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  INTRODUCTION 
Genomic selection (GS) based on genome-wide single nu-

cleotide polymorphism (SNP) markers refers to the predic-

tion of breeding values and the subsequent selection of in-

dividuals (Meuwissen et al. 2001). The genome-wide best 

linear unbiased prediction (GBLUP) method utilizes ge-

nomic information in the form of a genomic relationship 

matrix, which defines the additive genetic covariance be-

tween individuals (VanRaden, 2008; Hayes et al. 2009a). 

Since genomic information captures Mendelian sampling 

across the genome, covariance between individuals can be 

estimated with higher accuracy compared to traditional 

pedigree-based methods. GBLUP has become a widely 

used approach in GS for dairy cattle (McHugh et al. 2011; 

Wiggans et al. 2011) due to its simplicity and relatively low 

computational requirements (Hayes et al. 2009b; VanRaden 

et al. 2009).  

Since additive genetic merit is directly transmitted to the 

next generation, genetic evaluations typically focus on pre-

dicting the additive value of alleles while ignoring non-

additive effects. Dominance, a source of non-additive ge-

netic variation, refers to interactions between alleles at a 

single locus, whereas interactions between alleles at differ-

ent loci are referred to as epistasis. When non-additive ge-

netic effects contribute significantly to variation, relying 

solely on additive effects or breeding values (BV) may re-

sult in the selection of genotypes that do not possess the 

 

The purpose of this study was to compare different models of gene action in genomic selection using two 
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solute Shrinkage and Selection Operator (BLASSO). Therefore, three gene action models including purely 

additive effects (A), additive effects plus dominant deviations (AD) and additive effects plus dominant de-
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highest genetic potential. Genomic information provides 

new opportunities for estimating non-additive genetic ef-

fects by enabling the estimation of an individual’s total 

genetic value, leading to improved phenotype predictions. 

While dominance effects can be estimated alongside addi-

tive effects and summarized across loci, the estimation of 

epistatic effects is computationally challenging due to the 

exponential increase in dimensionality (Toro and Varona, 

2010; Vitezica et al. 2013). 

Over the past decade, GS has become a standard in the 

genetic evaluation of livestock populations. However, most 

GS implementations consider only additive effects when 

calculating the genomic estimated breeding value (GEBV) 

for selection candidates. Despite this, the inclusion of non-

additive effects is of interest because: (i) they can improve 

the prediction accuracy (PA) of GEBVs, thereby enhancing 

selection response (Toro and Varona, 2010; Aliloo et al. 

2016; Duenk et al. 2017); (ii) they facilitate mate allocation 

strategies for selection candidates (Mäki-Tanila, 2007; Toro 

and Varona, 2010; Aliloo et al. 2017); and (iii) they can be 

leveraged to optimize non-additive genetic variation 

through the implementation of appropriate crossbreeding or 

purebred breeding schemes (Mäki-Tanila, 2007; Zeng et al. 

2013). 

Non-additive effects have traditionally been excluded 

from genetic evaluation models due to factors such as the 

lack of informative pedigrees and computational challenges 

(Varona et al. 2018). While additive variance accounts for 

some dominant biological effects of genes (Hill, 2010), 

dominant deviation variance should not be overlooked. 

The availability of large genomic datasets has revived in-

terest in incorporating non-additive genetic effects into ge-

nomic models. Several researchers have proposed different 

approaches to account for dominance effects in genomic 

prediction models (Toro and Varona, 2010; Su et al. 2012; 

Vitezica et al. 2013). 

In a simulated study with purely additive effects, the pre-

diction accuracy (PA) of the GBLUP and BayesC methods 

was evaluated under different genetic architectures includ-

ing different levels for the number of QTLs and the distri-

bution of QTL effects (Shirali et al. 2015). Also, the PA of 

frequentist and Bayesian methods was compared in the 

analysis of simulated traits with purely additive effects 

(Sahebalam et al. 2024a). While previous studies have fo-

cused on evaluating the performance of GBLUP and 

BLASSO, most have either ignored or inadequately incor-

porated non-additive genetic effects (Hayes et al. 2010; 

Atefi et al. 2016; Sahebalam et al. 2022). Furthermore, 

while the effects of heritability and the number of quantita-

tive trait loci (QTLs) on PA have been well documented 

(Daetwyler et al. 2010; Combs and Bernardo, 2013), few 

studies have explored how these factors interact with gene 

action models that account for both additive and non-

additive effects. Additionally, much of the existing research 

has been limited to simulations with simplified genetic ar-

chitectures, often overlooking real-world complexities in 

genetic variation (Resende et al. 2012; Sahebalam et al. 

2019). 

The objective of this study was to investigate and evalu-

ate different models of gene action, including: (i) purely 

additive effects, (ii) additive effects plus dominance devia-

tions, and (iii) additive effects plus dominance deviations 

plus epistatic interactions in genomic prediction. These 

models were analyzed using relationship matrix-based 

methods such as GBLUP, as well as marker effect-based 

methods such as Bayesian Least Absolute Shrinkage and 

Selection Operator (BLASSO).  
 

  MATERIALS AND METHODS 
Mice data 

The dataset contains 1,814 individuals, each genotyped for 

10,346 polymorphic markers. It can be accessed at this link. 

The dataset originates from an experiment designed to iden-

tify quantitative trait loci (QTL) associated with complex 

traits in mouse populations (Valdar et al. 2006a; Valdar et 

al. 2006b). These data have previously been analyzed to 

compare genome-wide genetic evaluation methods (Legarra 

et al. 2008). 

 

Simulated phenotypes 

Phenotypes were simulated using real genotypes. A total of 

20, 100, and 200 markers were randomly sampled as QTLs 

to control the genetic effects of the simulated phenotypes. 

The genetic effects were defined as the sum of all QTL 

effects. Three models of gene action were used for pheno-

type simulation: purely additive effects (A), additive effects 

plus dominance deviations (AD), and additive effects plus 

dominance deviations plus epistatic interactions (ADE). 

