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 The integration of the Metaverse with real-time physical data from Internet 
of Things (IoT) sensors introduces stringent requirements for system 
reliability and continuity. Sensor failures at the network edge can disrupt 
immersive experiences due to data loss or inconsistency. To address this 
challenge, we propose FedGeoSwap++, a novel fault-tolerant framework that 
combines spatio-temporal indexing, federated learning, transfer learning, 
and an intelligent Dynamic Resource Adaptation (DRA) agent based on 
Double Q-Learning to enable intelligent, privacy-preserving sensor 
substitution in Metaverse applications. FedGeoSwap++ leverages a cloud-
based spatio-temporal database with R-tree indexing to identify the 
geographically closest and data-wise most similar sensor upon failure. A 
Double Q-Learning agent dynamically adjusts the trade-off between spatial 
proximity and temporal correlation based on network load and 
environmental dynamics. Furthermore, a hard correlation threshold (ρ ≥ 0.6) 
ensures semantic consistency by filtering out spatially close but data-wise 
dissimilar sensors. We evaluate the framework using a simulated smart city 
environment with 50 sensors and 100 timesteps over 300 simulation runs. 
Results show that FedGeoSwap++ achieves a Mean Absolute Error (MAE) of 
0.615°C, outperforming Nearest (0.624°C), CorrOnly (0.955°C), MeanImpute 
(3.029°C), and LSTM-Predict (1.299°C), while maintaining low latency (0.16 
ms). A paired t-test confirms the statistical significance of this improvement 
(p < 0.0001). This work advances fault tolerance in Metaverse systems by 
ensuring seamless continuity, high accuracy, and robustness under sensor 
failures. 
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Introduction 

The Metaverse is rapidly evolving into a persistent, 
immersive digital environment that integrates real-time 
data from the physical world through Internet of Things 
(IoT) sensors [1]. These sensors, deployed at the network 
edge, provide critical inputs such as temperature, motion, 
and traffic flow to maintain environmental fidelity in digital 
twins [2]. However, sensor failures—due to hardware 
degradation, environmental interference, or 
communication loss—can lead to data gaps, degrading user 
experience and system reliability. 

Recent surveys highlight the critical need for fault 
management techniques in edge-enabled distributed 
Metaverse applications [2]. Traditional approaches such as 
replication, checkpointing, and redundancy incur high 
resource overheads and fail to preserve the spatio-temporal 
semantics of sensor data. For instance, simply switching to 
the nearest sensor may not suffice if the replacement sensor 
exhibits a different data pattern due to its geographical or 
environmental context. 
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Moreover, fault management in edge-enabled 

Metaverse applications requires not only technical 

resilience but also context-awareness, low-latency 

recovery, and semantic consistency. Existing approaches 

rarely address the need for intelligent sensor 

substitution that balances geographic proximity and 

data similarity. 

Research gap 

 

There is a lack of a unified framework that:  

1. Dynamically substitutes failed sensors with the 
most contextually similar alternative, 

2. Leverages federated learning to detect failures 
without compromising data privacy, 

3. Uses spatio-temporal indexing (e.g., R-tree) for fast 
neighbor search, 

4. Applies reinforcement learning for adaptive 
decision-making under dynamic conditions, 

5. Integrates with Metaverse-scale digital twins for 
seamless continuity. 

To bridge this gap, we propose FedGeoSwap++, a 

novel fault-tolerant framework that combines federated 

learning, transfer learning, R-tree indexing, and Double 

Q-Learning to enable intelligent, privacy-preserving 

sensor substitution in Metaverse applications. Our 

framework ensures that upon sensor failure, the most 

geographically and data-wise similar sensor is selected 

in real time, minimizing data drift and maintaining 

immersive continuity. 

We evaluate FedGeoSwap++ through simulation in a 

smart city Metaverse scenario. Results show that our 

approach achieves a Mean Absolute Error (MAE) of 

0.615°C and latency of 0.16 ms, outperforming baseline 

methods. A paired t-test (p < 0.0001) confirms the 

statistical significance of our improvement. 

