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1. Introduction and preliminaries

Throughout this paper, we shall denote by N the set of natural numbers. Almost all
of our notation and terminology are standard.

In order to help the reader we remind some well-known concepts.
Let T be a self-map of a set X and α be a function from X×X to [0,∞). According to

Samet et al. [40], T is α-admissible provided that α(Tx, Ty) ⩾ 1 whenever α(x, y) ⩾ 1. If,
in addition, there is x0 ∈ X such that α(x0, Tx0) ⩾ 1 we say that T is (α, x0)-admissible.

By a (c)-comparison function we mean a non-decreasing function ψ : [0,∞) → [0,∞)
such that

∑∞
n=0 ψ

n(t) <∞ for all t ⩾ 0.
A self-map T of a metric space (X, d) is called a contraction if there is a constant

c ∈ (0, 1) such that d(Tx, Ty) ⩽ cd(x, y) for all x, y ∈ X.
A regular function for a metric space (X, d) is a function α : X × X → [0,∞)

that satisfies the following property: Whenever (xn)n∈N is a sequence in X such that
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α(xn, xn+1) ⩾ 1 for all n ∈ N and there exists x ∈ X such that d(x, xn) → 0 as n → ∞,
then α(xn, x) ⩾ 1 for all n ∈ N (compare [40]).

In [17], Hu obtained the first characterization of metric completeness via contractions
having a fixed point. Later, several authors characterized complete metric spaces via fixed
point results. Next, we present a relevant part of these characterizations in a unified way.

Theorem 1.1 For a metric space (X, d) the following conditions are equivalent.
(1) (X, d) is complete.
(2) Every contraction on any closed subspace C of (X, d) has a (unique) fixed point

z ∈ C.
(3) For every self-map T of X such that there is a constant c ∈ (0, 1/2) satisfying

d(Tx, Ty) ⩽ c[d(x, Tx) + d(y, Ty)],

for all x, y ∈ X, T has a (unique) fixed point.
(4) For every self-map T of X such that there is a lower semicontinuous function

φ : X → [0,∞) satisfying

d(x, Tx) ⩽ φ(x)− φ(Tx),

for all x ∈ X, T has a fixed point.
(5) For every self-map T of X such that there are a regular function α for which T is

(α, x0)-admissible and a (c)-comparison function ψ satisfying

α(x, y)d(Tx, Ty) ⩽ ψ(d(x, y)),

for all x, y ∈ X, T has a fixed point.
(6) For every self-map T of X such that there is a constant c ∈ (0, 1) satisfying

d(x, Tx) ⩽ 2d(x, y) ⇒ d(Tx, Ty) ⩽ cd(x, y),

for all x, y ∈ X, T has a (unique) fixed point.

Remark 1 In [17], Hu proved the equivalence between conditions (1) and (2). Regarding
Hu’s characterization, we recall that Connell [13] gave an example of a non-complete
metric space for which every contraction on it has a fixed point, so the celebrated Banach
contraction principle does not characterize the metric completeness. In [19], Kannan
proved that (1) ⇒ (3), and Caristi proved in [11] that (1) ⇒ (4). Subrahmanyam [43]
and Kirk [24] respectively showed that (3) ⇒ (1) and (4) ⇒ (1). On the other hand,
Samet et al. [40] proved that (1) ⇒ (5), and Romaguera and Tirado showed in [35] that
(5) ⇒ (1). Finally, Suzuki proved in [44] the equivalence between conditions (1) and (6).

In [18], Kada et al. introduced and discussed the notion of w-distance in the realm of
metric spaces. This structure provides an efficient tool to improve various important re-
sults as Ekeland’s Variational Principle and Caristi’s fixed point theorem, among others.
In fact, several authors have obtained interesting fixed point theorems via w-distances,
not only on metric spaces but also on other generalized metric structures (see the mono-
graph [31] with the references therein). In Theorem 1.2 below we compile well-known
and featured w-distance improvements of various parts of Theorem 1.1.

Let us recall that a w-distance on a metric space (X, d) is a function w : X×X → [0,∞)
that satisfies the following conditions:
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(w1) w(x, y) ⩽ w(x, z) + w(z, y), for all x, y, z ∈ X;
(w2) for each x ∈ X, the function w(x, ) : X → [0,∞) is lower semicontinuous;
(w3) for each ε > 0 there exists δ > 0 such that w(x, y) ⩽ δ and w(x, z) ⩽ δ imply

d(y, z) ⩽ ε.

A w-distance w is symmetric provided that it fulfills the following condition: w(x, y) =
w(y, x), for all x, y, z ∈ X.