The additive effect (a) of a QTL was defined as half the 

difference in genotypic values between the alternate homo-

zygotes and was sampled from a standard normal distribu-

tion. Dominance effects (d) were defined as the deviation of 

the heterozygote’s genotypic value from the mean genotyp-

ic values of the two homozygotes. To simulate dominance 

effects, dominance degrees (hk) were first sampled from a 

normal distribution (N(0.5,1)). Then, absolute dominance 

effects were calculated as: 

 

dk = hk . ∣ak∣ 

 

Where: 

 

∣ak∣: absolute value of the additive effect of the kth QTL. 

http://mtweb.cs.ucl.ac.uk/mus/www/GSCAN/HS_GENOTYPES/
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Epistatic effects followed a gamma distribution with 

shape and scale parameters of 0.1 and 10, respectively 

(Abdollahi et al. 2020). Epistasis was modeled only be-

tween pairs of QTLs and included four types of interac-

tions: additive × additive (A×A), additive × dominance 

(A×D), dominance × additive (D×A), and dominance × 

dominance (D×D). Each QTL interacted with two adjacent 

QTLs. Residual effects followed a normal distribution with 

mean 0 and variance: 

 

  

 

Where:  

: represents the genotypic variance. 

h2: heritability.  

 

After accounting for the observed genetic variance, re-

sidual effects were added to the genetic effects to generate 

the final phenotypes. 

 

Model A 

 

 
 

Where: 

Xik (i=1,…,n and k=1,…,nQTL): an element of the design 

matrix for additive genetic effects (ak). 

ei: residual random effect.  

 

Genotypes are coded as 2 for A1A1, 1 for A1A2, and 0 for 

A2A2 to capture additive effects. 

 

 

Model AD 

 

 
 

Where: 

Dik (i=1,…,n and k=1,…,nQTL): an element of the design 

matrix for dominance genetic effects (dk).  

 

Dominance effects are coded as 0, 1, and 0 for genotypes  

A1A1, A1A2, and A2A2 , respectively. 

 

 

 

 

 

Model ADE 

 

 

 

 

 
 

 

Where:  

 (coded as 0, 1, 2 and 4),  (coded as 0, 1 and 

2),  (coded as 0, 1 and 2), and  (coded as 0 

and 1): epistasis effects of A×A, A×D, D×A, and D×D be-

tween two QTL k and k´, respectively. 

  

For the A model, narrow-sense heritability (h2) was set to 

0.15 or 0.3. In contrast, for the AD and ADE models, 

broad-sense heritability (H2) was set to 0.2 or 0.4, and 0.4 

or 0.8, respectively.  

In the A model, the variance of the residual distribution 

was adjusted so that the ratio of additive genetic variance to 

phenotypic variance equaled narrow-sense heritability. For 

models incorporating non-additive effects (AD and ADE), 

the variance of the residual distribution was set so that the 

ratio of total genetic variance (including additive and non-

additive components) to phenotypic variance equaled 

broad-sense heritability. 

In this study, six traits were simulated, each varying in 

the number of controlling loci and heritability levels (Table 

1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 Number of controlling loci and broad-sense heritability (H²) 

for the six simulated traits (T1 to T6)1 

H2 Number of QTLs 

20 100 200 

0.4 T1 T3 T5 

0.8 T2 T4 T6 
1 T1: a trait explained by 20 QTLs with a broad-sense heritability of 0.4; T2: a 

trait explained by 20 QTLs with a broad-sense heritability of 0.8; T3: a trait 

explained by 100 QTLs with a broad-sense heritability of 0.4; T4: a trait ex-

plained by 100 QTLs with a broad-sense heritability of 0.8; T5: a trait explained 

by 200 QTLs with a broad-sense heritability of 0.4 and T6: a trait explained by 

200 QTLs with a broad-sense heritability of 0.8. 
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Statistical analysis 

GBLUP 

In this method, the standard BLUP mixed model equation is 

used, but instead of the inverse of the pedigree relationship 

matrix (A-1), the inverse of the genomic relationship matrix 

(G-1) is applied (Habier et al. 2007; Hayes et al. 2009b). It 

is assumed that marker effects follow a normal distribution. 

 

BLASSO 

In the Bayesian Least Absolute Shrinkage and Selection 

Operator (BLASSO) method (Park and Casella, 2008), 

marker effects follow a double-exponential distribution. 

This distribution, similar to the t-distribution, has a long tail 

but retains many small nonzero effects. The double-

exponential distribution can also be expressed as a normal 

distribution, where the variance is sampled from an expo-

nential distribution: 

 

P(βj | λ,σe) = DE (βj | 0 ) 

 

Where:  

βj: jth marker effect. 

: residual variance.  

 

The prior marginal distribution of the regression coeffi-

cients is as follows: 

 

P(βj|λ)= ) EXP( | λ2)  

 

This relation corresponds to a double-exponential distri-

bution, which exhibits a higher density at zero, causing a 

sharp drop for markers with relatively small effects, while 

allowing a slower decline for markers with larger effects. In 

this model, λ is assumed to be unknown and follows a 

gamma distribution with shape parameter λ and scale pa-

rameter τ. BLASSO is a specialized form of penalized least 

squares, minimizing the sum of squared residuals. In this 

approach, the prior distribution of the variance of the mark-

er effects is defined as follows: 

 

Var (βj |λ
2,  = =  

 

Regarding: , λ can be calculated as: 

 

 .   

 

Where:  

σ2
β: marker effects.  

h2: heritability. 

xij: jth marker genotype in the ith individual. 

 

Additive, dominance and epistatic relationship matrices 

The additive genomic relationship matrix G was calculated 

as follows (VanRaden, 2008): 

 
 

Where:  

Z: matrix with dimensions of n × p (the number of individ-

uals × the number of markers) and is centered by M-P; 

where M is the genotype matrix coded as 0, 1 and 2 accord-

ing to the number of alternative alleles; P is the matrix of 

locus scores 2pj where pj being the jth alternative allele 

frequency and  is the additive variance of 

markers summed across loci.   

The dominance deviation genomic relationship matrix D 

was estimated as follows (Vitezica et al. 2013): 

 

 
 

Where:  

W: same dimension as in Z, with elements equal to , 

 and  for alternative homozygote, heterozygote 

and reference allele homozygote of the jth marker, respec-

tively. 

