average Remaining Energy
 

According to Figure 3, the trend of average remaining 

energy in the network is uniformly decreasing due to the 

failure phenomenon. This phenomenon occurs in the 

network due to the depletion of energy and the shutdown 

of faulty nodes, such that the faulty nodes are no longer 

able to communicate with other nodes. This decreasing 

trend is observed even under high traffic (when the traffic 

volume exceeds 14 messages per second) for a network 

with a short time period.
 

 

 
 

Fig.
 
3.Average residual energy
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-
 

Variance of Remaining Energy
 

To calculate the variance in different traffic conditions, the 

following relationship has been used.
 

∑ (𝐸𝑎𝑣𝑔 − 𝐸𝑖)
2𝑁

𝑖−1

𝑁

 
(2)

 

As shown in Figure 4, with the increase in the number of
 

faulty nodes, the variance of the remaining energy of the 

set increases. The lack of change in the status of the graph 

indicates a complete network failure, and the nodes in the 

network are in a state where they are not communicating 

with each other.
 

 

Fig.
 
4. Residual Energy Variance

 

 

- Number of Alive Nodes 

A node that still has energy remaining and participates in 

traffic generation and information exchange is referred to 

as an alive node. When the energy of the nodes in the 

network is depleted and due to the lack of recharging, their 

communications are interrupted, making them no longer 

usable and removing them from the network. Therefore, 

distinguishing between faulty nodes and nodes that have 

exited the network due to energy depletion is one of the 

major challenges in this field. Thus, the number of alive 

nodes in the network is an important parameter. As shown 

in Figure 5, the rate of decline in the graph at traffic 

volumes of 12, 14, and 16 messages per second is faster 

because the network is at its highest information exchange 

volume, and afterward, due to network failure, these 

changes become less pronounced. 

 
Fig. 5. Number of live nodes at different traffic rates 

 

- Percentage of Lost Messages 

As we know, in fixed networks, a high percentage of 

messages successfully reach their destination, and the 

percentage of lost messages is low. This percentage 

decreases under high traffic loads due to the reduction in 

the number of alive nodes and the removal of faulty nodes. 

However, in mobile networks, these results are 

unpredictable due to the lack of management of node 

behaviors, leading to a high percentage of messages not 

reaching their destination. Figure 6 shows the percentage 

of lost messages in the network at different traffic rates.
 

 

Fig.
 
6. Percentage of messages lost on the network

 
 

-
 

Comparison of the Proposed Approach with 

Other Methods
 

In this section, the comparison of the proposed approach 

with the methods presented in references 16 and 18 is 

shown in terms of remaining energy, average number of 

alive nodes, and accuracy in identifying faulty nodes in 

each round with 100 nodes, as illustrated in Figures 7 and 

8. As shown in the figures, the performance of the proposed 

approach is improved compared to these methods due to 

the use of a greater number of parameters in identifying 

faulty nodes and the combination of metaheuristic 

algorithms.
 

 

 
Fig. 7. Comparison of the amount of residual energy of the 

network in each round with 100 nodes of the proposed approach 

with references 16 and 18 and the protocol 
 

 
Fig. 8 Comparison of the average number of live nodes of the 

network in each round with 100 nodes of the proposed approach 

with references 16 & 18 
 

In Table 4, the cost of the proposed approach, including the 
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computation cost (multiplication, addition, and subtraction 

in ECC, and mixed operations), is compared with other 

related methods. In this table, Tm

 
represents the time 

complexity of the multiplication operation in elliptic curve 

cryptography, Ta

 
represents the time complexity of the 

addition and subtraction operations in elliptic curve 

cryptography, and Th

 
represents the time complexity of the

 

hashing operation in elliptic curve cryptography. 

According to this table, the cost of the proposed approach 

is better compared to the other methods being compared.
 

 

Table 4
 

Comparison of the total cost of the proposed approach with 

other methods
 

Phases

 

[18]

 

[16]

 
Suggested 

method

 

Registration 

Stage

 
1Tm+1Th

 

1Tm+1Th

 

2Tm+1Ta+3Th

 

Verification 

Stage

 
8Tm+5Ta+8Th

 

7Tm+4Ta+6Th

 

9Tm+5Ta+13Th

 

Total 

Computing 
Cost

 9Tm+5Ta+9Th

 

8Tm+4Ta+7Th

 

11Tm+8Ta+14Th

 

 

Figure 9 Shows the comparison of the time overhead of the 

proposed approach with other algorithms
 

 

Fig.
 
9. Time Overhead Comparison: Proposed Approach vs. 

Baselines
 

5.
 
Conclusion 

 

The findings of this study demonstrate that the proposed 

hybrid metaheuristic approach, integrating PSO and GA 

with ECC-based two-factor authentication, significantly 

enhances the detection accuracy and energy efficiency of 

IDS in MANETs. By combining the global search 

capability of PSO with the exploration potential of GA, the 

proposed model efficiently identifies and isolates 

malicious nodes, ensuring secure and reliable data 

transmission even under high traffic conditions. Simulation 

results confirm notable improvements in key performance 

metrics such
 
as average remaining energy, number of alive 

nodes, and detection accuracy, outperforming existing 

benchmark methods. These improvements collectively 

contribute to prolonged network lifetime, reduced 

computation cost, and greater robustness against a variety 

of attacks including impersonation, replay, and smart card 

loss threats.
 

Despite its promising results, the proposed system has 

certain limitations. The computational complexity 

associated with hybrid optimization algorithms may 

increase under large-scale MANET environments, and 

real-time adaptation to high mobility patterns or dynamic 

topological changes may require additional optimization. 

Furthermore, the approach assumes cooperative node 

behavior and stable communication links, which may not 

always hold true in heterogeneous or highly adversarial 

environments.
 

Future research should focus on addressing the 

computational complexity and scalability challenges 

associated with hybrid optimization algorithms in large-

scale MANET environments. Developing lightweight or 

adaptive metaheuristic variants that dynamically adjust 

their parameters based on network conditions could 

significantly reduce computational overhead and improve 

real-time performance. Additionally, incorporating parallel 

or distributed processing techniques, such as edge or fog 

computing, may enhance the scalability and responsiveness 

of the proposed system under high node densities.
 

Another important direction is improving the adaptability 

of the model to handle rapid mobility and frequent 

topological changes. Integrating predictive mobility 

models or reinforcement learning mechanisms could 

enable the intrusion detection system to anticipate network 

variations and maintain stability even in highly dynamic 

scenarios. This would strengthen the
 

robustness of the 

approach against real-time communication disruptions and 

minimize detection delays.
 

Future studies should also focus on overcoming the 

assumption of cooperative node behaviour by introducing 

trust-aware mechanisms and reputation-based learning 

models to detect and isolate selfish or compromised nodes. 

Moreover, applying blockchain technology could enable 

decentralized trust management and immutable 

recordkeeping for authentication processes. Finally, future 

work could also extend to multi-hop scenarios or integrate 

blockchain for decentralized key management, further 

improving system transparency and resilience in 

heterogeneous or adversarial environments.
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