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The integration of the Metaverse with real-time physical data from Internet
of Things (loT) sensors introduces stringent requirements for system
reliability and continuity. Sensor failures at the network edge can disrupt
immersive experiences due to data loss or inconsistency. To address this
challenge, we propose FedGeoSwap++, a novel fault-tolerant framework that
combines spatio-temporal indexing, federated learning, transfer learning,
and an intelligent Dynamic Resource Adaptation (DRA) agent based on
Double Q-Learning to enable intelligent, privacy-preserving sensor
substitution in Metaverse applications. FedGeoSwap++ leverages a cloud-
based spatio-temporal database with R-tree indexing to identify the
geographically closest and data-wise most similar sensor upon failure. A
Double Q-Learning agent dynamically adjusts the trade-off between spatial
proximity and temporal correlation based on network load and
environmental dynamics. Furthermore, a hard correlation threshold (p = 0.6)
ensures semantic consistency by filtering out spatially close but data-wise
dissimilar sensors. We evaluate the framework using a simulated smart city
environment with 50 sensors and 100 timesteps over 300 simulation runs.
Results show that FedGeoSwap++ achieves a Mean Absolute Error (MAE) of
0.615°C, outperforming Nearest (0.624°C), CorrOnly (0.955°C), MeanImpute
(3.029°C), and LSTM-Predict (1.299°C), while maintaining low latency (0.16
ms). A paired t-test confirms the statistical significance of this improvement
(p < 0.0001). This work advances fault tolerance in Metaverse systems by
ensuring seamless continuity, high accuracy, and robustness under sensor
failures.

Introduction

The Metaverse is rapidly evolving into a persistent,
immersive digital environment that integrates real-time
data from the physical world through Internet of Things
(loT) sensors [1]. These sensors, deployed at the network
edge, provide critical inputs such as temperature, motion,
and traffic flow to maintain environmental fidelity in digital
twins [2]. However, sensor failures—due to hardware
degradation, environmental interference, or
communication loss—can lead to data gaps, degrading user
experience and system reliability.
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Recent surveys highlight the critical need for fault
management techniques in edge-enabled distributed
Metaverse applications [2]. Traditional approaches such as
replication, checkpointing, and redundancy incur high
resource overheads and fail to preserve the spatio-temporal
semantics of sensor data. For instance, simply switching to
the nearest sensor may not suffice if the replacement sensor
exhibits a different data pattern due to its geographical or
environmental context.
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Moreover, fault management in edge-enabled
Metaverse applications requires not only technical
resilience but also context-awareness, low-latency
recovery, and semantic consistency. Existing approaches
rarely address the need for intelligent sensor
substitution that balances geographic proximity and

data similarity.

Research gap

There is a lack of a unified framework that:

1. Dynamically substitutes failed sensors with the
most contextually similar alternative,

2. Leverages federated learning to detect failures
without compromising data privacy,

3. Uses spatio-temporal indexing (e.g., R-tree) for fast
neighbor search,

4. Applies reinforcement learning for adaptive
decision-making under dynamic conditions,

5. Integrates with Metaverse-scale digital twins for
seamless continuity.

To bridge this gap, we propose FedGeoSwap++, a
novel fault-tolerant framework that combines federated
learning, transfer learning, R-tree indexing, and Double
Q-Learning to enable intelligent, privacy-preserving
sensor substitution in Metaverse applications. Our
framework ensures that upon sensor failure, the most
geographically and data-wise similar sensor is selected
in real time, minimizing data drift and maintaining
immersive continuity.

We evaluate FedGeoSwap++ through simulation in a
smart city Metaverse scenario. Results show that our
approach achieves a Mean Absolute Error (MAE) of
0.615°C and latency of 0.16 ms, outperforming baseline
methods. A paired t-test (p < 0.0001) confirms the
statistical significance of our improvement.

Related works

Fault tolerance in edge-enabled distributed systems
is a critical requirement for the seamless operation of
Metaverse applications, where real-time data continuity
and user immersion are paramount [1]. Recent surveys,
such as [2], have systematically categorized fault
management techniques into three primary domains:
fault detection, fault mitigation (prevention), and fault
structured

recovery. This taxonomy provides a

framework for evaluating existing solutions and

identifying research gaps.

Existing work primarily focuses on node-level or

service-level failures, employing strategies such as
redundancy, task migration, and consensus algorithms.
For instance, Mudassar et al. [6] proposed an adaptive
strategy using checkpointing and replication to recover
from node failures. While effective for task state
preservation, this method incurs high resource overhead
and may not be optimal for the low-latency demands of

the Metaverse.

To address failures more proactively, researchers have
turned to predictive maintenance and machine learning
(ML). Tuli et al. [7] introduced PreGAN, which uses deep
learning to predict resource exhaustion and migrate tasks
before a failure occurs. Similarly, Siyadatzadeh et al. [11]
proposed RelLIEF, a reinforcement learning-based method
for primary-standby task assignment, which adapts to
These
significant

dynamic network conditions. Al-powered

approaches represent a shift towards

intelligent fault management.