: dominance variance of markers 

summed across loci. 

 

The epistasis genomic relationship matrix I was estimat-

ed as follows (Vitezica et al. 2018): 

The epistasis matrices were calculated based on the two-

order epistatic interaction by the Hadamard product, which 

is cell-by-cell multiplication and, trace defined to be the 

sum of the elements of the main diagonal. The epistasis 

matrices were calculated based on the two-locus model as 

, , , and 

, for additive × additive (A×A), additive × 

dominance (A×D), dominance × additive (D×A), and dom-

inance × dominance (D×D) terms, respectively.   

 

Different models of gene activity 

Model including purely additive effects (A) 

The model was used to run GBLUP, and was as follows: 
 

y= Xb + Tu + e 

 

For the BLASSO model: 



.t ale Sahebalam 
 

223-211, 15(2)) 25Animal Science (20Applied  ofIranian Journal  215 

y = Xb + Zga + e 

 

Where:  

y: vector of phenotypic observations.  

b: vector of fixed effect (overall mean).  

u: vector of additive genetic effects which follows a normal 

distribution with expectation of  where G was 

described earlier and  is the additive genetic variance.  

ga: vector of marker effects;  is the vector of 

random residual effects where I denotes the identity matrix 

and  is the residual variance.  

X, T and Z: incidence matrices for b, u and ga, respectively. 

 

Model including additive effects plus dominance devia-

tions (AD) 

The model was used to run GBLUP-D, and was as follows: 

 

y= Xb + Tu + Td + e 

 

For the BLASSO-D model: 

 

y= Xb + Zga + Wgd + e 

 

Where:  

d: vector of dominance genetic effects which follows a 

normal e.g.,  where D was described above 

and  is the dominance genetic variance.  

gd: vector of dominance marker effects. 

W: incidence matrix for gd. 

 

Model including additive effects plus dominance devia-

tions plus epistatic interactions (ADE) 

The model was used to run GBLUP-DE, and was as fol-

lows: 

 

y= Xb + Tu + Td + Tiaa + Tiad + Tida + Tidd + e 

 

For the BLASSO-DE model: 

 

y= Xb + Zga + Wgd + E1gaa + E2gad + E2gda + E3gdd + e 

 

Where:  

iaa, iad, ida and idd: vectors of additive × additive (A×A), ad-

ditive × dominance (A×D), dominance × additive (D×A), 

and dominance × dominance (D×D) epistatic effects, which 

are assumed to follow normal distributions with expecta-

tions , ,  and 

, respectively, where IAA, IAD, IDA and IDD 

were described above and , ,  and  are the 

epistatic interaction variances.  

T: incidence matrix for vectors of additive, dominance and 

epistasis genetic effects. 

gaa, gad, gda and gdd: vectors of epistasis marker effects and 

E1, E2, E2 and E3 are the incidence matrices for gaa, gad, gda 

and gdd, respectively.  

Implementation of statistical methods 

The different gene action models were implemented using 

the GBLUP and BLASSO methods via the BGLR package 

(Perez and de los Campos, 2014) in R software. A Monte 

Carlo Markov Chain (MCMC) sampling scheme was used 

to draw samples from the posterior distributions of the pa-

rameters. The MCMC run consisted of 20000 cycles, with 

the first 5,000 cycles discarded as burn-in. The samples of 

marker effects from the subsequent 15000 cycles were av-

eraged to estimate marker effects. Due to the use of a ran-

dom model, each scenario was repeated 10 times. The mean 

and standard deviation of the results were calculated for 

comparison. Genotypic data quality control was performed 

using minor allele frequency (MAF). For each replication, 

markers with MAF less than 0.05 (MAF<0.05) were re-

moved from the genotypic matrix before estimating marker 

effects. 

 

Model evaluation, cross-validation, predictive accuracy 

(PA), and bias 

The models were evaluated by the goodness of fit, based on 

the coefficient of determination (R²), which represents the 

proportion of variance in the dependent variable predicted 

by the statistical model. R² was calculated as the square of 

the Pearson's correlation coefficient between the real and 

estimated values for the full dataset. Additionally, the six 

gene action models were compared using Akaike's Infor-

mation Criterion (AIC) (Akaike, 1974) and Deviance In-

formation Criterion (DIC) (Spiegelhalter et al. 2002) for 

each trait. 

To divide the dataset into reference and target popula-

tions, a 5-fold cross-validation technique (Bengio and 

Grandvalet, 2004) was used. In each 5-fold repetition, 4 

folds were used as the reference population (80% of indi-

viduals), and the remaining subset formed the target popu-

lation (20% of individuals). The phenotypes of the refer-

ence dataset were used to derive the genomic predictions 

(Weber et al. 2012), while the phenotypes of the target da-

taset were ignored. Only the target genotypes were used to 

derive the genomic predictions. The target group was rotat-

ed through all groups until each group was used as the tar-

get at least once. Estimations were performed within each 

fold and averaged across folds and replicates. 

The PA was defined as the Pearson's correlation coeffi-

cient between the true total genetic values (TGV) or true 

additive values (true breeding value - TBV) and the ge-

nomic estimated total genetic values (GEGV) or predicted 



Prediction Accuracy GEBV and GEGV in Genomic Selection 
 
 

223-211, 15(2)) 25Animal Science (20Applied  ofIranian Journal  216 

additive values (genomic estimated breeding value - 

GEBV), i.e., r(TGV, GEGV) or r(TBV, GEBV). For mod-

els predicting only additive genetic effects, GEBV estima-

tions were used. For AD and ADE models, PA was calcu-

lated separately for both GEBV and GEGV. The simulated 

TBVs and TGVs are specified in the simulation model and 

are therefore known exactly. 

Bias was calculated as the regression coefficient of TGV 

on GEGV (TBV on GEBV for model A, and TGV on 

GEGV for AD and ADE models). The regression coeffi-

cient is expected to be close to 1, indicating that the pre-

dicted value is similar to the true value. A regression coef-

ficient greater than 1 suggests inflation of genomic predic-

tions, while a value lower than 1 indicates deflation. 

