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  INTRODUCTION 
Antimicrobial peptides (AMPs), also referred to as host 
defense peptides, play a crucial role in the innate immune 
system of multicellular organisms (Cheema et al. 2011; 
Erdem Büyükkiraz and Kesmen, 2022). These compounds 
have been used as a model for developing new-generation 
antimicrobial drugs, considering their diverse structures and 
broad antimicrobial activities. Antimicrobial peptides are 
synthesized in mammals by two main pathways: The first 
pathway is the digestion of larger proteins and the produc-
tion of short-chain peptides with antimicrobial properties. 

The second is the articulation of specific genes encoding 
antimicrobial peptides at the genome level and, subse-
quently, ribosomal synthesis of the expressed transcript of 
these genes (Papagianni, 2003; Schauber and Gallo, 2007; 
Kondori et al. 2011). Some of the peptides in the second 
category include defensins and cathelicidins. Genes encod-
ing the defensin peptide of neutrophils in humans and rab-
bits are all about 3 kilobases (kb) pairs in length and com-
prise 3 exons. The last exon of this group of genes encodes 
the mature defensin, and the second exon, along with the 
last exon, encodes the peptide immature form (Martin et al. 
1995; Selsted and Ouellette, 1995; Ganz, 2007). In this re-
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spect, the human and murine enteric defensin consists of 
two exons, which are similar to the two terminal exons of 
human neutrophil defensin (Ganz, 2007). The genes encod-
ing the cathelicidin family include four exons: The initial 
three exons are responsible for encoding the signal peptide. 
Meanwhile, the last exon contains the sequence encoding 
the mature peptide with antimicrobial activity, which is 
created after enzymatic digestion in a specific region 
(Gudmundsson et al. 1995; Zhao et al. 1995). The promoter 
region of this group of peptides contains sites similar to the 
promoter and regulatory regions of encoding genes in cyto-
kines. These sites indicate that the expression of this group 
of peptides is likely to be influenced and is in line with the 
production of cytokines, including Interleukin 6 (IL6) in the 
incidence of infections (Gudmundsson et al. 1995; Zhao et 
al. 1995). In addition to specific encoding genes for antim-
icrobial peptides in the mammalian genome, there are en-
coding genes for short-chain peptides that do not have an-
timicrobial properties (Schlesinger and Elsässer, 2022). 
This group of peptides may have different metabolic roles, 
such as hormonal role (Min et al. 2012) and immunostimu-
lant (Hancock et al. 2016; de la Fuente-Núñez et al. 2017). 
The distinctions between antimicrobial and non-
antimicrobial peptides have largely been assessed at the 
protein level (Bhadra et al. 2018; Söylemez et al. 2023). 

These differences are mainly related to the sequence of 
amino acids within the peptide structure, physicochemical 
properties, and specific spatial structures of this group of 
peptides (Torrent et al. 2011). Most of the natural antim-
icrobial peptides are 10-50 amino acids in length, and their 
size ranges from 2 to 9 kDa. 

Moreover, these positively charged peptides contain 
highly hydrophobic amino acids (Schauber and Gallo, 
2007; Lai and Gallo, 2009). Peptides are classified into 
specific families according to their amino acid sequences, 
the presence and identity of certain amino acids, the quan-
tity of cysteine residues, and the arrangement of these cys-
teines within the sequence (Lay and Anderson, 2005). The 
three-dimensional structures of antimicrobial peptides 
(AMPs) are categorized into four main families: α, β, αβ, 
non-αβ (Wang, 2022). α-helix is the most common struc-
ture of AMPs. Disulfide bonds, α-helices, and β strands are 
types of structural folding. Accordingly, the antimicrobial 
peptide can interact with the cell membranes of the target 
pathogens with its proper structure and the greatest ability 
(Cools et al. 2017). Antimicrobial peptides typically consist 
of positively charged amino acids like arginine (R) and 
lysine (K), which contribute significantly to their antibacte-
rial effectiveness. This property binds these peptides to 
negatively charged groups on the surface of bacterial cells, 
including lipopolysaccharides, which is the first step to 
destroy the bacterial wall. Antimicrobial peptides, such as 

defensin, should increase their hydrophobicity to interact 
with cell bilayer membranes, which are mainly composed 
of fatty acids and are highly hydrophobic. This improve-
ment is achieved by increasing the proportion of hydropho-
bic amino acids, such as alanine and cysteine, within their 
structure (Gasteiger et al. 2005; Sagaram et al. 2012). 

Today, due to the importance of antimicrobial peptides as 
suitable substitutes for antibiotics, identifying this group of 
peptides has undergone extensive research. Experimental 
methods that rely on laboratory techniques for identifying 
and analyzing new antimicrobial peptides are often expen-
sive and time-consuming. Therefore, computational mod-
els, including machine learning techniques, could be very 
efficient for predicting and providing a faster and more 
accurate analysis of potential AMP candidates (Khabbaz et 
al. 2021).  

The exploration of antimicrobial peptides emerged as a 
significant area of research in the mid-20th century. This 
group of activities began with examining secropins of frog 
and butterfly magainins. Since the 1980s, computational 
models for quantitative structure–activity relation-
ship models (QSAR models) have been employed to predict 
and enhance the sequences associated with certain biologi-
cal activities. Also, since the 1990s, artificial neural net-
works (ANNs) have replaced conventional QSAR models 
as efficient machine learning (ML) methods (Papagianni, 
2003). Recent progress in machine learning techniques has 
been utilized to forecast antimicrobial peptides (Khabbaz et 
al. 2021). Based on amino acid physiochemical properties 
on the protein surface, the predicted toxicity of antimicro-
bial peptides has been analyzed using linear SVC, random 
forest, and KNN machine-learning methods. The results are 
a recall rate of 0.876 and an F1 score of 0.849. The results 
were evaluated against those generated by machine learning 
algorithms designed for predicting antimicrobial peptides 
(AMPs) specific to microbial strains (Vishnepolsky et al. 
2022). In another study, random forest and AdaBoost had 
the best performance (Söylemez et al. 2023), as ML algo-
rithms were employed for predicting antimicrobial peptides. 
The outputs are an accuracy of 92%, precision of 92%, re-
call of 93%, F1 measure of 93%, and AUC of 98%. As 
mentioned, most of the studies on antimicrobial peptide 
prediction are based on peptide physicochemical properties 
(Yeaman and Yount, 2003; Lata et al. 2007; Lata et al. 
2010; Leptihn et al. 2010; Vishnepolsky and Pirtskhalava, 
2014; Qureshi et al. 2015; Cai and Jiang, 2016a; Meher et 
al. 2017; Pane et al. 2017). The present study aims to re-
spond to the following questions: Can genomic features be 
used to identify and predict antimicrobial peptides? To an-
swer this question, we used genomic features in addition to 
protein-based features to predict genes encoding antimicro-
bial peptides using artificial intelligence algorithms. For 
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this purpose, more than 900 known genomic features and 
motifs at the level of genes encoding antimicrobial pep-
tides, as well as upstream and downstream regulatory re-
gions of these genes, were collected and used as main fea-
tures along with protein features in the desired algorithms. 
The results showed that the presence of some genomic fea-
tures and specific motifs on the DNA level in the genes 
encoding antimicrobial peptides was more colorful, such 
that these features can be used as markers for identifying 
genes encoding antimicrobial peptides. In general, The re-
sults of this study indicated that ML methods and the fea-
tures extracted from the AMPs of three animals (i.e., bo-
vine, sheep, and Gallus gallus) and human species using 
known genomic features and motifs at the DNA level along 
with common protein features could significantly improve 
the accuracy of artificial intelligence-based methods in de-
tecting genes encoding peptides and introduce novel candi-
date of AMPs.  
 