Examples of w-distances on metric spaces may be found, for instance, in [18, 31, 46].
In particular, every metric d on a set X is a w-distance on the metric space (X, d).

Theorem 1.2 For a metric space (X, d) the following conditions are equivalent.
(1) (X, d) is complete.
(2) For every self-map T of X such that there are a w-distance w on (X, d) and a

constant c ∈ (0, 1) satisfying

w(Tx, Ty) ⩽ cw(x, y),

for all x, y ∈ X, T has a (unique) fixed point z ∈ X. Moreover, w(z, z) = 0.
(2’) For every self-map T of X such that there are a symmetric w-distance w on (X, d)

and a constant c ∈ (0, 1) satisfying

w(Tx, Ty) ⩽ cw(x, y),

for all x, y ∈ X, T has a (unique) fixed point z ∈ X. Moreover, w(z, z) = 0.
(3) For every self-map T of X such that there is a w-distance w on (X, d) and a

constant c ∈ (0, 1/2) satisfying

w(Tx, Ty) ⩽ c[w(Tx, x) + w(Ty, y)],

for all x, y ∈ X, T has a (unique) fixed point z ∈ X. Moreover, w(z, z) = 0.
(4) For every self-map T of X such that there are a w-distance w on (X, d) and a lower

semicontinuous function φ : X → [0,∞) satisfying

w(x, Tx) ⩽ φ(x)− φ(Tx),

for all x ∈ X, T has a fixed point z ∈ X such that w(z, z) = 0.
(5) For every self-map T of X such that there are a w-distance w on (X, d), a regular

function α for which T is (α, x0)-admissible and a (c)-comparison function ψ satisfying

α(x, y)w(Tx, Ty) ⩽ ψ(w(x, y)),

for all x, y ∈ X, T has a fixed point z ∈ X.

Remark 2 The equivalence between (1), (2) and (2’) was showed by Suzuki and Taka-
hashi [46]. Suzuki [45] (see also [42]) showed the equivalence between (1) and (3), and
Kada et al. [18] proved that (1) and (4) are equivalent. Finally, (5) ⇒ (1) follows from
the obvious fact that (5) ⇒ (2), while (1) ⇒ (5) can be deduced from various well-known
fixed point results. We present a sketch of its proof: Let x0 ∈ X such that α(x0, Tx0) ⩾ 1.
For each n ∈ N ∪ {0} put xn = Tnx0. Taking into account that T is α-admissible we
get w(xn, xn+1) ⩽ α(xn−1, xn)w(xn, xn+1) ⩽ ψ(w(xn−1, xn)), for all n ∈ N. Now, by
recursion we deduce that w(xn, xn+1) ⩽ ψn(w(x0, x1)) for all n ∈ N. Combining the tech-
nique used in the first lines of page 2156 in [40] with condition (w3), we conclude that
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(xn)n∈N is a Cauchy sequence in the complete metric space (X, d). So, there is z ∈ X such
that d(z, xn) → 0 as n → ∞. Applying (w2) we deduce from standard arguments that
w(xn, z) → 0 as n→ ∞. Finally, since α is regular we have that w(xn+1, T z) ⩽ w(xn, z)
for all n ∈ N, and by (w3), z = Tz.

In the light of Theorem 1.2 we emphasize that the problem of obtaining a nice w-
distance generalization of Suzuki’s characterization of metric completeness (Theorem
1.1, (1) ⇔ (6)) presents interesting difficulties that deserve attention. Thus, in [38] it
was given an example of a self-map T of a complete metric space (X, d), without fixed
points, but for which there is a w-distance w and a constant c ∈ (0, 1) satisfying

w(x, Tx) ⩽ 2w(x, y) =⇒ w(Tx, Ty) ⩽ cw(x, y),

for all x, y, z ∈ X.
This fact motivated the following notion introduced in [38]: A w-distance w on a

metric space (X, d) is called presymmetric if it satisfies the following property: Whenever
(xn)n∈N is a sequence in X such that d(x, xn) → 0 and w(xn, x) → 0 as n → ∞, for
some x ∈ X, then there is a subsequence (xj(n))n∈N of (xn)n∈N fulfilling w(x, xj(n)+1) ⩽
w(xj(n), x) for all n ∈ N.

Note that every symmetric w-distance is presymmetric. (We point out that the idea
of presymmetry has been recently applied to other structures [22, 23, 37, 39]).