The PAs of GEGV (which include additive effects 

(GEBV), additive effects + dominance deviation, and addi-

tive effects + dominance deviation + epistasis interaction 

for GBLUP or BLASSO, GBLUP-D or BLASSO-D, and 

GBLUP-DE or BLASSO-DE models, respectively) across 

10 repetitions were compared using a t-test for statistical 

significance at a 0.05 significance level. Practical signifi-

cance was assessed using Cohen’s d effect size. Cohen’s d 

statistic (Cohen, 1988) can be used to describe the standard-

ized mean difference of an effect or to compare effects 

across studies. It is independent of different ways of meas-

uring the dependent variable. The Cohen's d statistic, which 

represents the standardized difference between two groups 

of independent observations, is calculated as follows: 

 

 
 

Where:  

x 1 and x 2: mean PAs of the two compared models. 

SP: pooled standard deviation, calculated as: 

 

 
 

Where: 

S1
2 and S2

2: variances of the PA of the first and second sta-

tistical methods, respectively.  

n1 and n2: number of repetitions of PA in the first and se-

cond statistical methods, respectively.  
 

Cohen's d values are interpreted as follows (Cohen, 

1988): 0.2: Small effect, 0.5: Medium effect and 0.8 or 

greater: Large effect. A small effect size indicates a weak 

relationship or difference, while a large effect size indicates 

a strong relationship or difference implying a practical sig-

nificance. It ranges from 0 to infinity. By using Cohen's d 

along with the t-test, both statistical and practical signifi-

cance were assessed for the different models. 

 

  RESULTS AND DISCUSSION 
Generally, the lowest and highest AICs or DICs were ob-

served for traits T2 and T5, respectively (Table 2). For trait 

T1, the lowest AIC and DIC values were obtained for the 

BLASSO and GBLUP-DE models, respectively. For traits 

T2 and T4, the lowest AIC and DIC were observed for the 

GBLUP-DE model. The evaluation of models based on 

AIC and DIC for traits T3 and T5 showed results similar to 

those for trait T1.  

For trait T6, the lowest AIC and DIC values were similar 

to those observed for T2 and T4. The models' evaluation 

based on the coefficient of determination revealed that the 

GBLUP-DE and BLASSO-DE models outperformed the 

other gene action models across all traits (Table 3). An in-

crease in heritability led to an improvement in the goodness 

of fit, while an increase in the number of QTLs resulted in a 

decline in the goodness of fit. 

The PAs of the six studied models, including GBLUP, 

BLASSO, GBLUP-D, BLASSO-D, GBLUP-DE, and 

BLASSO-DE, for different traits are presented in Table 4. 

The PA of all models for all traits increased with increasing 

heritability and decreased with the increasing number of 

QTLs. 

Based on the obtained results, BLASSO recorded a high-

er PA than GBLUP. This increase in PA was greater when 

the number of QTLs was low (20 QTLs), and this ad-

vantage decreased as the number of QTLs increased (200 

QTLs). 

For T1 and T2 traits, the PA of the GBLUP and BLAS-

SO models was slightly higher than that of the other mod-

els. In other words, the PA decreased when non-additive 

effects were included in the model. As the number of QTLs 

controlling the trait increased, the inclusion of dominance 

deviation (i.e., GBLUP-D and BLASSO-D) in the model 

led to an increase in PA. This increase in PA was maxim-

ized when epistasis interaction (i.e., GBLUP-DE and 

BLASSO-DE) was added. 

For T1 and T2 traits, no significant difference was ob-

served between the PA of different models (P>0.05) (Table 

5). For trait T1, the maximum (d=0.094) and minimum 

(d=0.818) similarity in PA were observed between 

GBLUP-D and BLASSO-D, and BLASSO and BLASSO-D 

models, respectively. As heritability increased (trait T2), 

the similarity between different models increased. The 

highest similarity (d=0.014) was observed between BLAS-

SO and BLASSO-DE, while the lowest similarity 

(d=0.784) was observed between GBLUP-D and BLASSO 

models for trait T2. 
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The most significant differences (P<0.05) between dif-

ferent models were observed for T3 and T4 traits, with 12 

significant comparisons out of 15 possible comparisons for 

each trait. The highest similarity in PA for T3 and T4 traits 

was observed between GBLUP and BLASSO (d=0.112), 

GBLUP-D and BLASSO-D (d=0.112), and GBLUP and 

BLASSO (d=0.048), respectively. 

In general, for traits controlled by a large number of 

QTLs, considering non-additive effects in the model led to 

an increase in the PA of GEBV and GEGV and reduced the 

bias. The highest and lowest differences in PA were ob-

served between GBLUP and GBLUP-DE (d=5.703, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P<0.001) and GBLUP-DE and BLASSO-DE (d=0.003, 

P>0.05) for T5 and T6 traits, respectively. 

The results of the regression coefficients, which indicate 

the degree of bias in the model, are presented in Table 6. In 

all traits and different models of gene action, BLASSO 

showed slightly less bias than GBLUP. For most of the 

models and traits, the regression coefficient was less than 

one, indicating the deflation of the GEBV for the GBLUP 

and BLASSO models and the GEGV in the models that 

included non-additive effects. Only the GBLUP-DE and 

BLASSO-DE models for T2 and T4 traits, BLASSO-DE 

for T3, and GBLUP-DE for T6 inflated the GEGVs. 