  MATERIALS AND METHODS 
The methodology for predicting antimicrobial peptides in-
volves utilizing feature extraction combined with super-
vised learning techniques, as demonstrated in (Figure 1). 
 
Data collection 
The provided content includes a summary of both the posi-
tive and negative datasets (Table 1), Positive datasets were 
peptides whose antimicrobial activity has been experimen-
tally confirmed. The negative dataset was peptides that do 
not have antimicrobial properties. The dataset used in this 
study consisted of 158 AMP sequences and 110 non-AMP 
sequences, which constituted a two-class dataset. The AMP 
class was assigned a value of 1, while the non-AMP class 
was designated as 0. 
 

Positive: To construct the positive dataset, we used the 
genes encoding peptides with antimicrobial properties, 
whose antimicrobial properties have been confirmed in 
vitro and with a length of 6 to 100 amino acids, from three 
animal species (i.e., cattle, sheep, and poultry) and humans 
from the databases. These genes were gathered from pub-
licly accessible databases or datasets. In particular, antibac-
terial peptides were sourced from the DBAASP database   
(http://dbaasp.org/home; Jhong et al. 2019), CAMP 
(http://webs.iiited.edu.in/raghava/; Waghu et al. 2016), 
DRAMP  (https://dramp.cpu-bioinfor.org; Fan et al. 2016), 
and LAMP (https://ngdc. cncb.ac.cn/database com-
mons/database/id/4562; Zhao et al. 2013). 
 
Negative: The negative dataset was constructed by 
collecting the genes encoding peptides that do not have  

antimicrobial properties and have a length of 5 to 100 
amino acids. The negative dataset for AMP predictors is 
typically sourced from UniProtKB/Swiss-Prot and data-
bases like the RCSB Protein Data Bank (RCSB PDB), as 
there is no dedicated database exclusively containing non-
AMPs (Liu et al. 2017). 
 
Feature extraction 
The features used in this study are 268 with 951 character-
istics of 158 genes encoding the sequence of antimicrobial 
peptides and 110 genes encoding the sequence of biological 
proteins that do not have antimicrobial properties in hu-
mans and strategic animals (cattle, sheep, poultry) at the 
genome level, DNA structure, and transcription level. CpG 
islands, LTRs, and SINEs, LINEs within the DNA se-
quence were retrieved from the UCSC Genome Browser 
(http://genome.ucsc.edu/cgi-bin/hgGateway; February 2006 
build) using its table tools. To identify repeated elements, 
the UCSC Repeat Masker tracks were utilized. Several at-
tributes, such as the count and frequency of individual 
amino acids and the distribution of positively and nega-
tively charged amino acids, were analyzed using various 
bioinformatics tools and software available on the ExPASY 
platform (http://www.expasy.org). The analysis was con-
ducted across 11 genomic sub-domains: complete genes, 
exons, introns, 5′-untranslated regions (5′-UTR), 3′-
untranslated regions (3′-UTR), as well as sequences located 
+1 kb, +10 kb, +100 kb upstream and -1 kb, -10 kb, -100 kb 
downstream. Genomic coordinates were confirmed for the 
total number of SINEs, LINEs, LTRs, and simple repeats 
across these regions spanning gene sequence lengths, ex-
ons, introns, 5′-UTRs, 3′-UTRs, and the upstream and 
downstream regions mentioned. These elements were ana-
lyzed in relation to genes associated with antimicrobial pep-
tides and those related to various biological proteins. Addi-
tionally, the number of CpG islands (CpGi), CpG dinucleo-
tides (CpGn), and the lengths of CpGi regions in these ge-
nomic segments were evaluated. Further calculations were 
performed to determine the density of SINEs, LINEs, 
LTRs, simple repeats, CpGi, and CpGn per kilobase within 
the entire gene region sequence, from start to end 
(Richardson et al. 2015).  

Using the website https://meme-
suite.org/meme/tools/meme, motif sequence, motif length, 
motif E-value in intron regions, 1kb upstream gene se-
quence, 1kb downstream gene sequence were collected at 
the genome level. Next, the percentage of CPG in the se-
quence of each motif was collected as a feature. The 
aggregation propensity, both in vitro and in vivo, was 
assessed through calculations performed using the 
AGGRESCAN web server (Table 2) (De Groot et al. 2012). 
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This research utilized the propypython package to extract 
a total of 198 features spanning categories such as amino 
acid composition, pseudo-amino acid composition, and 
sequence order properties (Cao et al. 2013). 

 
Data cleaning  
Data cleaning includes finding and righting errors in the 
dataset, such as dealing with missing or discordant data, 
removing repetitive, and handling outliers. The data 
preparation stage includes the following two stages. The 
first step includes the elimination of data with NA values. 
In this step, the collected data set has 951 features and 268 
genes. Here, we left out 35 features with high noise values 
(i.e., CpGi 3UTR, length3UTR, CpGi 3UTR, CpGn 3UTR, 
CpGn 3UTR, Avg CpG 3UTR length, tot CpG 3UTR 
length, CpGi 5UTR, CpGi exnos/kb, and CpGn introns). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 The second step is the elimination of features 
inappropriate features. In this step, we omitted 143 features 
because they had inappropriate and irrelevant features. 
Following the cleaning process, the number of attributes 
and records was reduced, and the resulting dataset was 
designated as the finalized clean dataset (CCdb). 

 
Feature selection and attribute weighting 
Attribute weighting 
The most significant features were determined through the 
application of five attribute weighting algorithms. The 
process outlined in reference (41) served as the primary 
framework for guiding the attribute weighting approach. 

 
Assigning weights based on information gain 
This operator determined the contribution of a feature to 
communication by measuring the information gain in class 
distribution (Hosseinzadeh et al. 2012). 

 
Weight by Gini index 
The Gini index algorithm weights each feature through the 
Gini coefficient. This operator calculates the relevance of a 
feature by computing the Gini index of the class 
dispensation if the given example set has been split 
according to the feature (Hosseinzadeh et al. 2012). 
 