Then, we have [38, Theorems 2 and 11]:

Theorem 1.3 For a metric space (X, d) the following conditions are equivalent.
(1) (X, d) is complete.
(2) For every self-map T of X such that there is a presymmetric w-distance w on

(X, d) and a constant c ∈ (0, 1) satisfying

w(x, Tx) ⩽ 2w(x, y) ⇒ w(Tx, Ty) ⩽ cw(x, y),

for all x, y ∈ X, T has a (unique) fixed point z ∈ X. Moreover, w(z, z) = 0.
(2’) For every self-map T of X such that there is a symmetric w-distance w on (X, d)
and a constant c ∈ (0, 1) satisfying

w(x, Tx) ⩽ 2w(x, y) ⇒ w(Tx, Ty) ⩽ cw(x, y),

for all x, y ∈ X, T has a (unique) fixed point z ∈ X. Moreover, w(z, z) = 0.

This review paper deals with the problem of extending Theorems 1.1, 1.2 and 1.3
to some types of generalized metric spaces as quasi-metric spaces, G-metric spaces and
partial metric spaces. In this direction we will establish several well-known results and
raise some natural questions.

2. Characterizing complete quasi-metric spaces

In the realm of general topology, Wilson [47] introduced the concepts of a quasi-metric
and a quasi-metric space. Later, numerous authors have explored the properties of quasi-
metric spaces as well as its connection with other topological structures. In particular,
it was proved that distinguished non-metrizable topological spaces, as the Sorgenfrey
line, the Michael line, the Niemytzki plane and the Kofner plane, are quasi-metrizable
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(see, e.g., [15]). Partially due for its applications to theoretical computer science and
the complexity analysis of algorithms (see [26] and [41] for pioneering contributions) the
study of the fixed point theory for quasi-metric spaces and other related structures, as
partial metric spaces, has attracted the interest of many researchers over the last decades
(for recent contributions see, e.g., [5, 8, 16, 33] and the references therein). The references
[15] and [12] provide excellent sources for the study of quasi-metric spaces.

In order to help non-specialist readers, we remind some pertinent notions and proper-
ties.

According to modern terminology, by a quasi-metric on a set X we mean a function
d : X ×X → [0,∞) such that for all x, y, z ∈ X : (i) d(x, y) = d(y, x) = 0 if and only if
x = y, and (ii) d(x, z) ⩽ d(x, y) + d(y, z).

If d satisfies condition (ii) and the following condition stronger than (i), d(x, y) = 0 if
and only if x = y, we say that d is a T1 quasi-metric on X.

A (T1) quasi-metric space is a pair (X, d) such that X is a set and d is a (T1) quasi-
metric on X.

Given a quasi-metric d on X, the function d∗ given by d∗(x, y) = d(y, x) is also a
quasi-metric on X, called the conjugate of d, and the function ds given by ds(x, y) =
max{d(x, y), d∗(x, y)} is a metric on X.

Each quasi-metric d on X induces a T0 topology τd on X which has as a base the
family of open balls {Bd(x, r) : x ∈ X, ε > 0}, where Bd(x, r) = {y ∈ X : d(x, y) < ε}
for all x ∈ X and ε > 0.

Thus, a sequence (xn)n∈N in a quasi-metric space (X, d) is declared τd-convergent if it
converges in the topological space (X, τd). Hence, (xn)n∈N is τd-convergent to x ∈ X if
and only if d(x, xn) → 0 as n→ ∞.

By a Hausdorff quasi-metric space we mean a quasi-metric space (X, d) such that τd
is a Hausdorff topology on X, and by a doubly Hausdorff quasi-metric space we mean a
quasi-metric space (X, d) such that τd and τd∗ are Hausdorff topologies on X.

A topological space (X, τ) is quasi-metrizable provided that there is a quasi-metric d
on X such that τ = τd on X.

In the realm of quasi-metric spaces there are several different notions of Cauchy se-
quence and completeness, all of them coincide with the classical notions of Cauchy se-
quence and completeness when considering metric spaces. Here we will use the following
ones.

Let (X, d) be a quasi-metric space. A sequence (xn)n∈N in X is said to be:

Left-Cauchy if for each ε > 0 there is an nε ∈ N such that d(xn, xm) < ε whenever
nε ⩽ n ⩽ m.

Right-Cauchy if for each ε > 0 there is an nε ∈ N such that d(xm, xn) < ε whenever
nε ⩽ n ⩽ m, equivalently, if (xn)n∈N is left K-Cauchy in (X, d∗).

Cauchy if it is left-Cauchy and right-Cauchy, equivalently, if it is Cauchy in the metric
space (X, ds).

Then, (X, d) is said to be:

Smyth-complete if every left-Cauchy sequence is τds-convergent.

Left-complete if every left-Cauchy sequence is τd-convergent.

Right-complete if every right-Cauchy sequence is τd-convergent.

Half-complete if every Cauchy sequence is τd-convergent.