 

Table 2 Akaike information criterion (AIC) and deviance information criterion (DIC) for each model and trait 

Trait   Model  AIC  DIC 

T1 

GBLUP  1865  1689 

GBLUP-D  1916  1671 

GBLUP-DE  1934  1482 

BLASSO  1856  1691 

BLASSO-D  1871  1682 

BLASSO-DE  1902  1679  

 

 

 

T2 

 

 

GBLUP  1543  1236 

GBLUP-D  1536  1114 

GBLUP-DE  1418  836  

BLASSO  1521  1214 

BLASSO-D  1513  1137 

BLASSO-DE  1517  1108  

T3 

 

GBLUP  2553  2404 

GBLUP-D  2603  2376 

GBLUP-DE  2620  2172  

BLASSO  2541  2406 

BLASSO-D  2566  2392 

BLASSO-DE  2582  2388  

 

 

T4 

 

 

 

GBLUP  2158  1890 

GBLUP-D  2105  1665 

GBLUP-DE  1975  1385  

BLASSO  2152  1888 

BLASSO-D  2105  1688 

BLASSO-DE  2118  1715 

 

 

T5 

 

 

 

GBLUP  2987  2843 

GBLUP-D  3033  2804 

GBLUP-DE  3055  2618 

BLASSO  2975  2847 

BLASSO-D  3002  2820 

BLASSO-DE  3010  2805 

 

 

T6 

 

 

 

GBLUP  2438  2182 

GBLUP-D  2399  1979 

GBLUP-DE  2243  1656  

BLASSO  2436  2181 

BLASSO-D  2400  1998 

BLASSO-DE  2398 1995  
T1: a trait explained by 20 QTLs with a broad-sense heritability of 0.4; T2: a trait explained by 20 QTLs with a broad-sense heritability of 0.8; T3: a trait explained by 100 

QTLs with a broad-sense heritability of 0.4; T4: a trait explained by 100 QTLs with a broad-sense heritability of 0.8; T5: a trait explained by 200 QTLs with a broad-sense 

heritability of 0.4 and T6: a trait explained by 200 QTLs with a broad-sense heritability of 0.8. 

GBLUP-D: GBLUP method used in the additive plus dominance deviation model; GBLUP-DE: GBLUP method used in the additive plus dominance deviation model plus 

epistasis interaction; BLASSO-D: Bayesian LASSO method used in the additive plus dominance deviation model and BLASSO-DE: Bayesian LASSO method used in the 

additive plus dominance deviation plus epistasis interaction model. 
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Table 4 Predictive accuracy (PA) estimated for genomic estimated breeding values (GEBVs) and genomic estimated genetic values (GEGVs) of the 

validation population for all models and traits 

Trait Genetic effects 
GBLUP 

r(TBV, GEBV) 

GBLUP 

r(TGV, GEGV) 

BLASSO 

r(TBV, GEBV) 

BLASSO 

r(TGV, GEGV) 

 

T1      

Purely add                      0.642 (0.03)                                            0.642 (0.03)                                            

Add + dom                    0.642 (0.03)          0.621 (0.03)              0.648 (0.03)         0.624 (0.03) 

Add + dom + epis          0.636 (0.03)          0.634 (0.03)               0.646 (0.03)        0.638 (0.04) 

 

T2         

             

Purely add                     0.767 (0.03)                                            0.781 (0.03)  

add + dom                    0.769 (0.03)         0.758 (0.03)                0.782 (0.03)         0.769 (0.03) 

add + dom + epis           0.765 (0.02)        0.764 (0.03)                0.785 (0.02)         0.780 (0.03) 

 

T3       

            

Purely add                    0.467 (0.05)                                             0.472 (0.05)  

Add + dom                   0.500 (0.05)            0.537 (0.03)              0.495 (0.05)         0.541 (0.04) 

Add + dom + epis         0.510 (0.05)           0.602 (0.04)               0.510 (0.05)        0.614 (0.04) 

 

T4      

Purely add                       0.572 (0.06)                                            0.575 (0.06)  

Add + dom                     0.617 (0.05)          0.698 (0.04)               0.618 (0.05)        0.702 (0.04) 

Add + dom + epis          0.618 (0.05)          0.745 (0.03)               0.628 (0.05)        0.751 (0.03) 

 

T5        

Purely add                    0.294 (0.06)                                              0.297 (0.06)  

Add + dom                  0.326 (0.06)            0.350 (0.08)                0.320 (0.06)          0.354 (0.07) 

Add + dom + epis       0.317 (0.07)          0.552 (0.03)                 0.336 (0.06)          0.547 (0.03) 

 

T6         

Purely add                   0.443 (0.05)                                              0.444 (0.05)  

Add + dom                  0.482 (0.06)            0.493 (0.07)               0.481 (0.06)         0.495 (0.07) 

Add + dom + epis      0.483 (0.06)            0.677 (0.03)               0.485 (0.06)         0.677(0.04) 
T1: a trait explained by 20 QTLs with a broad-sense heritability of 0.4; T2: a trait explained by 20 QTLs with a broad-sense heritability of 0.8; T3: a trait explained by 100 

QTLs with a broad-sense heritability of 0.4; T4: a trait explained by 100 QTLs with a broad-sense heritability of 0.8; T5: a trait explained by 200 QTLs with a broad-sense 

heritability of 0.4 and T6: a trait explained by 200 QTLs with a broad-sense heritability of 0.8. 

r(TBV, GEBV): pearson's correlation coefficient between the true breeding value (TBV) and the genomic estimated breeding value (GEBV); r(TGV, GEGV): pearson's 

correlation coefficient between the true genetic values (TGV) and the genomic estimated genetic values (GEGV); Purely add: purely additive model (model A); Add + dom: 

additive plus dominance deviation model (model AD) and Add + dom + epis: additive plus dominance deviation plus epistasis interaction model (model ADE). 

 

Table 3 Goodness of fit: The coefficient of determination (R2) which is calculated as the square of the Pearson’s correlation coefficient between the 

true total genetic values (Gfull) and the predicted total genetic value ( full) of the full dataset 

Trait Genetic effects 
GBLUP 

(r(Gfull   full))
2 

Bayesian LASSO 

(r(Gfull   full))
2 

 

T1                                

        

Purely add                            0.508                                         0.516 

Add + dom                            0.504                                       0.504 

Add + dom + epis                  0.520                                         0.579                                         

 

T2                               

  

Purely add                              0.717                                       0.726 

add + dom                              0.774                                       0.778 

add + dom + epis                   0.839                              0.839                              

 

T3                             

Purely add                               0.287                                       0.292 

Add + dom                             0.430                                        0.432 

Add + dom + epis                  0.518                                        0.584                        

 

T4                              

Purely add                               0.404                                        0.406 

Add + dom                              0.667                                        0.669 

Add + dom + epis                  0.824                                         0.832 

 

T5                              

   

Purely add                                0.112                                       0.112 

Add + dom                               0.161                                       0.162 

Add + dom + epis                     0.494                                      0.543     

 

T6                             

      

Purely add                               0.250                                       0.250 

Add + dom                              0.333                                        0.333 

Add + dom + epis                   0.812                                         0.814  
T1: a trait explained by 20 QTLs with a broad-sense heritability of 0.4; T2: a trait explained by 20 QTLs with a broad-sense heritability of 0.8; T3: a trait explained by 100 

QTLs with a broad-sense heritability of 0.4; T4: a trait explained by 100 QTLs with a broad-sense heritability of 0.8; T5: a trait explained by 200 QTLs with a broad-sense 

heritability of 0.4 and T6: a trait explained by 200 QTLs with a broad-sense heritability of 0.8. 