Figure 1 Schematic representation of supervised ML methods in AMP prediction

Table 1 Summary of the positive and negative datasets 
Antimicrobial, Antibacterial -Antifungal Dataset 

DBAASP, CAMP, DRAMP, LAMP Positive (AMP) 

Non antimicrobial 

UniProtKB/Swiss-Prot database 

RCSB Protein Data Bank (RCSB PDB) 

 

Negative  (non-AMP) 

 

Table 2 Categories of features calculated for each peptide 
Feature category Features 

Net charge 

Charge density 

Isoelectric point 

Normalized hydrophobicity 

Normalized hydrophobic moment 

Hydrophilicity 

Solvation 

Hydropathy 

 

 

 

 

Physico-chemical 

Amphiphilicity 
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Weight by correlation 
Algorithm correlation refers to the relationship between a 
continuous feature and a class feature, evaluated through 
symmetric uncertainty measurement. When two features 
exhibit a linear relationship, their correlation coefficient 
equals ±1. Conversely, a lack of correlation between the 
features results in a correlation coefficient of 0. Feature 
weights are determined based on their correlation with the 
label feature. Features exceeding the predefined threshold 
value are selected for further processing. 
 
Weight by support vector machine (SVM)  
The SVM algorithm is widely used in machine learning, 
particularly for tasks like classification and regression 
(Cortes and Vapnik, 1995; Mueller et al. 2010). 
 
Weight by optimizing the selection 
The genetic weighting algorithm is among the evolutionary-
based techniques that are heavily used in feature selection 
today (Katoch et al. 2021). 
 
Feature selection 
Feature selection is a process in which the main and 
important features are selected by discarding the worthless 
data. Better models can be obtained by using feature 
selection (Alelyani, 2021) after attribute weighting models 
that have run on the CCdb. The feature selection stage of 
the first stage includes adding the data set collected under 
the name AMP with 773 features and 268 samples to the 
RapidMiner (RapidMiner 9.10) environment. The second 
step includes specifying the attribute of the label. We 
applied feature selection models using feature weighting, 
including weighting by the information gain, weighting by 
correlation, weighting by genetic algorithm (selection 
optimization), weighting by the Gini index, and weighting 
by SVM. In the Third step, after performing attribute 
weighting, all variables with weights higher than 0.1 were 
selected, thereby creating 5 new datasets. The newly 
created datasets were labeled based on their attribute 
weighting models ( information gain, correlation, Gini 
index, optimized selection, and SVM) and were utilized in 
combination with subsequent models, both supervised and 
unsupervised. After selecting features of high importance, 
data normalization was performed on these important 
features. Normalization, as one of the pre-processing 
processes, is applied to the data set to increase the accuracy 
of the final model. Therefore, according to the values of the 
characteristics, the data were normalized in four yields. In 
the next step, the Mann-Whitney U test (MWU) was 
performed on highly important features to ensure the 
appropriateness of important features. Mann-Whitney U 
(MWU) test was performed between some important 

features of weighting algorithms. This test belongs to a 
broader category of tests referred to as non-parametric or 
distribution-free tests. 
 
Supervised classification 
The primary goal of supervised methods is to identify the 
relationship between input and target attributes. To achieve 
this, supervised classification was conducted on five newly 
constructed datasets derived through feature selection. 
Three classification models C4.5 decision tree, random 
forest, and Naïve Bayes were applied to these datasets. 
Random forest classifier 
Random forest is a machine learning model composed of 
multiple individual decision trees. It functions as an ensem-
ble of tree-based predictors, where each tree is built using a 
random vector sampled independently but following the 
same distribution across the forest. Each node signifies a 
division rule for a specific feature, effectively separating 
the values in accordance with the chosen parameters 
(Belgiu and Drăguţ, 2016). Also, it helps identify the genu-
inely appropriate independent variables so that the system 
may pick functionality (Breiman, 2001). 
 
Naïve bayes classifier  
The Naïve Bayes classifier is a classification method 
grounded in Bayes' theorem, operating under the assump-
tion that the predictors are independent of one another. It is 
actually a statistical process based on prediction theory that 
selects the most likely verdict. Unknown outcomes of iden-
tified value systems are estimated by Bayesian probability 
(Trivedi et al. 2022). 
 
Classification trees classifier  
Decision trees fall under the category of supervised 
learning algorithms, with most being constructed through a 
quantitative minimization approach known as entropy. 
Among these algorithms, ID3 and C4.5, developed by 
Quinlan, stand out as the most efficient. C4.5 serves as an 
advanced iteration of the ID3 algorithm, utilizing an 
inference method within the decision tree framework. C4.5 
is an algorithm invented by Ross Quinlan that is utilized to 
generate a decision tree on a dataset (Piryonesi and El-
Diraby, 2020). 
 
Training machine learning models  
A trained classification model is typically evaluated using a 
hold-out test set to assess its performance on an 
independent dataset (Figure 2). The accuracy of C4.5, 
Random Forest, and Naive Bayes models was optimized 
using the 10-fold cross-validation method. In this method, 
the training dataset was split into 10 non-overlapping 
subgroups of approximately equal size.  
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In each iteration, nine subgroups were used for training, 
and one subgroup was used for testing. The validation 
process was conducted a total of ten times. At each 
validation stage, the performance of models trained in the 
previous stage was evaluated using the evaluation metrics. 
The confusion matrix serves as the foundational tool for 
evaluating the performance of binary classification models, 
including AMP predictors. This matrix illustrates the four 
potential outcomes that arise when comparing prediction 
results to actual class values. These outcomes are 
categorized and summarized in (Figure 3).  

The confusion matrix was derived from the evaluation 
process, allowing for the calculation of four key 
parameters: true positive (TP), true negative (TN), false 
positive (FP), and false negative (FN) (Chapelle et al. 
1999), were calculated by the confusion matrix. In the next 
stage, seven evaluation metrics of the classification 
algorithm performance, including specificity, sensitivity, 
accuracy, precision, recall, F1 score, and AUC-ROC, were 
calculated using the values obtained from the confusion 
matrix. At the end of the training and model-building phase, 
15 models were built by processing the five training 
datasets (correlation, optimized selection, information gain, 
SVM, and Gini index) using three classification algorithms 
(C4.5, Random Forest, and Naive Bayes). 
 
Sensitivity= TPR= TP / (TP+FN) 
Specificity= TN / (TN+FP) 
Precision= TP / (TP+FP) 
Accuracy= (TP+TN) / (TP+FN+TN+FP) 
Classification= (FP+FN) / (TP+TN+FP+FN) 
 
Analysis of the prediction results of the optimal model 
After the model-building steps, three methods were used to 
analyze the prediction results of the built models. The first 
method involved using an iAMPpred online web server. 
Considering the broad activity of antimicrobial peptides 
(e.g., antibacterial, antiviral, antifungal, and anticancer), the 
trend of 10 genes predicted by the optimal model was 
checked using the online web service iAMPpred. The 
second method involved building C4.5, Random Forest, 
and Naive Bayes models by a known test dataset consisting 
of 10 genes. The third method involved building C4.5, 
Random Forest, and Naive Bayes models by a known test 
dataset consisting of 22 genes. Two subsets were used for 
validation. In the subset of the first stage, we collected a 
group of prediction datasets in the human species. This data 
set of Predict contains 10 compounds (5 antimicrobial 
peptides whose antimicrobial properties have been 
confirmed in a laboratory and 5 non-AMP peptides that do 
not have antimicrobial properties).  