*half-complete if every Cauchy sequence is τd∗-convergent.

The following implications are obvious:

Smyth-complete ⇒ left-complete ⇒ half-complete,
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Smyth-complete ⇒ *half-complete,

and
right-complete ⇒ half-complete.

The reverse implications do not hold in general. In this regard, we recall two typical
examples.

Example 2.1 Let d be the quasi-metric on the set R+ of non-negative real numbers
given by d(x, y) = max{y−x, 0} for all x, y ∈ R+. It is well known that (R+, d) is Smyth
complete and ∗half-complete but not right complete. Note that it is not a T1 quasi-metric
space.

Example 2.2 Let d be the quasi-metric on the set R of real numbers given by d(x, y) =
y − x if x ⩽ y and d(x, y) = 1 if x > y, for all x, y ∈ R. Then, (R, τd) is the famous
Sorgenfrey line. It is well known that (R, d) is right-complete and ∗half-complete but not
left-complete. Moreover, it is a doubly Hausdorff quasi-metric space.

In [6] it was obtained the following full quasi-metric generalization of Kannan-
Subrahmanyam characterization of metric completeness (Theorem 1.1, (1) ⇔ (3)).

Theorem 2.3 For a quasi-metric space (X, d) the following conditions are equivalent.
(1) (X, d) is half-complete.
(2) For every self-map T of X such that there is a constant c ∈ (0, 1/2) satisfying

d(Tx, Ty) ⩽ c[d(x, Tx) + d(y, Ty)],

for all x, y ∈ X, T has a (unique) fixed point.

In [34] it was obtained the following full quasi-metric generalization of Caristi-Kirk’s
characterization of metric completeness (Theorem 1.1, (1) ⇔ (4)).

Theorem 2.4 For a quasi-metric space (X, d) the following conditions are equivalent.
(1) (X, d) is Smyth-complete.
(2) For every self-map T of X such that there is a function φ : X → [0,∞) which is

lower semicontinuous on (X, τds) and satisfies

d(x, Tx) ⩽ φ(x)− φ(Tx),

for all x ∈ X, T has a fixed point.

On the other hand, in [35] quasi-metric generalizations of Theorem 1.1, (1) ⇔ (4),
for Hausdorff and doubly Hausdorff quasi-metric spaces respectively were obtained (see
Theorems 2.5 and 2.6 below).

In this context (compare [35]), the notion of a regular function for a quasi-metric space
is defined exactly as in the metric case, whereas a co-regular function for a quasi-metric
space (X, d) is a function α : X × X → [0,∞) that satisfies the following property:
Whenever (xn)n∈N is a sequence in X such that α(xn, xn+1) ⩾ 1 for all n ∈ N and there
exists x ∈ X such that d(x, xn) → 0 as n→ ∞, then α(x, xn) ⩾ 1 for all n ∈ N.

Theorem 2.5 For a Hausdorff quasi-metric space (X, d) the following conditions are
equivalent.

(1) (X, d) is left-complete.
(2) For every self-map T of X such that there are a co-regular function α for which T
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is (α, x0)-admissible and a (c)-comparison function ψ satisfying

α(x, y)d(Tx, Ty) ⩽ ψ(d(x, y)),

for all x, y ∈ X, T has a fixed point.

Theorem 2.6 For a doubly Hausdorff quasi-metric space (X, d) the following conditions
are equivalent.

(1) (X, d) is right-complete.
(2) For every self-map T of X such that there are a regular function α for which T is

(α, x0)-admissible and a (c)-comparison function ψ satisfying

α(y, x)d(Tx, Ty) ⩽ ψ(d(x, y)),

for all x, y ∈ X, T has a fixed point.

In view of the two preceding theorems we state the following.

Question 2.7 Obtain a full quasi-metric extension of Theorem 1.1, (1) ⇔ (4), valid for
not necessarily Hausdorff (actually, for not necessarily T1) quasi-metric spaces.

The problem of obtaining a full quasi-metric generalization of Suzuki’s characteriza-
tion of metric completeness (Theorem 1.1, (1) ⇔ (6)) presents serious difficulties as the
following example given in [32] shows.

Example 2.8 Let X = N ∪ {∞} and let d be the quasi-metric on X given by d(x, x) = 0
for all x ∈ X, d(n,∞) = 0 for all n ∈ N, d(∞, n) = 1/n for all n ∈ N, and d(n,m) = 1/m
for all n,m ∈ N with n ̸= m.

Then, (X, d) and (X, d∗) are Smyth-complete.
Now let T be the self-map of X defined by T∞ = 1, and Tn = 2n for all n ∈ N.
Obviously, T has no fixed point. However, the following inequality holds for all x, y ∈ X

and any constant c such that 1/2 ⩽ c < 1:

d(x, Tx) ⩽ 2d(x, y) ⇒ d(Tx, Ty) ⩽ cd(x, y).