Related works 

Fault tolerance in edge-enabled distributed systems 

is a critical requirement for the seamless operation of 

Metaverse applications, where real-time data continuity 

and user immersion are paramount [1]. Recent surveys, 

such as [2], have systematically categorized fault 

management techniques into three primary domains: 

fault detection, fault mitigation (prevention), and fault 

recovery. This taxonomy provides a structured 

framework for evaluating existing solutions and 

identifying research gaps. 

 

Existing work primarily focuses on node-level or 

service-level failures, employing strategies such as 

redundancy, task migration, and consensus algorithms. 

For instance, Mudassar et al. [6] proposed an adaptive 

strategy using checkpointing and replication to recover 

from node failures. While effective for task state 

preservation, this method incurs high resource overhead 

and may not be optimal for the low-latency demands of 

the Metaverse. 

 

To address failures more proactively, researchers have 

turned to predictive maintenance and machine learning 

(ML). Tuli et al. [7] introduced PreGAN, which uses deep 

learning to predict resource exhaustion and migrate tasks 

before a failure occurs. Similarly, Siyadatzadeh et al. [11] 

proposed ReLIEF, a reinforcement learning-based method 

for primary-standby task assignment, which adapts to 

dynamic network conditions. These AI-powered 

approaches represent a significant shift towards 

intelligent fault management. 

For security-critical failures like Byzantine faults, 

consensus algorithms are essential. Gao et al. [12] 

proposed FIBFT, a clustering-based Byzantine consensus 

algorithm that reduces communication overhead, while 

Wu et al. [13] introduced Reja, a permissioned blockchain 

solution that ensures data immutability and user 

ownership—features highly relevant to the Metaverse. 

Despite these advancements, a critical gap remains in 

the literature. As highlighted in Table 1, the vast majority 

of existing work targets infrastructure-level failures (e.g., 

node crash, server overload). In contrast, FedGeoSwap++ 

addresses a distinct and under-explored problem: data-

level continuity for data-generating sensors at the 

network edge. While a failed node can be migrated or a 

service can be re-instantiated, a failed temperature or 

traffic sensor creates a data gap that directly affects the 

realism of a digital twin. Simply switching to the nearest 

sensor, as in the "Nearest" baseline, may result in a 

significant semantic mismatch (e.g., replacing a street 

sensor with a park sensor). Our work bridges this gap by 

introducing a context-aware substitution framework that 

intelligently selects a replacement sensor based on both 



 FedGeoSwap++:A Novel Context-Aware and Privacy-Preserving Sensor Substitution Framework for Fault Tolerance in Metaverse-
Driven Smart Cities  

Doi: 10.82480/FGCIOT.2025.09041216867 

spatial proximity and temporal correlation, ensuring 

high data fidelity and privacy. 

This research is also inspired by the call for "Resource 

Aware ML Models" [15] and "AI-powered migration" [7, 

17], which advocate for lightweight, intelligent solutions 

at the edge. FedGeoSwap++ embodies this vision by 

combining federated learning for local anomaly detection 

[3], transfer learning for cross-city adaptation, and a 

lightweight reinforcement learning agent for dynamic 

decision-making, all while minimizing data transmission. 

 

Table 1.  Comparative Analysis of Existing Techniques 

Reference Fault Type Remediation Method Key Advantage Main 
Limitation 

[6] Node Failure Checkpointing and 
replication 

Fast recovery 
from last saved 
state 

High resource 
overhead, 
synchronization 
delay 

[15] Node Failure Two-stage robust 
optimization 

Efficient 
resource utilization 
and fault resilience 

High 
complexity in 
dynamic 
environments 

 [16] Node Failure Integer Linear 
Programming (ILP) 