(r(Gfull,  full))
2:  the square of the Pearson’s correlation coefficient between the true total genetic values (Gfull) and the predicted total genetic value ( full) of the full dataset; 

Purely add: purely additive model (model A); Add + dom: additive plus dominance deviation model (model AD) and Add + dom + epis: additive plus dominance deviation 

plus epistasis interaction model (model ADE). 
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All models showed a lower regression coefficient for 

GEBV than for GEGV across all traits, indicating that when 

the genetic effects affecting the phenotypes included addi-

tive effects, dominance deviations, and epistasis interac-

tions, the bias decreased. 

Our main objective in this study was to compare the per-

formance of GBLUP and BLASSO in predicting complex 

phenotypes under different gene action models and genetic 

architectures with varying heritability and the number of 

QTLs. Based on the results of the present study, an increase 

in heritability and the number of QTLs, respectively, in-

creased and decreased the genomic PA. In a study, it was 

reported that heritability has the greatest effect on the PA of 

genomic evaluation, and increasing heritability from 0.15 to 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0.45 leads to a significant increase in PA (Atefi et al. 2016). 

In another study, it was suggested that with an increase in 

heritability from 0.1 to 0.9, the PA of the genome increased 

from 0.3 to 0.7 (Hayes et al. 2010). In a simulated study, it 

was shown that increasing heritability from 0.2 to 0.6 re-

sulted in a significant increase in PA (Sahebalam et al. 

2024b).  

In a simulation study, it was reported that with an in-

crease in heritability from 0.1 to 0.5, the PA of genomic 

evaluations increased from 0.52 to 0.77 using the GBLUP 

method (Sahebalam et al. 2022). It has also been reported 

that by increasing heritability from 0.25 to 1, the PA, in 

terms of the genetic architecture of the trait, increased from 

0.05 to nearly 1 (Combs and Bernardo, 2013).  

Table 5 Cohen's d effect size output (t-test output (P-value)) between the prediction accuracy of GEGV across 10 replicates for all GBLUP and 

BLASSO models and traits 

Model 

T1 T2 

GBLUP-

D 

GBLUP-

DE 
BLASSO 

BLASSO-

D 

BLASSO-

DE 

GBLUP-

D 

GBLUP-

DE 
BLASSO 

BLASSO-

D 

BLASSO-

DE               

GBLUP 
0.654 

(0.161) 

0.256 

(0.582)       

0.191 

(0.669)       

0.620 

(0.183)           

0.109 

(0.811)                

0.318 

(0.493)       

0.085 

(0.852)       

0.494 

(0.281)       

0.079 

(0.859)         

0.423   

(0.361) 

GBLUP-

D                                      

 0.375 

(0.41)         

0.834 

(0.082)        

0.094 

(0.844)          

0.475 

(0.298)                                            

 0.205 

(0.648)       

0.784 

(0102)       

0.390 

(0.388)         

0.689   

(0.141)   

GBLUP-

DE                                                               

  0.434 

(0.341)        

0.315 

(0.491)           

0.125 

(0.751)                                                                       

  0.523 

(0.262)      

0.154 

(0.731)         

0.461   

(0.323) 

BLASS0  
  0.818 

(0.079)          

0.276 

(0.542)                                                                                                   

   0.410 

(0.371)        

0.0141 

(0.969) 

BLASSO-

D                                                                                                                           

    0.425 

(0.352)                                                                                                                                

    0.350 

(0.441) 

 T3 T4 

Model 
GBLUP-

D 

GBLUP-

DE 
BLASSO 

BLASSO-

D 

BLASSO-

DE 

GBLUP-

D 

GBLUP-

DE 
BLASSO 

BLASSO-

D 

BLASSO-

DE 

GBLUP 
1.75 

(P<0.01) 

2.96 

(P<0.001)     

0.112 

(0.801)        

1.69 

(P<0.01)      

3.40 

(P<0.001)        

2.52 

(P<0.001)     

3.72 

(P<0.001)    

0.048 

(0.921)      

2.61 

(P<0.001)     

3.86 

(P<0.001) 

GBLUP-

D 
 

1.88 

(P<0.001)     

1.60 

(P<0.01)      

0.112 

(0.799)         

2.46 

(P<0.001)                                         

 1.42 

(P<0.01)      

2.47 

(P<0.001)     

0.112 

(0.798)         

1.61  

(P<0.01) 

GBLUP-

DE 
 

 2.82 

(P<0.001)    

1.59 

(P<0.01)       

0.311 

(0.302)                                                                         

  3.67 

(P<0.001)     

1.29 

(P<0.01)      

0.251 

(0.591) 

BLASS0  
  1.55 

(P<0.01)      

3.26 

(P<0.001)                                                                                                

   2.56 

(P<0.001)    

3.81 

(P<0.001) 

BLASSO-

D 
 

   2.05 

(P<0.001)                                                                                                                              

    1.49  

(P<0.01) 

 T5 T6 

Model 
GBLUP-

D 

GBLUP-

DE 
BLASSO 

BLASSO-

D 

BLASSO-

DE 

GBLUP-

D 

GBLUP-

DE 
BLASSO 

BLASSO-

D 

BLASSO-

DE 

GBLUP 
0.790 

(0.0911) 

5.70 

(P<0.001)       

0.0501 

(0.91)       

0.892 

(0.0611)        

5.42 

(P<0.001)       

0.815 

(0.091)      

5.28 

(P<0.001)      

0.023 

(0.961)      