The outputs of five weighting algorithms, correlation 
(correlation), genetic algorithm (selection optimize), 
information gain (information gain), and SVM (Gini index), 
were imported as the Train dataset in four species of 
humans, cattle, sheep, and poultry to the RapidMiner 
environment. Using three classification algorithms, C45, 
Random Forest, and Naive Bayes were evaluated and 
processed on five new datasets created from feature 
weighting and Predicate datasets. In the subset of the 
second stage, a group of prediction datasets in the human 
species was collected. This dataset of Predict contains 22 
complexes (5 confirmed antimicrobial peptides and 17 non-
AMP that have no antimicrobial properties).  

The outputs of five weighting algorithms correlation, 
genetic algorithm (selection optimize), information gain 
(information gain), and SVM index (Gini index) were 
imported as the Train dataset in four species of humans, 
cattle, sheep, and poultry to the RapidMiner environment. 
Three classification algorithms, C45, Random Forest, and 
Naive Bayes, were evaluated and processed on five new 
datasets created from the feature weighting and Predicate 
dataset. 
 

  RESULTS AND DISCUSSION 
The initial data set included 268 AMP sequences and non-
AMP sequences, consisting of 951 features after leaving out 
the features with large empty values (35 cases), of which 
143 features were removed due to having inappropriate and 
irrelevant features. The features used in the present study 
were reduced to 773 features. 

Five datasets were created from each weighting algo-
rithm, which is called the same algorithm. Mann-Whitney 
U test was performed among the important characteristics 
in two AMP and Non-AMP groups. The results showed that 
features such as MOTIF40-1kbUp, MOTIF12-1kbUp, 
CpGn 100kbUp, Theoretical pI, and Molecular weight that 
were significant with the Mann-Whitney U test are more 
important.  

The statistically notable distinction between MOTIF42-
1kbUp features related to AMP and non-AMP proteins was 
determined through the Mann-Whitney U test (P<0.001). 
The results of the Mann-Whitney test for each feature, 
along with the corresponding histograms and box plots, are 
included in (Figures 4 and 5). 

Five new datasets created from feature weighting were 
processed to train three classification algorithms, C45, 
Random Forest, and Naive Bayes, to identify genes with 
antimicrobial properties in four species. Next, these three 
models were analyzed through the Train dataset. The 
training was able to predict the Predicate data set.  
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Figure 2 Complete model proposed with RapidMiner

The results of evaluating the output of the weighting 
algorithm with each of the three classifications were 
examined (Figure 6). Finally, 15 models were built at the 
end of the training and model-building stage (i.e., 
processing of five training data sets correlation, Selection 
optimization, Information Gain, SVM, and Gini Index 
using three classification algorithms C45, Random Forest, 
and Naive Bayes). 

Table 3 gives the results of evaluation criteria for 
building and training 15 Naive Bayes, Random Forest, and 
C45 classification models by processing five training data 
sets: information gain, correlation, Gini index, optimized 
selection, and SVM. Among these 15 developed models, 
the obtained results are as follows. 

Figure 3 A confusion matrix illustrates the predicted class values 
generated by a machine learning model in comparison to the actual 
class values. It effectively highlights the outcomes as true positives, 
false positives, false negatives, and true negatives 
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Figure 4 Boxplot and web chart highlighting key attributes of AMPexpressed genes: (a) Boxplot of MOTIF42-1kbUp and P-value 
(P<0.0001); (b) Boxplot of CpGn100kbUp P-value (P<0.0001); (c) Boxplot of MOTIF12-1kbUp P-value (P<0.0001); (d) Boxplot of 
Molecular weight P-value (P<0.0001); and (e) Boxplot illustrating the Theoretical PI P-value (P<0.0001) as evaluated using the Mann-
Whitney test 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 5 Histogram of some important features of expressed AMP genes. (A) Histogram of MOTIF42-1kbUp, (B) Histogram of 

CpGn100kbUp, (C) Histogram of MOTIF12-1kbUp, (D) Histogram of Molecular weight (E) Histogram of Theoretical PI 
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Figure 6 Heat map chart3 of the key attributes identified by various 
attribute weighting algorithms 
 

 
In the prediction of AMP coding genes, the results of 

building and training the Naive Bayes model with SVM 
weighting algorithms had the best performance with an 
accuracy rate of 99.63%. On the other hand, building and 
training the Naive Bayes model with Correlation weighting 
algorithms had the lowest performance, with an accuracy 
rate of 94.4% (Table 3). 

Since this criterion performs the calculation based on the 
accuracy of the model in predicting AMP coding genes, the 
result of building and training the Naive Bayes model, with 
SVM weighting algorithms, has the best performance with 
an accuracy rate of 0.37%. Building and training the Naive 
Bayes model with Correlation weighting algorithms had the 
lowest performance, with an error rate of 5.23% (Table 3). 

In predicting AMP coding genes, the result of building 
and training the Naive Bayes model with SVM weighting 
algorithms had the best performance with a 100% com-
pleteness rate. Building and training the Naive Bayes model 
with Information Gain weighting algorithms had the lowest 
performance with an accuracy rate of 92.38% (Table 3). 

In the prediction of AMP coding genes, the evaluation 
criteria of the F1 score for all the built models was higher 
than 90%. The result of building and training the Naive 
Bayes model with SVM weighting algorithms had the best 
performance, with an F1 score of 99.70% (Table 3).  

In predicting the AMP coding genes, the sensitivity 
evaluation criterion in this research was significant and 
higher than 91% for all the constructed models. The result 
of building and training the Naive Bayes model showed the 
best performance with SVM weighting algorithms with a 
Sensitivity of 100% (Table 3). 

In predicting the AMP coding genes, the sensitivity 
evaluation criterion in this research was significant and 
higher than 91% for all the constructed models. The results 
of building and training the Naive Bayes model with SVM 

weighting algorithms had the best performance with a 
Specificity of 99.09%. Building and training the Random 
Forest model with SVM weighting algorithms had the low-
est performance with a Specificity of 93.64% (Table 3). 
The results of the ROC evaluation criterion from the con-
struction of the C45 model using the SVM algorithm with 
AUC= 99.9% are given in Figure 7. Also, the results of the 
ROC evaluation criterion from constructing the Naive 
Bayes model using the SVM algorithm with AUC=1 are 
provided in Figure 8. Finally, the results of the criterion 
ROC evaluation of Random Forest model construction us-
ing the SVM algorithm with AUC= 97.6% are shown in 
Figure 9. 

In this research, the iAMPpred online web server was 
used to predict the specific antimicrobial properties of the 
obtained 10 genes to confirm the correctness of the ten pre-
dicted genes with antimicrobial properties. This online pre-
diction web server is designed to assess the likelihood of 
peptide sequences functioning as antibacterial, antiviral, or 
antifungal agents. The output image from the iAMPpred 
server and the result page for other genes are included in 
the attached file. Visual snapshots demonstrating the execu-
tion process of iAMPpred with a sample dataset, along with 
corresponding results, are presented in Figure 10. The result 
page highlights sequences with their probabilities of exhib-
iting antiviral, antibacterial, or antifungal properties. 