Guarantees 
minimal delay under 
failure 

Poor 
scalability in 
large networks 

 [9] Stateful 
Microservice Failure 

Causal logging and 
distributed checkpointing 

Ensures data 
consistency and 
state reconstruction 

Overhead 
may affect real-
time performance 

 [8] MEC Server 
Failure 

Formal methods and 
heuristics for container re-
instantiation 

Finds optimal 
server for recovery 

Requires full 
system 
knowledge 

 [7] Node Failure & 
Resource 
Exhaustion 

PreGAN: Predictive task 
migration with co-simulation 

Reduces 
resource wastage 
and latency 

Deep models 
are resource-
intensive 

[11] Service 
Invocation & 
Communication 
Failure 

ReLIEF: Primary-standby 
task assignment via 
Reinforcement Learning 

Adapts to 
dynamic network 
conditions 

Requires long 
initial training 
phase 

 [14] Malicious 
Updates (in 
Federated Learning) 

CRACAU: Identifies and 
excludes false updates 

Preserves 
integrity of 
collaborative 
learning 

Applicable 
only in federated 
learning contexts 

 [12] Byzantine Faults FIBFT: Clustering-based 
speculative Byzantine 
consensus 

Reduces 
consensus overhead 

High 
complexity in 
cluster 
management 

 [13] Byzantine Faults Reja: Permissioned 
blockchain + ChiosEdge 

Ensures data 
immutability and 
user ownership 

High latency 
in some scenarios 

FedGeoS
wap++ (This 
Work) 

Sensor Failure 
(Data-Generating) 

Hybrid: R-tree + Correlation 
Filter (ρ ≥ 0.6) + Reinforcement 
Learning DRA 

High accuracy, 
privacy-preserving, 
low latency 

Requires 
historical data for 
correlation 

 

COMPARATIVE ANALYSIS OF EXISTING TECHNIQUES 

To position our work within the state of the art, Table 

1 compares FedGeoSwap++ with existing fault 

management techniques in edge-enabled Metaverse 

applications. 

This table highlights that while prior work focuses on 

node-level or service-level failures, FedGeoSwap++ 

uniquely addresses data-level continuity for physical 

sensors, which is critical for immersive digital twins. 

SYSTEM ARCHITECTURE  

THREE-LAYER ARCHITECTURE  
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 Edge Layer: Sensors collect data and run local 
models. 

 Cloud Layer: PostgreSQL with PostGIS and 
TimescaleDB stores spatio-temporal data. 

 Metaverse Layer: Unity/Unreal Engine queries 
sensor data; triggers FedGeoSwap++ on failure 

 

DATA MODEL 

Each record includes: 

json 

{ 

  "sensor_id": "S1024", 

  "location": "POINT(35.6892 51.3890)", 

  "timestamp": "2023-10-05T12:34:56Z", 

  "temperature": 23.5 

} 

Indexed via R-tree for fast spatial queries. 

FEDGEOSWAP++ FRAMEWORK 

In this framework, the processes are carried out according 
to Figure 1 and include the following steps: 

FAILURE DETECTION  

 Local LSTM autoencoders detect anomalies. 

 Model updates (not data) sent to aggregator → 
FedAvg computes global model [3]. 

 For new cities, TL transfers knowledge from source 
(e.g., Istanbul) to target (e.g., Tehran), fine-tuning 
only output layers [4]. 

 

Fig. 1: Sensor Substitution Algorithm

 SENSOR SUBSTITUTION ALGORITHM 
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Given failed sensor Si, find Sj∗
 : 

      (1)              

 d : Haversine distance (meters) 

 ρ : Pearson correlation (24h window) 

 α+β=1 , adjusted by DRA. 

 

INTELLIGENT DRA WITH DOUBLE Q-LEARNING 

To overcome the limitations of static or heuristic-based 
weighting, we replace the traditional DRA mechanism with 
an Intelligent DRA Agent based on Double Q-Learning. 