As with the quasi-metric generalization of Suzuki’s theorem, the problem of obtaining
an adequate generalization of Hu’s theorem (Theorem 1.1, (1) ⇔ (2)) presents certain
difficulty. In [14] the authors obtained a partial solution for the T1 case, which we present
joint its proof in Theorem 2.10 below. We will need the following concepts from [14].

A subset C of a quasi-metric space (X, d) is called doubly closed if C is closed with
respect to τd and with respect to τd∗ .

A (d, d∗)-contraction on a quasi-metric space (X, d) is a self-map T of X such that
there is a constant c ∈ (0, 1) satisfying d(Tx, Ty) ⩽ cd(y, x), for all x, y ∈ X.

A quasi-metric space (X, d) is called weakly complete if every Cauchy sequence in the
metric space (X, ds) converges for τd or for τd∗ .

Next we present an example of a weakly complete quasi-metric space that is not half-
complete and not ∗half-complete.

Example 2.9 Let X = {0,∞} ∪ N ∪ { 1
n+1 : n ∈ N}. Define a function d on X ×X →

[0,∞) by d(0, 0) = d(∞,∞) = 0, d( 1
n+1 ,m) = d(m, 1

n+1) = 1, d(n,m) =
∣∣ 1
n − 1

m

∣∣,
d( 1

n+1 ,
1

m+1) =
∣∣∣ 1
n+1 − 1

m+1

∣∣∣ if n,m ∈ N, d(n,∞) = 1
n , d(0,

1
n+1) =

1
n+1 , and d(∞, n) =

d( 1
n+1 ,∞) = d(∞, 1

n+1) = d( 1
n+1 , 0) = d(0, n) = d(n, 0) = 1, for all n ∈ N. Then

(X, d) is a Hausdorff quasi-metric space. Moreover, every non eventually constant Cauchy
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sequence is a subsequence of (n)n∈N or of ( 1
n+1)n∈N. Since (n)n∈N is τd∗-convergent (but

not τd-convergent) and ( 1
n+1)n∈N is τd-convergent (but not τd∗-convergent), we deduce

that (X, d) is weakly complete but not half-complete or *half-complete.

Theorem 2.10 For a T1 quasi-metric space (X, d) the following conditions are equiva-
lent.

(1) (X, d) is weakly complete.
(2) Every (d, d∗)-contraction on any doubly closed subspace C of (X, d) has a (unique)

fixed point z ∈ C.

Proof. (1) ⇒ (2) Let T a (d, d∗)-contraction on the doubly closed subspace C of (X, d).
Fix x0 ∈ C, then (Tnx0)n∈N is a Cauchy sequence such that {Tnx0 : n ∈ N} ⊂ C. Since
(X, d) is weakly complete then (Tnx0)n∈N is τd-convergent or τd∗-convergent. If (T

nx0)n∈N
is τd-convergent there exists z ∈ X such that d(z, Tnx0) → 0 as n → ∞. Since C is
doubly closed then z ∈ C. Since T is a (d, d∗)-contraction, there exists c ∈ (0, 1) such
that d(Tn+1x0, T z) ⩽ cd(y, Tnx0) for all n ∈ N. Consequently d(Tn+1x0, T z) → 0 as
n→ ∞. From the triangle inequality we deduce d(z, Tz) = 0. Therefore z = Tz because
(X, d) is a T1 quasi-metric space. If (Tnx0)n∈N is τd∗-convergent there exists z ∈ X such
that d(Tnx0, z) → 0 as n → ∞. Since C is doubly closed then z ∈ C. Since T is a
(d, d∗)-contraction, there exists c ∈ (0, 1) such that d(Tz, Tn+1x0) ⩽ cd(Tnx0, z) for all
n ∈ N. Consequently, d(Tz, Tn+1x0) → 0 as n → ∞. From the triangle inequality we
deduce d(Tz, z) = 0. Therefore z = Tz because (X, d) is a T1 quasi-metric space. Finally,
we show that z is the unique fixed point of T . Suppose that y ∈ X verifies that y = Ty.
Then, we have d(y, z) = d(Ty, Tz) ⩽ cd(z, y) ⩽ c2d(y, z), so d(y, z) = 0 and, thus, y = z.

(2) ⇒ (1) Suppose that there exists a Cauchy sequence (xn)n∈N in (X, d) of distinct
terms that is not τd-convergent and not τd∗-convergent. Then, the set C := {xn : n ∈ N}
is a doubly closed subset of X. For each xn we define

ln = min{d(xn, {xm : m > n}), d({xm : m > n}, xn)}.