The result page displays sequences along with their prob-
abilities of functioning as antiviral, antibacterial, and anti-
fungal peptides. The results obtained from the first stage 
collection showed five coding genes Amp that were 
confirmed as Amp antimicrobial properties by each 
weighting algorithm: correlation (correlation), genetic 
algorithm (selection optimize), information gain 
(information gain), and SVM index (Gini index). Also, 
three classified algorithms, C45, Random Forest, and Naive 
Bayes, recognized the polypeptides as 100% AMP with 
99.63 accuracy (Table 4).  

The results obtained from the second stage collection 
showed five coding genes Amp that were confirmed as 
AMP antimicrobial properties by each weighting algorithm: 
correlation (correlation), genetic algorithm (selection 
optimize), information gain (information gain), and SVM 
index (Gini index). Here, three classified algorithms, C45, 
Random Forest, and Naive Bayes, recognized the 
polypeptide that was 100% AMP with 99.63 accuracy as 
Amp (Table 5). Today, artificial intelligence (AI) has been 
increasingly developed in various sciences, including cell 
biology (Kuiken, 2023). Artificial intelligence is increas-
ingly applied in biological sciences, particularly in predict-
ing the structure and function of genes (Kelley et al. 2016; 
Altman and Krzywinski, 2017; Buchan and Jones, 2019) 
and proteins (Kelley et al. 2016).  
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Figure 7 The results of the ROC evaluation criteria of the construction of 
the C45 model using the SVM algorithm 

 
 
 
 
 
 
 
 
 
 
 

Figure 8 The results of the ROC evaluation criterion of the construction of 
the Naive Bayes model using the SVM algorithm 
 

Based on the previous research of the present team in the 
field of antimicrobial peptides, we decided to answer this 
research question: Can we use artificial intelligence algo-
rithms to predict the genes encoding antimicrobial peptides 
at the genome level?  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
Figure 9 The results of the ROC evaluation criterion of the construction of 
the Random Forest model using the SVM algorithm 

 
To answer this question in this research, we conducted a 

comprehensive study of machine learning models to deter-
mine and predict genes encoding antimicrobial peptides in 
humans and three strategic livestock (cattle, sheep, and 
chicken) using artificial intelligence analysis. In this study, 
protein and genomic features related to AMP coding genes 
were simultaneously studied in order to predict AMP cod-
ing genes using machine learning algorithms. In previous 
studies, prediction has been investigated only at the level of 
amino acid sequences. Understanding the conserved struc-
tural features of antimicrobial peptides (AMPs) offers valu-
able insights into their evolutionary importance and lays the 
groundwork for developing novel peptide-based antibiotics 
(Yount and Yeaman, 2004). In this research, a combination 
of physicochemical features at the protein sequence and 
DNA sequence levels was used as input in RapidMiner to 
predict AMPs.  

Table 3 The Results of evaluation parameters of classification models 

 Classifier 

 C45 Classifier 

 Accuracy 
classification 

errore 
AUC Precision Recall 

F1 
measure 

FP FN TP TN Sensitivity Specificity 

Information gain 95.51 4.49 0.954 96.25 96.21 96.19 6 6 152 104 96.21 94.55 

Gini index 95.51 4.49 0.954 96.25 96.21 96.19 6 6 152 104 96.21 94.55 

Correlation 96.27 3.73 0.961 96.87 96.83 96.83 5 5 153 105 96.83 95.45 

Optimize selection 95.11 4.89 0.953 95.75 96.17 95.86 7 6 152 103 96.17 93.64 

SVM 97.76 2.24 0.976 97.57 98.75 98.12 4 2 156 105 98.75 96.36 

 Naive bayes classifier 

Information gain 95.14 4.86 0.976 99.41 92.38 95.69 1 12 146 109 92.38 99.09 

Gini index 95.14 4.86 0.976 99.41 100 95.69 1 12 146 109 92.38 99.09 

Correlation 94.4 5.6 0.981 99.41 91.13 94.93 1 14 144 109 91.13 99.09 

Optimize selection 99.63 0.37 1 99.41 92.38 99.7 1 0 158 109 100 99.09 

SVM 99.63 0.37 1 99.41 100 99.7 1 0 158 109 100 99.09 

 Random forest classifier 

Information gain 98.5 1.5 1 97.61 100 98.77 4 0 158 106 100 96.36 

Gini index 99.25 0.75 1 98.79 100 99.37 2 0 158 108 100 98.18 

Correlation 98.5 1.5 0.999 97.61 100 98.77 4 0 158 106 100 96.36 

Optimize selection 96.64 3.36 0.998 95.83 98.71 97.21 7 2 156 103 98.71 93.64 

SVM 97.39 2.61 0.999 95.91 100 97.88 7 0 153 103 100 93.64 
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To this end, features of a large dataset were used. Posi-
tive datasets included peptides with experimentally con-
firmed antimicrobial activity. Negative datasets included 
short-chain peptides lacking antimicrobial properties. Many 
previous studies have focused on analyzing a single dataset 
of antimicrobial peptides (AMPs) sourced from one data-
base (Torrent et al. 2011). The AMP sequences utilized in 
this study appear to be more dependable, as they were 
sourced from multiple AMP databases. AMPs are crucial 
for the development and progression of complex multicellu-
lar organisms (Zasloff, 2002). The physicochemical proper-
ties of this group of active peptides are usually considered 
acceptable in predicting their performance (Cai and Jiang, 
2016b). Physicochemical properties such as hydrophobic 
sequences (approximately 50%) and net positive charge at 
physiological pH (Yamagata et al. 2003) could indicate 
AMP biological function (Rončević et al. 2019). One of the 
most important advantages of the work done with the pre-
vious work described in the background review section is 
the feature selection step. At this stage, the selection and 
weighting of important features from the AMP data set 
were done separately with 5 feature selection algorithms: 
gain information, correlation and SVM, Gini index, and 
selection optimization. We also examined the aggregation 
tendencies of both groups, AMP and non-AMP, as these 
could serve as significant modulators of peptide function.  

Furthermore, AGGRESCAN serves as an effective tool 
for analyzing aggregation in bacteria. Similar to previous 
studies, Torrent et al. (2011) conducted a study on linking 
the physicochemical and antimicrobial properties of pep-
tides through a rational prediction model, utilizing the AG-
GRESCAN analytical tool (Zasloff, 2002). The present was 
conducted using a machine learning-based approach, corre-
lating a complete set of physicochemical properties derived 
from peptide and DNA sequences and genome-level motifs 
with antimicrobial activity. Although physicochemical 
properties have been used in previous studies (Meher et al. 
2017; Bhadra et al. 2018), CG percentage was obtained in 
the sequence of each motif. In a recent study, we were able 
to predict the genes encoding antimicrobial peptides with 
very high accuracy (99.63%) by considering the motifs at 
the genome level as a genomic feature in addition to the 
physicochemical features of the protein (Table 6). Charac-
terization of genome-wide motifs was used for the first time 
in this study to predict AMP. Protein motifs are small sec-
tions within a protein's three-dimensional structure or 
amino acid sequence that are commonly found across dif-
ferent proteins. These regions are identifiable portions of 
the protein structure and may, but do not always, serve a 
distinct chemical or biological purpose (Richardson, 1994).  Figure 10 Snapshots of server page of iAMPpred 
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Table 4 The performance of fifteen distinct induction models was evaluated based on eight criteria accuracy, classification error, AUC, precision, 
recall, F-measure, sensitivity, and specificity using 10-fold cross-validation across 10 datasets 