For security-critical failures like Byzantine faults,
consensus algorithms are essential. Gao et al. [12]
proposed FIBFT, a clustering-based Byzantine consensus
algorithm that reduces communication overhead, while
Wou et al. [13] introduced Reja, a permissioned blockchain
solution that ensures data immutability and user

ownership—features highly relevant to the Metaverse.

Despite these advancements, a critical gap remains in
the literature. As highlighted in Table 1, the vast majority
of existing work targets infrastructure-level failures (e.g.,
node crash, server overload). In contrast, FedGeoSwap++
addresses a distinct and under-explored problem: data-
level continuity for data-generating sensors at the
network edge. While a failed node can be migrated or a
service can be re-instantiated, a failed temperature or
traffic sensor creates a data gap that directly affects the
realism of a digital twin. Simply switching to the nearest
sensor, as in the "Nearest" baseline, may result in a
significant semantic mismatch (e.g., replacing a street
sensor with a park sensor). Our work bridges this gap by
introducing a context-aware substitution framework that
intelligently selects a replacement sensor based on both
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spatial proximity and temporal correlation, ensuring combining federated learning for local anomaly detection

high data fidelity and privacy. [3], transfer learning for cross-city adaptation, and a
This research is also inspired by the call for "Resource lightweight reinforcement learning agent for dynamic

Aware ML Models" [15] and "Al-powered migration" [7, decision-making, all while minimizing data transmission.

17], which advocate for lightweight, intelligent solutions

at the edge. FedGeoSwap++ embodies this vision by

Table 1. Comparative Analysis of Existing Techniques

Reference Fault Type Remediation Method Key Advantage Main
Limitation
[6] Node Failure Checkpointing and Fast recovery High resource
replication from last saved overhead,
state synchronization
delay
[15] Node Failure Two-stage robust Efficient High
optimization resource utilization complexity in
and fault resilience dynamic
environments
[16] Node Failure Integer Linear Guarantees Poor
Programming (ILP) minimal delay under  scalability in
failure large networks
[9] Stateful Causal logging and Ensures data Overhead
Microservice Failure  distributed checkpointing consistency and may affect real-
state reconstruction  time performance
[8] MEC Server Formal methods and Finds optimal Requires full
Failure heuristics for container re- server for recovery system
instantiation knowledge
[7] Node Failure & PreGAN: Predictive task Reduces Deep models
Resource migration with co-simulation resource wastage are resource-
Exhaustion and latency intensive
[11] Service ReLIEF: Primary-standby Adapts to Requires long
Invocation & task assignment via dynamic network initial training
Communication Reinforcement Learning conditions phase
Failure
[14] Malicious CRACAU: Identifies and Preserves Applicable
Updates (in excludes false updates integrity of only in federated
Federated Learning) collaborative learning contexts
learning
[12] Byzantine Faults FIBFT: Clustering-based Reduces High
speculative Byzantine consensus overhead  complexity in
consensus cluster
management
[13] Byzantine Faults Reja: Permissioned Ensures data High latency
blockchain + ChiosEdge immutability and in some scenarios
user ownership
FedGeoS Sensor Failure Hybrid: R-tree + Correlation High accuracy, Requires
wap++ (This (Data-Generating) Filter (p > 0.6) + Reinforcement  privacy-preserving, historical data for
Work) Learning DRA low latency correlation

This table highlights that while prior work focuses on

node-level or service-level failures, FedGeoSwap++

COMPARATIVE ANALYSIS OF EXISTING TECHNIQUES
uniquely addresses data-level continuity for physical

To position our work within the state of the art, Table sensors, which is critical for immersive digital twins.

1 compares FedGeoSwap++ with existing fault

SYSTEM ARCHITECTURE
THREE-LAYER ARCHITECTURE

management techniques in edge-enabled Metaverse
applications.
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e Edge Layer: Sensors collect data and run local "temperature": 23.5
models. )

Cloud Layer: PostgreSQL ith PostGIS and
* . Y greSQL  wi Indexed via R-tree for fast spatial queries.

TimescaleDB stores spatio-temporal data.
e Metaverse Layer: Unity/Unreal Engine queries FEDGEOSWAP++ FRAMEWORK
sensor data; triggers FedGeoSwap++ on failure In this framework, the processes are carried out according
to Figure 1 and include the following steps:

DATA MODEL FAILURE DETECTION

Each record includes: e Local LSTM autoencoders detect anomalies.

e Model updates (not data) sent to aggregator =

json
J FedAvg computes global model [3].