Table 2 .Performance Metrics 

Method MAE 
(°C) ↓ 

LATENCY 
(MS) ↓ 

Nearest 0.624 0.09 

CorrOnly 0.955 0.05 

MeanImpute 3.029 0.28 

LSTM-Predict 1.299 0.29 

FedGeoSwap++ 0.615 0.16 

 

 State (s): [Network_Load, Context_Dynamics, 
Data_Type, Time_of_Day] 

 Action (a): Selection of the weight α from a discrete 
set (e.g., {0.2, 0.4, 0.6, 0.8}). β is set to 1 - α. 

 Reward (r): 

           (2) 

 Learning Algorithm: Double Q-Learning [5] to 
reduce overestimation bias. 

 

EVALUATION 

SIMULATION SETUP 

 Sensors: 50 

 Timesteps: 100 

 Failure Rate: 10% 

 Dataset: Simulated temperature data for 
Tehran with urban heat island effect 

 Baselines: 

 Nearest: This simple and fast method 
selects the substitute sensor based 
solely on the shortest spatial distance 

 CorrOnly: This method selects the 
substitute based on the highest 
temporal correlation (Pearson's ρ) 
between the failed sensor and 
candidates. It focuses on data pattern 
consistency. 

 MeanImpute: This statistical method 
replaces the failed sensor's data with 
its historical mean value. 

 LSTM-Predict: This method uses a deep 
learning model (LSTM) to predict the 
next value of the failed sensor. 

 Number of Runs: 300 (for statistical power) 

  

PERFORMANCE METRICS 

As shown in Table 2, the performance of the 
proposed FedGeoSwap++ framework is evaluated 
against four established baseline methods: Nearest, 
CorrOnly, MeanImpute, and LSTM-Predict. The 
evaluation is conducted over 300 simulation runs, 
measuring two primary metrics: Mean Absolute Error 
(MAE) for accuracy and latency for system 
responsiveness.  

 

STATISTICAL ANALYSIS 

PAIRED T-TEST (VS NEAREST) 

 t(299)=5.22 , p<0.0001 

  The improvement is highly statistically   
significant. 

ONE-WAY ANOVA 

 F(4,1495)=105185.06 , p<0.0001 

 Significant difference among all methods. 
Post-hoc Tukey’s HSD confirms 
FedGeoSwap++ is significantly better. 

EFFECT SIZE (COHEN’S D) 

 d=0.43 → Medium effect size 

 Indicates a moderate practical impact. 

  

BOXPLOT OF MAE DISTRIBUTION 
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Fig. 2: Boxplot of MAE 

 

Figure 2.  shows the superior accuracy and stability   
of FedGeoSwap++. 

 

DISCUSSION  

The results demonstrate that FedGeoSwap++ achieves 
the lowest MAE (0.615°C), outperforming Nearest 
(0.624°C), CorrOnly (0.955°C), and model-based methods. 
This confirms that a hybrid, context-aware strategy—
balancing spatial proximity and temporal correlation—is 
superior to single-dimension approaches. The Nearest 
method, while fast, risks selecting a sensor with a dissimilar 
data pattern,undermining the digital twin's realism. 
Conversely, CorrOnly may select a distant sensor, increasing 
communication overhead. FedGeoSwap++'s use of a 
correlation threshold (ρ ≥ 0.6) and reinforcement learning 
ensures high data fidelity and semantic consistency, directly 
addressing the need for reliable, real-time data continuity in 
the Metaverse. 

Limitations: 

 Requires sufficient historical data for correlation. 

 Assumes moderate network connectivity. 

 

CONCLUSION 

 We presented FedGeoSwap++, a novel fault-tolerant 
framework for Metaverse applications that uses a spatio-

temporal sensor database to replace failed sensors with 
optimal alternatives. By combining federated learning, 
transfer learning, R-tree indexing, and Double Q-Learning, 
the framework maintains high data fidelity and system 
continuity. Experiments confirm its superiority over existing 
methods. This work paves the way for resilient, real-time 
digital twins. 
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