0.883 

(0.0611)        

 5.22 

(P<0.001) 

GBLUP-

D 
 

4.74 

(P<0.001)             

0.741 

(0.112)      

0.0461 

(0.921)        

3.16 

(P<0.001)                                   

 3.38 

(P<0.001)     

0.792 

(0.091)       

0.041 

(0.932)         

3.36 

(P<0.001) 

GBLUP-

DE 
 

 5.48 

(P<0.001)   

3.51 

(P<0.001)     

0.172 

(0.712)                                                                     

   5.21 

(P<0.001)   

3.44 

(P<0.001)     

0.0031 

(0.991) 

BLASS0  
   0.841 

(0.123)           

5.21 

(P<0.001)                                                                                             

     0.860 

(0.07)           

5.16 

(P<0.001) 

BLASSO-

D 
 

   3.36 

(P<0.001)                                                                                                                           

        3.41 

(P<0.001)       
T1: a trait explained by 20 QTLs with a broad-sense heritability of 0.4; T2: a trait explained by 20 QTLs with a broad-sense heritability of 0.8; T3: a trait explained by 100 

QTLs with a broad-sense heritability of 0.4; T4: a trait explained by 100 QTLs with a broad-sense heritability of 0.8; T5: a trait explained by 200 QTLs with a broad-sense 

heritability of 0.4 and T6: a trait explained by 200 QTLs with a broad-sense heritability of 0.8. 

GBLUP-D: GBLUP method used in the additive plus dominance deviation model; GBLUP-DE: GBLUP method used in the additive plus dominance deviation model plus 

epistasis interaction; BLASSO-D: bayesian LASSO method used in the additive plus dominance deviation model and BLASSO-DE: bayesian LASSO method used in the 

additive plus dominance deviation plus epistasis interaction model. 

 

 



Prediction Accuracy GEBV and GEGV in Genomic Selection 
 
 

223-211, 15(2)) 25Animal Science (20Applied  ofIranian Journal  220 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This can be explained by greater genetic variation and 

less environmental influence in higher heritability, contrib-

uting to more PA of marker effects (Barbosa et al. 2021). 

When the number of QTLs increases, the total genetic 

variation is expected to be divided among the QTLs, which 

can reduce the efficiency of methods in estimating small 

QTL effects and lead to a loss of precision (Resende et al. 

2012; Ghafouri-Kesbi et al. 2016). This is only confirmed 

for traits that exhibit stronger interactions within the same 

linkage group, such as traits with 20 QTLs. Since these 

traits have fewer QTLs in a single linkage group, the ex-

pression of interactions between these QTLs is stronger. On 

the other hand, the decrease in efficiency for a larger num-

ber of QTLs can be attributed to the excess of markers with 

null effects, which can impair the accuracy of the methods 

(Barbosa et al. 2021; Sousa et al. 2021). In addition, using 

simulated data, the researchers showed that the PA of 

GEBV decreased as the number of QTLs increased from 50 

to 200 (Sahebalam et al. 2019). In another study, an in-

crease in the number of QTLs led to a decrease in PA 

(Daetwyler et al. 2010). 

When the traits were controlled by a small number of 

QTLs (T1 and T2), the BLASSO method performed better 

than the GBLUP method. In a simulated study, the PA of 

GBLUP and BayesC methods was evaluated under different 

architectures such as the number of QTLs and the distribu-

tion of QTL effects. They reported that both methods pro-

vided acceptable PA.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

However, when the trait phenotype was explained by a 

small number of QTLs with gamma distribution, the 

BayesC method performed better (Shirali et al. 2015). In 

another study, using simulated traits with 400 QTL random-

ly distributed on a genome with 4 chromosomes, the PA 

and bias of frequentist methods including Ridge Regres-

sion, LASSO, Elastic Network and GBLUP, and Bayesian 

methods including BRR, BayesA, BayesB, BayesCπ and 

BLASSO were compared. They reported that the Bayesian 

method had the highest PA and the LASSO and Elastic Net 

methods had the lowest accuracy. Ridge Regression also 

recorded the lowest bias (Sahebalam et al. 2024a). The 

lower accuracy of BLUP compared to Bayesian methods 

for traits with low QTLs could be due to the fact that BLUP 

uses an infinitesimal model, so all predictors (markers) 

have normal distribution and partial effects. However, 

Bayesian methods use different distributions such as t 

(BayesA), mixture (a point of mass at zero and a Gaussian 

slab (BayesC) or a point of mass at zero and a scaled-t slab 

(BayesB)), and double exponential (BLASSO) for markers, 

which, by not considering all markers equally, have a great-

er ability to identify effective QTLs, and consequently, 

have a higher PA in analyzing traits explained by a small 

number of QTLs. 

The results showed that when traits were controlled by a 

small number of QTLs (20 QTLs), including dominance 

deviation and epistasis interaction decreased the PA of 

GEGV compared to GEBV in both studied methods. In a 

Table 6 Regression coefficient (b) estimated with total genetic values of the validation population (TGV on GEGV) for all models and traits 

Trait Genetic effects 
GBLUP 

b(TGV, GEGV) 

Bayesian LASSO 

b(TGV, GEGV)     

 

T1                                

        

Purely add                            0.702 (0.06)                                       0.721 (0.07) 

Add + dom                            0.831 (0.08)                                       0.859 (0.07) 

Add + dom + epis                  0.929 (0.10)                                       0.948 (0.12) 

 

T2                               

  

Purely add                              0.809 (0.06)                                       0.811 (0.06) 

add + dom                              0.972 (0.08)                                       0.982 (0.08) 

add + dom + epis                   1.04 (0.07)                                          1.02 (0.09) 

 

T3                             

Purely add                               0.421 (0.06)                                       0.441 (0.07) 

Add + dom                             0.618 (0.07)                                       0.689 (0.10) 

Add + dom + epis                  1.00 (0.11)                                          1.05 (0.14) 

 

T4                              

Purely add                               0.491 (0.06)                                       0.501 (0.05) 

Add + dom                              0.772 (0.06)                                       0.782 (0.06) 

Add + dom + epis                  1.06 (0.06)                                         1.03 (0.06) 

 

T5                              

   