{ e  For new cities, TL transfers knowledge from source
"sensor_id": "S1024", (e.g., Istanbul) to target (e.g., Tehran), fine-tuning
n . n,n n 0n|y Output |ayer5 [4]

location": "POINT(35.6892 51.3890)",

"timestamp": "2023-10-05T12:34:56Z",

Cloud Layer

Edge Layer - Spatio-Temporal Metaverse Layer

) -Database Digital Tiwin (Unity
(PostGIS) Unr=al)

- R-tree Indexing User Immersion

-RL Agent (DRA)

- IoT Sensors
-Local FL Modsls

[ | |

[ | |

! 1. Failure Detected | |

"Faihire Alert" | :
2. Query B-tree & Compute

"k-Nearest, p, Score, Selection”
|

|
3 Substitute Data

[ |
ke "Sensor Data (5_"  ——

AT T

Edge Layer Cloud Layer Metaverse Layer
(Cont.) (Cont.) (Cont.)
- Continue Local Updatz RL Agznt with - Updats Environment
Anomaly Detection Reward -Szamless Experience

Fig. 1: Sensor Substitution Algorithm

SENSOR SUBSTITUTION ALGORITHM
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Given failed sensor S, find S :

{1"\ S;. '}‘ )

8- (1 — p(S;, S.‘_'l_])
1000 !

"J — arg L[.lilL [u .
(1)
e d:Haversine distance (meters)

e p:Pearson correlation (24h window)

e a+B=1, adjusted by DRA.

INTELLIGENT DRA WITH DOUBLE Q-LEARNING

To overcome the limitations of static or heuristic-based
weighting, we replace the traditional DRA mechanism with
an Intelligent DRA Agent based on Double Q-Learning.

Table 2 .Performance Metrics

Method MAE LATENCY
9y (Ms) &
Nearest 0.624 0.09
CorrOnly 0.955 0.05
Meanlmpute 3.029 0.28
LSTM-Predict 1.299 0.29
FedGeoSwap++ 0.615 0.16
e State (s): [Network_Load, Context_Dynamics,

Data_Type, Time_of_Day]

e Action (a): Selection of the weight a from a discrete
set (e.g.,{0.2,0.4,0.6,0.8}). Bissetto 1 - a.

e Reward (r):
|
d+1

r=wptwy: w; - Latency — w, - MAE
(2)

e Learning Algorithm: Double Q-Learning [5] to
reduce overestimation bias.

EVALUATION
SIMULATION SETUP

e Sensors: 50
e Timesteps: 100
e Failure Rate: 10%

e Dataset: Simulated temperature data for
Tehran with urban heat island effect

e Baselines:
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e Nearest: This simple and fast method
selects the substitute sensor based
solely on the shortest spatial distance

e CorrOnly: This method selects the

substitute based on the highest
temporal correlation (Pearson's p)
between the failed sensor and

candidates. It focuses on data pattern
consistency.

e Meanlmpute: This statistical method
replaces the failed sensor's data with
its historical mean value.

e LSTM-Predict: This method uses a deep
learning model (LSTM) to predict the
next value of the failed sensor.

e Number of Runs: 300 (for statistical power)

PERFORMANCE METRICS

As shown in Table 2, the performance of the
proposed FedGeoSwap++ framework is evaluated
against four established baseline methods: Nearest,
CorrOnly, Meanlmpute, and LSTM-Predict. The
evaluation is conducted over 300 simulation runs,
measuring two primary metrics: Mean Absolute Error
(MAE) for accuracy and latency for system
responsiveness.

STATISTICAL ANALYSIS
PAIRED T-TEST (VS NEAREST)
o t(299)=5.22 , p<0.0001

e The improvement is
significant.

highly statistically

ONE-WAY ANOVA
o F(4,1495)=105185.06 , p<0.0001

¢ Significant difference among all methods.
Post-hoc Tukey’s HSD confirms
FedGeoSwap++ is significantly better.

EFFECT SIZE (COHEN’S D)
¢ d=0.43 - Medium effect size
e Indicates a moderate practical impact.

BOXPLOT OF MAE DISTRIBUTION
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Distribution of MAE Across Substitution Methods (300 Simulations)
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Fig. 2: Boxplot of MAE

Figure 2. shows the superior accuracy and stability
of FedGeoSwap++.

DISCUSSION

The results demonstrate that FedGeoSwap++ achieves
the lowest MAE (0.615°C), outperforming Nearest
(0.624°C), CorrOnly (0.955°C), and model-based methods.
This confirms that a hybrid, context-aware strategy—
balancing spatial proximity and temporal correlation—is
superior to single-dimension approaches. The Nearest
method, while fast, risks selecting a sensor with a dissimilar
data pattern,undermining the digital twin's realism.
Conversely, CorrOnly may select a distant sensor, increasing
communication overhead. FedGeoSwap++'s use of a
correlation threshold (p = 0.6) and reinforcement learning
ensures high data fidelity and semantic consistency, directly
addressing the need for reliable, real-time data continuity in
the Metaverse.

Limitations:
e  Requires sufficient historical data for correlation.

e Assumes moderate network connectivity.

CONCLUSION

We presented FedGeoSwap++, a novel fault-tolerant
framework for Metaverse applications that uses a spatio-

temporal sensor database to replace failed sensors with
optimal alternatives. By combining federated learning,
transfer learning, R-tree indexing, and Double Q-Learning,
the framework maintains high data fidelity and system
continuity. Experiments confirm its superiority over existing
methods. This work paves the way for resilient, real-time
digital twins.
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