 C45 

 Accuracy 
Classification 

Errore 
AUC Precision Recall 

F meas-
ure 

FP FN TP TN Sensitivity Specificity 

Information 
gain 

95.51 4.49 0.954 96.25 96.21 96.19 6 6 152 104 96.21 94.55 

Gini index 95.51 4.49 0.954 96.25 96.21 96.19 6 6 152 104 96.21 94.55 

Correlation 96.27 3.73 0.961 96.87 96.83 96.83 5 5 153 105 96.83 95.45 

Optimize 
selection 

95.11 4.89 0.953 95.75 96.17 95.86 7 6 152 103 96.17 93.64 

SVM 97.76 2.24 0.976 97.57 98.75 98.12 4 2 156 106 98.75 96.36 

 Naive bayes 

Information 
gain 

95.14 4.86 0.976 99.41 92.38 95.69 1 12 146 109 92.38 99.09 

Gini index 95.14 4.86 0.976 99.41 92.38 95.69 1 12 146 109 92.38 99.09 

Correlation 94.4 5.6 0.981 99.41 91.13 94.93 1 14 144 109 91.13 99.09 

Optimize 
selection 

99.63 0.37 1 99.41 100 99.7 1 0 158 109 100 99.09 

SVM 99.63 0.37 1 99.41 100 99.7 1 0 158 109 100 99.09 

 Random forest 

Information 
gain 

98.5 1.5 1 97.61 100 98.77 4 0 158 106 100 96.36 

Gini index 99.25 0.75 1 98.79 100 99.37 2 0 158 108 100 98.18 

Correlation 98.5 1.5 0.999 97.61 100 98.77 4 0 158 106 100 96.36 

Optimize 
selection 

96.64 3.36 0.998 95.83 98.71 97.21 7 2 156 103 98.71 93.64 

SVM 97.39 2.61 0.999 95.91 100 97.88 7 0 158 103 100 93.64 

Table 5 The performance of fifteen distinct induction models was evaluated based on eight criteria accuracy, classification error, AUC, precision, 
recall, F-measure, sensitivity, and specificity using 10-fold cross-validation across 22 datasets 

 C45 

 Accuracy 
Classification 

Errore 
AUC Precision Recall 

F meas-
ure 

FP FN TP TN Sensitivity Specificity 

Information 
gain 

98.87 1.13 1 98.2 100 99.07 3 0 158 108 100 97.27 

Gini index 94.77 5.23 0.981 99.41 91.75 95.27 1 13 145 109 91.75 99.09 

Correlation 97.38 2.62 0.972 97.53 98.08 97.78 4 3 155 106 98.08 96.36% 

Optimize 
selection 

97.38 2.62 0.999 95.81 100 97.84 7 0 158 103 100 93.64 

SVM 98.87 1.13 1 98.2 100 99.07 3 0 158 107 100 97.27 

 Naive bayes 

Information 
gain 

98.87 1.13 1 98.2 100 99.07 3 0 158 107 100 97.27 

Gini index 94.77 5.23 0.981 99.41 91.75 95.27 1 13 145 109 91.75 99.09 

Correlation 94.77 5.23 0.981 99.41 91.75 95.27 1 13 145 109 91.75 99.09 

Optimize 
selection 

99.63 0.37 1 99.41 100 99.07 1 0 158 109 100 99.09 

SVM 99.63 0.37 1 99.41 100 99.7 1 0 158 109 100 99.09 

 Random forest 

Information 
gain 

98.87 1.13 1 98.2 100 99.07 3 0 158 107 100 97.27 

Gini index 98.87 1.13 1 98.2 100 99.07 3 0 158 107 100 97.27 

Correlation 99.25 0.75 1 98.79 100 99.37 2 0 158 108 100 98.18 

Optimize 
selection 

97.38 2.62 0.999 95.81 100 97.84 7 0 158 103 100 93.64 

SVM 97.38 2.62 0.999 95.81 100 97.84 7 0 158 103 100 93.64 
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DNA sequence motifs are short sequences that are pre-

sent in different parts of DNA. The binding site of tran-
scription factors in DNA sequences is determined using 
motifs (D'haeseleer, 2006). The most innovative aspect of 
this method lies in considering genome-level motifs within 
the intron region, as well as 1 kb upstream and downstream 
of the gene, as influential features. It takes into account 
how gene expression is affected by the nucleotide composi-
tion of the coding region, including factors such as GC con-
tent and codon usage (Barahimipour et al. 2015). 

Regarding motif features, previous studies have shown 
that the Gly-Xaa-Cys motif is conserved across all mam-
malian defensins and plays a crucial role in ensuring the 
proper folding and natural structure of antimicrobial pep-
tides (AMPs) (Xie et al. 2005). Disulfide bridges, found in 
antimicrobial peptides (AMPs) like formicin, drosomycin, 
protegrin-1, big defensin, gaegurin-1, polyphemusin-1, 
mytilin A, gomesin, HNP-3 ,thanatin, and AFP-1, typically 
include conserved GXC or CXG motifs (Yount and 
Yeaman, 2004). LL-37 is an amphipathic peptide featuring 
a helical structure, with its heparin-binding property attrib-
uted to the XBBXBX motif (Andersson et al. 2004). An-
timicrobial peptides (AMPs) capable of binding to heparin 
often feature specific heparin-binding motifs, such as 
XBBBXXBX, where X signifies hydrophobic or uncharged 
amino acids, and B represents critical basic residues. Those 
containing proline-arginine-proline (PRP) motifs belong to 
a category of proline/arginine-rich cationic peptides, which 
includes examples like callinectin and astacidin 2. These 
peptides commonly exhibit one or more PRP motifs and 
demonstrate strong antibacterial effects against both Gram-
positive and Gram-negative bacteria. Another notable ex-
ample is armadylidine, a glycine-rich cationic antimicrobial 
peptide characterized by the presence of five repeated 
GGGFHR or GGGFHS motifs and C-terminal amidation. 
This peptide shows significant antibacterial efficacy, par-
ticularly against Gram-positive bacteria (Herbinière et al. 
2005). Histatin peptides are histidine-rich peptides belong-
ing to a family of AMPs. The human salivary peptide, 
histatin 5, along with other histatins, features an ATCUN 
motif. The antifungal activity of histatin 5 is notably asso-
ciated with generating activity of reactive oxygen species of 
the Asp-Ser-His motif (Cabras et al. 2007; Tay et al. 2009). 