Purely add                                0.209 (0.06)                                       0.228 (0.06) 

Add + dom                               0.321 (0.09)                                       0.359 (0.09) 

Add + dom + epis                     0.989 (0.08)                                       0.971 (0.09) 

 

T6                             

      

Purely add                               0.342 (0.05)                                       0.342 (0.05) 

Add + dom                              0.481 (0.08)                                       0.488 (0.08) 

Add + dom + epis                   1.02 (0.07)                                        0.971 (0.08) 
T1: a trait explained by 20 QTLs with a broad-sense heritability of 0.4; T2: a trait explained by 20 QTLs with a broad-sense heritability of 0.8; T3: a trait explained by 100 

QTLs with a broad-sense heritability of 0.4; T4: a trait explained by 100 QTLs with a broad-sense heritability of 0.8; T5: a trait explained by 200 QTLs with a broad-sense 

heritability of 0.4 and T6: a trait explained by 200 QTLs with a broad-sense heritability of 0.8. 

Purely add: Purely additive model (model A); Add + dom: additive plus dominance deviation model (model AD); Add + dom + epis: additive plus dominance deviation 

plus epistasis interaction model (model ADE) and b(TGV, GEGV): the regression coefficient of TGV on GEGV (TBV on GEBV for model A, and TGV on GEGV for AD 

and ADE models) 
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study using simulated and real data, it was reported that as 

the contribution of dominance variance increased in total 

variance, the PA decreased in all studied methods (de Al-

meida Filho et al. 2019). In another study, using a simulat-

ed trait with 20 QTLs, it was shown that dominance and 

epistasis gene activity reduced the PA of genomic evalua-

tion methods. They also reported that the low PAs under 

non-additive effects could be due to the fact that dominance 

and epistatic variance are nested within the additive vari-

ance. Therefore, the contribution of additive variance to 

total genetic variance decreases while error variance re-

mains constant (Salehi et al. 2021). In addition, researchers 

reported that the PAs of both parametric and non-

parametric methods decreased when gene action was more 

complex (Momen et al. 2018). The decrease in PA due to 

an increase in the number of QTLs may have occurred due 

to the greater influence of the multiplicative effect between 

additive and dominant effects, which is a characteristic of 

epistatic effects in more complex traits (Coster et al. 2010; 

Barbosa et al. 2021). When the number of QTLs was 100, 

the PA of GEGV increased compared to GEBV, and this 

difference in accuracy became more evident when the 

number of QTLs increased to 200. That is, in traits con-

trolled by a large number of QTLs, the inclusion of domi-

nance and epistasis effects improved the PA of both GEBV 

and GEGV. In a study, reported that a statistical model 

combining additive and epistatic effects performs better 

than a simple additive model for the analysis of quantitative 

traits with epistatic architecture (Morgante et al. 2018). In 

addition, researchers showed that the performance of the 

GBLUP model, including genetic effects of dominance 

(GBLUP-D), was evaluated by variance estimation and 

prediction of genetic merit in computer simulations and two 

real traits in pigs. In the simulation data, the GBLUP-D 

model explained more than 50% of the genetic variance of 

dominance. Additionally, the GBLUP-D model yielded 

estimated total genetic effects that were 1.2% more accurate 

than those obtained from GBLUP (Nishio and Satoh, 2014). 

Also, in another study, it was suggested that for some traits, 

a larger proportion of the phenotypic variance was ex-

plained by non-additive effects compared to additive ef-

fects, indicating that epistasis, dominance, or a combination 

of these effects are of great importance. The genetic effects 

of epistasis have a greater contribution to the total pheno-

typic variance than the genetic effects of dominance. Mod-

els with non-additive genetic effects did not show obvious 

superiority over the additive model based on Akaike's in-

formation criterion (AIC). Variance component partitioning 

resulted in the re-ranking of cows relative to the purely ad-

ditive genetic effects model, indicating that correction for  

 

non-additive genetic effects can be effective for selection 

decisions in dairy cattle breeding programs. These results 

showed that non-additive genetic effects play an important 

role in some fertility and reproductive traits in Holstein 

dairy cows (Alves et al. 2020). 

In the present study, the regression coefficient values for 

most of the models and traits were less than one, and only 

for additive plus dominance plus epistasis gene action were 

they greater than one in some traits. In a study on several 

egg production traits, it was reported that all regression 

coefficient values for both GBLUP and BayesC methods 

were less than one (Heidaritabar et al. 2016). In another 

study on a population of Holstein dairy cattle, the regres-

sion coefficient was higher than one for the GBLUP meth-

od (Charfeddine et al. 2013). In addition, researchers 

showed that the regression coefficient was lower than one 

for the GBLUP method on French Lacunae dairy sheep 

(Duchemin et al. 2012). 

The main limitations of this study include the reliance on 

simulated data, which may not fully represent the complexi-

ty of real-world breeding programs. Additionally, the study 

primarily evaluated prediction accuracy and bias, without 

considering other important metrics such as model stability 

or performance in real-world conditions with environmental 

interactions. The computational burden of non-additive 

models like GBLUP-DE and BLASSO-DE also raises con-

cerns for scaling up to larger datasets. Lastly, while the 

models performed well in controlled settings, their robust-

ness in real-world applications, with issues like incomplete 

data and marker biases, requires further investigation. The-

se limitations suggest the need for future research using 

real-world datasets and exploring the practical applicability 

of these models. 

 

  CONCLUSION 

Our study demonstrates that both GBLUP and BLASSO 

methods exhibit similar performance in predicting complex 

traits, with only slight differences in PA and bias. Heritabil-

ity and the number of QTLs significantly influenced the PA 

of GEBV and GEGV. Specifically, higher heritability in-

creased PA, while a greater number of QTLs generally re-

duced PA. For traits controlled by a small number of QTLs, 

the purely additive model was sufficient to achieve ac-

ceptable PA. However, when traits involved a larger num-

ber of QTLs, incorporating non-additive effects, such as 

dominance and epistasis interactions, enhanced both PA 

and reduced bias. These findings underscore the importance 

of considering gene action models in genomic evaluations, 

particularly for traits with complex genetic architectures. 
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