Then, ln > 0. Since (xn)n∈N is a Cauchy sequence in (X, ds), given r ∈ [0, 1), for each
n ∈ N there exists k(n) > n such that ds(xn′ , xm′) < rln for all m′, n′ ⩾ k(n).

Now, we construct a (d, d∗)-contraction on C without fixed point. Define T : C → C
by Txn = xk(n) for all n ∈ N. Let n,m ∈ N, and suppose, without loss of generality, that
m > n. Then,

ds(Txn, Txm) = ds(xk(n), xk(m)) < cln ⩽ cmin{(d(xn, xm), d(xm, xn)}.

Hence d(Txn, Txm) ⩽ cd(xm, xn) and d(Txm, Txn) ⩽ cd(xn, xm). We deduce that T is
a (d, d∗)-contraction on the doubly closed subspace C. This concludes the proof. ■

Question 2.11 Obtain a full quasi-metric generalization of Hu’s characterization of metric
completeness for not necessarily T1 quasi-metric spaces.

We conclude this section by dealing with the problem of obtaining quasi-metric gen-
eralizations of Theorems 1.2 and 1.3.

According to Park [30] by a w-distance on a quasi-metric space (X, d) we mean a
function w : X ×X → [0,∞) that satisfies the following conditions:

(wq1) w(x, y) ⩽ w(x, z) + w(z, y), for all x, y, z ∈ X;
(wq2) for each x ∈ X, the function w(x, ) : X → [0,∞) is lower semicontinuous on

(X, τd∗);
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(wq3) for each ε > 0 there exists δ > 0 such that w(x, y) ⩽ δ and w(x, z) ⩽ δ imply
d(y, z) ⩽ ε.

Examples of w-distances on quasi-metric spaces can be found, for instance, in [7, 21,
25, 30].

Contrary to what happens in the realm of metric spaces, there exist quasi-metric
spaces (X, d) for which the quasi-metric d is not a w-distance on (X, d). In fact, if d is a
w-distance on (X, d), then the topological space (X, τd) is metrizable.

According to [39], a w-distance w on a quasi-metric space (X, d) is called presymmetric
if it satisfies the following property: Whenever (xn)n∈N is a sequence in X such that
d∗(x, xn) → 0 and w(xn, x) → 0 as n→ ∞, for some x ∈ X, then there is a subsequence
(xj(n))n∈N of (xn)n∈N fulfilling w(x, xj(n)+1) ⩽ w(xj(n), x) for all n ∈ N.

By a *-regular function for a quasi-metric space (X, d) we mean a function α : X×X →
[0,∞) that satisfies the following property: Whenever (xn)n∈N is a sequence in X such
that α(xn, xn+1) ⩾ 1 for all n ∈ N and there exists x ∈ X such that d∗(x, xn) → 0 as
n→ ∞, then α(xn, x) ⩾ 1 for all n ∈ N.

Then, we have

Theorem 2.12 For a quasi-metric space (X, d) the following conditions are equivalent.
(1) (X, d) is *half-complete.
(2) For every self-map T of X such that there are a w-distance w on (X, d) and a

function φ : X → [0,∞) which is lower semicontinuous on (X, τd∗) and satisfies

w(x, Tx) ⩽ φ(x)− φ(Tx),

for all x ∈ X, T has a fixed point z ∈ X such that w(z, z) = 0.
(3) For every self-map T of X such that there are a w-distance w on (X, d), a *-regular

function α for which T is (α, x0)-admissible and a (c)-comparison function ψ satisfying

α(x, y)w(Tx, Ty) ⩽ ψ(w(x, y)),

for all x, y ∈ X, T has a fixed point z ∈ X.

Remark 3 (1) ⇒ (3) follows from a natural adaptation of the development presented
at the end of Remark 2, and (3) ⇒ (1) is implicit in the proof of Theorem 5 in [37]. On
the other hand, (1) ⇔ (2) was proved in [21].

As far as we know, the following two issues have not been studied.

Question 2.13 Obtain a full quasi-metric generalization of (1) ⇔ (2) in Theorem 1.2.

Question 2.14 Obtain a full quasi-metric generalization of (1) ⇔ (3) in Theorem 1.2.

With respect to question 2.13, note that from Theorem 2.12, (1) ⇒ (3), it follows that
if (X, d) is a *half-complete quasi-metric space, then for every self-map T of X such that
there are a w-distance w on (X, d) and a constant c ∈ (0, 1) satisfying

w(Tx, Ty) ⩽ cw(x, y),

for all x, y ∈ X, T has a (unique) fixed point z ∈ X. Moreover, w(z, z) = 0.