 

 
 
 
 
 
 
 
 

Table 6 AMP predicted by supervised ML methods 
Source Gene Source Gene 

Bovine ATP5MD, DAPIT, USMG5 Bovine COX7A1, COX7A, COX7AH 

Gallus gallus UQCRFS1, RCJMB04_5b19 Bovine BGLAP 

Homo sapiens COD, SNRPB1 Bovine MRPL33 

Homo sapiens UBL5 Bovine  MRPL34 

Homo sapiens POLR2K Bovine MRPL27 

Previously, various papers on bioinformatics have inves-
tigated motifs related to the immunological properties of 
peptides for several purposes (Attique et al. 2020). At the 
genomic level, peptides derived from natural sources usu-
ally show common sequence motifs (Cardoso et al. 2021). 
In previous studies, Boris et al. (2022) performed a com-
parative evaluation of machine learning algorithms focused 
on predicting antimicrobial peptides (AMPs) specific to 
microbial strains. Incorporating genome characteristics as 
additional features improved the performance of all models 
compared to those based solely on AMP sequence proper-
ties (Attique et al. 2020). Marina et al. (2023) examined the 
γ-Core Motif Peptides of Plant AMPs, highlighting their 
potential as innovative antimicrobials for both medicine and 
agriculture. Their findings revealed that the γ-core motif 
possesses inhibitory effects against bacterial and fungal 
pathogens affecting plants and humans, making it a promis-
ing framework for creating new anti-infective agents. Addi-
tionally, certain γ-core peptides demonstrate a dual function 
by combining antimicrobial activity with immunomodula-
tory properties, further expanding their range of practical 
applications (Attique et al. 2020). 

A recent study revealed, some properties had the highest 
weight in all outputs of all five weighting algorithms. In our 
work, these properties were evaluated in antimicrobial and 
non-microbial peptides to test their suitability for AMP 
prediction. The Mann-Whitney U test results showed a sig-
nificant difference in MOTIF42-1kbUp (P<0.0001), theo-
retical pI (P<0.0001), MOTIF12-1kbUp (P<0.0001), mo-
lecular weight (P<0.0001), and CpGn100kbUp (P<0.0001) 
(Karami et al. 2019). In a study, CpG (CpGn) was used to 
identify imprinted genes in bovine. Gene expression was 
influenced by the nucleotide composition of the coding 
region, such as GC content and codon usage (Karami et al. 
2019). As LINEs and SINEs were introduced as genomic 
properties in previous studies by (Cowley et al. 2011), 
SINE and LINE sequences were employed as genomic 
properties for prediction in the present study (Cowley et al. 
2011). The SINE sequence contains 13% of the total human 
genomic DNA (Vassetzky and Kramerov, 2013). These 
sequences do not code for a protein. Long interspersed 
nuclear elements (LINEs) represent a class of non-long 
terminal repeat (non-LTR) retrotransposons that are  
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widespread across the genomes of many eukaryotic species. 
Also, the physicochemical property of charge was consid-
ered the key factor for antimicrobial activity.  

In the study by Bhadra et al. (2018) this property was 
used to predict AMP. Moreover, protein aggregation ten-
dency, which could be an important modifier of peptide 
function, was investigated in our research. The protein’s 
tendency to aggregate largely depends on the polypeptide 
composition and primary structure. Some parts of very 
short amino acid sequences could act as aggregation facili-
tators (Ivanova et al. 2004; Ventura et al. 2004), which is 
consistent with previous studies in using protein aggrega-
tion as a property (Torrent et al. 2011; Khabbaz et al. 
2021). The prediction method used in our study provided 
the best AUC result (AUC=1). For this purpose, the 10-fold 
cross-validation method was used. AUC is considered 
among the criteria that could be examined for AMP predic-
tion. The partial AUC is the specific area under the ROC 
curve (Peterson et al. 2008). Several computational tech-
niques have been recently proposed to identify and synthe-
size antimicrobial drugs as well as accelerate the selection 
of suitable candidates from biological compounds. DNA 
sequence-based and protein sequence-based models have 
been trained using machine learning algorithms as the main 
techniques to distinguish AMPs from non-AMPs. Thomas 
et al. (2010) suggested using supervised learning methods 
such as random forest (RF), support vector machines 
(SVMs) and discriminant analysis (DA) to predict AMPs 
based on physiochemical properties of amino acid se-
quences. Their prediction models had the accuracy of 
93.2%, 91.5%, and 87.5% for RF, SVM, and DA, respec-
tively (Lata et al. 2010). In another study, an SVM-based 
model was developed by combining the N and C termini of 
the complete peptide amino acid as one of the physico-
chemical properties used to predict protein antibacterial 
peptides through an amino acid sequence. They reported a 
model accuracy of 92.14% and concluded that antibacterial 
peptides prefer certain residues at N and C termini, contrib-
uting to distinguish them from non-antibacterial peptides 
(Bhadra et al. 2018). Elsewhere, amino acid 
physicochemical properties were utilized to predict the 
sequences of antimicrobial peptides. By leveraging the 
distribution patterns of these properties combined with a 
random forest algorithm, the approach achieved a 
prediction accuracy of 96% (Lee et al. 2016). In another 
research, an SVM classifier-based predictive model of 
AMP was developed using machine learning algorithms. 
The results showed the prediction accuracy, specificity, and 
sensitivity of 91.9%, 93.0%, and 90.7%, respectively.  

 
 

Torkzaban et al. (2015) explored an innovative approach 
for phylogeographic analysis and the genealogical study of 
olive populations by employing machine learning tech-
niques to classify microsatellite markers (Torkzaban et al. 
2015). In the feature selection phase of the weighting algo-
rithm, they used the Gini index, correlation, information 
acquisition, SVM, and genetic algorithm (selection opti-
mizer). The weighting algorithm was used in the feature 
selection phase, and the attributes with a weight equal to or 
greater than 0.5 were selected by each algorithm and stored 
as a new feature-weighted dataset. Then, the data were or-
ganized. At the final stage, i.e., evaluating classification 
methods, prediction methods of tree induction and Naive 
Bayes were employed, and an accuracy of 84.30% was ob-
tained. In our research, the SVM algorithm provided better 
results than other techniques in predicting genes encoding 
AMPs at the appropriate genomic level. SVM is a binary 
classification algorithm that distinguishes between two 
classes by projecting feature data points onto a multidimen-
sional space and establishing a hyperplane to divide them. 
This hyperplane is strategically placed to maximize the 
margin between the two classes, ensuring optimal classifi-
cation when applied to a test set. In bioinformatics, the 
SVM weighting algorithm is one of the most commonly 
used supervised learning techniques, thanks to its robust 
statistical foundation (Meher et al. 2017). Over the past 
decade, there has been a significant surge in the develop-
ment of machine learning models aimed at predicting an-
timicrobial peptides (AMPs).  

Among the most frequently used classifiers for AMP 
prediction are support vector machines (SVM) and random 
forests (RF) (Lata et al. 2010; Joseph et al. 2012; Porto et 
al. 2012; Thakur et al. 2012; Qureshi et al. 2015; Meher et 
al. 2017; Bhadra et al. 2018; Jhong et al. 2019; 
Burdukiewicz et al. 2020; Kavousi et al. 2020; Santos-
Junior et al. 2020; Sharma et al. 2021) . The output datasets 
were confirmed by performing the weighting algorithms in 
two stages for training and optimizing the third data (fore-
casting data), consisting of 10 and 22 recessions, respec-
tively. The results and observations from the output of the 
SVM machine learning algorithm show an accuracy rate of 
99.63%. SVM, RF, and artificial neural networks have been 
widely used in previous studies to identify AMPs (Shah et 
al. 2017). In this research, the results obtained from the 
iAMPpred online server were analyzed to confirm the pre-
diction accuracy of genes encoding AMPs in our work 
(Meher et al. 2017). The performance of iAMPpred was 
evaluated further to predict antimicrobial peptides (AMPs) 
specific to four distinct source organisms: humans, sheep,  
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bovine, and Gallus gallus. The tool demonstrated high ac-
curacy in identifying peptide sequences with antibacterial 
and antiviral properties. 