We conclude this section raising the following natural question.

Question 2.15 Obtain a full quasi-metric generalization of Theorem 1.3.
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Note that from [39, Corollary 4.4] it follows that if (X, d) is a *half-complete quasi-
metric space, then for every self-map T of X such that there are a presymmetric w-
distance w on (X, d) and a constant c ∈ (0, 1) satisfying

w(x, Tx) ⩽ 2w(x, y) ⇒ w(Tx, Ty) ⩽ cw(x, y),

for all x, y ∈ X, T has a (unique) fixed point z ∈ X. Moreover, w(z, z) = 0.

3. Characterizing G-complete metric spaces

Motivated by the existence of several flaws in the study of the topological structure
of the so-called D-metric spaces, Mustafa and Sims [27, 28] introduced and explored
the notion of G-metric space. Mustafa-Sims’ papers initiated the development of a deep
study of the fixed point theory for these spaces (cf. [2–4, 10, 21, 36] and the references
there in). In particular, [3] will be our basic reference for G-metric spaces.

A G-metric on a set X is a function G : X × X × X → [0,∞) such that for all
x, y, z, u ∈ X, the following conditions are satisfied:

(G1) G(x, y, z) = 0 if x = y = z;
(G2) G(x, x, y) > 0 if x ̸= y;
(G3) G(x, x, y) ⩽ G(x, y, z) if y ̸= z;
(G4) G(x, y, z) = G(x, z, y) = G(y, z, x) = ... (symmetry in all 3);
(G5) G(x, y, z) ⩽ G(x, u, u) +G(u, y, z) (rectangle inequality).

A G-metric space is a pair (X,G) where X is a set and G is a G-metric on X.
Several examples of G-metric spaces can be found in [3, p. 34-35].

The following concepts and properties may be found in [3, Chapter 3].

(a) Each G-metric G on a set X induces a topology τG on X which has as a base the
family of open balls {BG(x, ε) : x ∈ X, ε > 0}, where BG(x, ε) = {y ∈ X : G(x, y, y) < ε}
for all x ∈ X and ε > 0. Moreover, the topological space (X, τG) is metrizable.

(b) A sequence (xn)n∈N in a G-metric space (X,G) is called a G-Cauchy sequence if
for each ε > 0 there is n0 ∈ N such that G(xn, xm, xk) < ε for all n,m, k ⩾ n0.

(c) A G-metric space (X,G) is complete provided that every G-Cauchy sequence is
τG-convergent.

(d) Given a G-metric space (X,G), the function dG : X × X → [0,∞) given by
dG(x, y) = G(x, y, y) for all x, y ∈ X, is a quasi-metric on X and the quasi-metric space
(X, dG) is doubly Hausdorff.

(e) The topologies τG, τdG and τ(dG)∗ agree on X.
(f) (X,G) is complete if and only if (X, dG) is

∗half-complete.

Next, we discuss the problem of extending Theorem 1.1 to the G-metric framework. In
fact, we reestablish several known results which show that it is possible to obtain suitable
generalizations in all cases.

By a G-contraction on a G-metric space (X,G) we mean a self-map T that fulfills the
following condition for all x, y, z ∈ X, with c ∈ (0, 1) a constant:

G(Tx, Ty, Tz) ⩽ cG(x, y, z).

If the self-map T fulfills the following weaker condition, we say that T is a weak
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G-contraction on (X,G):

G(Tx, Ty, Ty ⩽ cG(x, y, y),

for all x, y ∈ X, wit c ∈ (0, 1) a constant.
Then, we have

Theorem 3.1 For a G-metric space (X,G) the following conditions are equivalent.
(1) (X,G) is G-complete.
(2) Every weak G-contraction on any closed subspace C of (X,G) has a (unique) fixed

point z ∈ C.
(3) Every G-contraction on any closed subspace C of (X,G) has a (unique) fixed point

z ∈ C.

Remark 4 (1) ⇒ (2) was essentially proved by Agarwal et al. [3], (2) ⇒ (3) is obvious
and (3) ⇒ (1) was showed in [36].

Theorem 3.2 For a G-metric space (X,G) the following conditions are equivalent.
(1) (X,G) is G-complete.
(2) For every self-map T of X such that there is a constant c ∈ (0, 1/2) satisfying

G(Tx, Ty, Ty) ⩽ c[G(x, Tx, Tx) +G(y, Ty, Ty)],

for all x, y ∈ X, T has a (unique) fixed point z ∈ X.