The proposed approach is considered to build upon and 
enhance the tools and techniques previously developed for 
AMP prediction. Accordingly, the peptide-encoding genes 
predicted by the algorithm were converted into protein se-
quences, and their antimicrobial properties were investi-
gated in silico using the mentioned web server. This 
analysis revealed that the weighting algorithms used in this 
study were able to predict the genes encoding antimicrobial 
peptides successfully. We investigated these polypeptides 
(i.e., ten genes that coded antimicrobial peptides in the 
genomes of three animal species and humans as AMPs) for 
which there is no laboratory confirmation in silico. The 
results showed that these polypeptides can be AMPs 
suitable for the purpose of this research. Aside from its an-
timicrobial properties, AMPs have anticancer properties 
and stimulate the immune system. 

As previous studies have focused on the anticancer as-
pect of these peptides, they may have multifunctional and 
antimicrobial properties. Polypeptides that are predicted to 
have antimicrobial properties, in addition to their well-
known antimicrobial properties, could contribute to pre-
venting cancer and regulating the immune system (Duarte-
Mata and Salinas-Carmona, 2023). The heightened sensitiv-
ity of tumor cells to membrane-active cationic antimicrobial 
peptides (AMPs) stems from the elevated presence of ani-
onic phosphatidylserine molecules on their membranes 
compared to normal cells. This characteristic has paved the 
way for utilizing AMPs as effective antitumor agents 
(Utsugi et al. 1991; Liu et al. 2015). We predicted ten 
genes that can be Amp (Table 6). In past bioinformatics 
studies, ten genes that we predicted as AMPs were intro-
duced as prognostic genes in cancer. POLR2K gene acts as 
the bladder cancer prognosis. The surface of the cancer cell 
membrane offers enhanced potential for AMPs, largely 
attributed to its expanded surface area resulting from the 
increased presence of microvilli (Munteanu et al. 2009). 
Cancer cells exhibit reduced levels of cholesterol-based 
anchors, making them more vulnerable to antimicrobial 
peptides (AMPs) (Repana et al. 2019). Ha et al. (2021) 
reported that GNAi2/gip2 transcriptome could stimulate 
ovarian cancer growth (Ha et al. 2021). They found that 
advanced ovary cancer could be diagnosed and treated con-
sidering gene expression at the last stage as well as hub and 
bottleneck nodes such as UQCRFS. COX7A1 is the subunit 
of cytochrome c oxidase. Feng et al. (2022) explored the 
relationship between COX7A1 and ferroptosis, a recently 
identified form of cell death driven by iron-dependent lipid 
peroxidation, across various human non-small-cell lung 
carcinoma (NSCLC) cell lines. Researchers discovered that 

COA enhances the sensitivity of NSCLC cells to ferroptosis 
triggered by cysteine deprivation. This effect is achieved by 
boosting the activity of the tricarboxylic acid (TCA) cycle 
and complex IV within the mitochondrial electron transport 
chain (ETC). Previous studies have revealed AMPs could 
inhibit the growth of lung carcinoma cell lines (Kunda, 
2020). 

Moreover, cancer cells might exhibit a stronger negative 
charge than normal cells, potentially attributed to the exces-
sive expression of glycoproteins or glycosaminoglycans on 
their membranes. This increased surface charge could en-
hance the binding affinity of AMPs (Peduzzi et al. 1996; 
Dos Santos et al. 2017). Small nuclear ribonucleoprotein 
polypeptides B and B1 (SNRPB) are essential elements of 
the spliceosome, significantly contributing to the pre-
mRNA splicing process (Gray et al. 1999). Dysregulation 
of SNRPB disrupts pre-mRNA splicing, leading to the pro-
duction of unusual mRNA variants. The proteins derived 
from these atypical mRNA variants could have a substantial 
impact on tumorigenesis (Correa et al. 2016; Peng et al. 
2020; Zhan et al. 2021). The role of SNR in tumor initia-
tion and progression has been identified in various cancers, 
including NSCLC (Liu et al. 2019; Liu et al. 2021). The 
ubiquitin-like protein UBD, which plays a major role in cell 
proliferation and sister chromatid cohesion through associ-
ating with spliceosomes, participates in pre-mRNA splicing 
by maintaining spliceosome integrity. UBD significantly 
contributes to the degradation of various proteins, cell dif-
ferentiation, cell cycle regulation, apoptosis, message 
transmission, DNA repair, stress response, and immune 
response, all of which are not performed by protein degra-
dation. UBD expression level influences tumor develop-
ment (Lukasiak et al. 2008; Izadi et al. 2014). The mito-
chondrial ribosomal protein (MRP) family is crucial for 
mitochondrial energy metabolism, a core aspect influencing 
the development of breast cancer. Among these proteins, 
MRPL33 is essential for maintaining mitochondrial func-
tion and plays a significant role in promoting tumor pro-
gression (Wallace, 2012; Gatza et al. 2014; Li et al. 2019). 
Therefore, it is possible that these polypeptides in our study 
can be AMPs, although experimental tests are needed for 
100% confirmation. The present research investigated AMP 
prediction using simultaneous machine learning algorithms 
in humans and three animal species at the protein sequence 
and DNA sequence levels. Previous studies have examined 
prediction exclusively at the amino acid sequence level 
within a single species (Torrent et al. 2011; Bhadra et al. 
2018). 
 
 
 
 

210-191, )2(15) 2520(Animal Science Applied  ofIranian Journal   205 



Improved Prediction of Antimicrobial  
  
  

  CONCLUSION 

In this paper, Using a current dataset, a machine learning 
model was developed to predict the AMP of antimicrobial 
peptides with excellent performance. Feature selection with 
cross-validation on a set of physical and chemical features 
at the protein sequence and DNA sequence level was used 
to identify genes encoding AMP antimicrobial peptides in 
the genomes of three strategic animals and humans. The 
most groundbreaking aspect of this approach was deter-
mined to be genome-level motifs in the intron region, 1 kb 
upstream, and 1 kb downstream of the gene. The feature of 
genome-level motifs was used for the first time in this study 
to predict AMP. It was revealed that genome-level motifs 
play an important role in peptide function thus, It should be 
taken into account when training new models. The out-
comes and observations from the output of the machine 
learning algorithm of this study showed that the optimal 
Naive Bayes model processed with the SVM training data 
set with an accuracy of 99.63% was recognized as the best 
model and performed well compared to other models. The 
explanation is that this model predicted the gene that en-
codes peptides with antimicrobial properties with an accu-
racy of 96.63% (Table 6). 
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