Theorem 3.3 For a G-metric space (X,G) the following conditions are equivalent.
(1) (X,G) is G-complete.
(2) For every self-map T of X such that there is a lower semicontinuous function

φ : X → [0,∞) satisfying

G(x, Tx, Tx)) ⩽ φ(x)− φ(Tx),

for all x ∈ X, T has a fixed point z ∈ X.

Now, let T be a self-map of a set X and β : X ×X ×X → [0,∞) a function. T is said
to be β-admissible [3] if, for each x, y, z ∈ X, we have

β(x, y, z) ⩾ 1 ⇒ β(Tx, Ty, Tz) ⩾ 1.

If T is β-admissible and there exists x0 ∈ X such that β(x0, Tx0, Tx0) ⩾ 1, we will
say that T is (β, x0) admissible.

A G-regular function for a G-metric space (X,G) is a function β : X × X × X →
[0,∞) that satisfies the following condition: whenever (xn)n∈N is a sequence in X such
that β(xn, xn+1, xn+1) ⩾ 1 for all n ∈ N, and (xn)n∈N G-converges to x ∈ X, then
β(xn, x, x) ⩾ 1 for all n ∈ N.

Then, we have

Theorem 3.4 For a G-metric space (X,G) the following conditions are equivalent.
(1) (X,G) is complete.
(2) For every self-map T of X such that there are a G-regular function β for which T

is (β, x0)-admissible and a (c)-comparison function ψ satisfying

β(x, y, y)G(Tx, Ty, Ty) ⩽ ψ(G(x, y, y)),
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for all x, y ∈ X, T has a fixed point z ∈ X.

Theorem 3.5 For a G-metric space (X,G) the following conditions are equivalent.
(1) (X,G) is complete.
(2) For every self-map T of X such that there is a constant c ∈ (0, 1) satisfying

G(x, Tx, Tx) ⩽ 3G(x, y, y) ⇒ G(Tx, Ty, Ty) ⩽ cG(x, y, y),

for all x, y ∈ X, T has a (unique) fixed point z ∈ X.

Remark 5 Theorems 3.2, 3.3 and 3.5 were stated in [36]; moreover, the quasi-metric
dG played an important role in their proofs. Regarding Theorem 3.4, Agarwal et al. [3],
proved (1) ⇒ (2) while that (2) ⇒ (1) was showed in [36].

4. Characterizing complete partial metric spaces

In [26], Matthews introduced and discussed the notion of partial metric space when
he was studying the modeling of certain denotational semantics in the theory of com-
putation. In particular, he obtained a partial metric version of the Banach contraction
principle. Since then, the problem of obtaining relevant fixed point theorems on partial
metric spaces has received a lot of attention (Chapter 7 of the book [20] jointly with the
references therein provides an updated and detailed analysis of the fixed point theory for
partial metric spaces).

Let us recall [26] that a partial metric on a set X is a function p : X × X → [0,∞)
that satisfies the following conditions for all x, y, z ∈ X :

(p1) x = y ⇔ p(x, x) = p(x, y) = p(y, y);
(p2) p(x, x) ⩽ p(x, y);
(p3) p(x, y) = p(y, x);
(p4 ) p(x, y) ⩽ p(x, z) + p(z, y)− p(z, z).
A partial metric space is a pair (X, p) such that X is a set and p is a partial metric

on X.
It is clear that, if p(x, y) = 0, then, from (p1) and (p2), x = y. But if x = y, p(x, y)

may not be 0.
A basic example of a partial metric space is the pair (R+, p), where p(x, y) = max{x, y}

for all x, y ∈ R+.
Matthews also established an elegant connection between partial metric spaces and a

class of quasi-metric spaces, the so-called weightable quasi-metric spaces ([26, Theorems
4.1 and 4.2]).

He showed that each partial metric p on a set X induces a T0 topology τp on X which
has as a base the family open p-balls {Bp(x, ε) : x ∈ X, ε > 0}, where Bp(x, ε) = {y ∈
X : p(x, y) < p(x, x) + ε}, for all x ∈ X and ε > 0.

If p is a partial metric on X, then the function Dp : X ×X → [0,∞) given by

Dp(x, y) = 2p(x, y)− p(x, x)− p(y, y),

for all x, y ∈ X, is a metric on X.
Matthews also introduced a notion of completeness for partial metric spaces and proved

that a partial metric space (X, p) is complete if and only if the metric space (X,Dp) is
complete.

Following [9] by a w-distance on a partial metric space (X, p) we mean a function
w : X ×X → [0,∞) that satisfies the following conditions:
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(wp1) w(x, y) ⩽ w(x, z) + w(z, y), for all x, y, z ∈ X;
(wp2) for each x ∈ X, the function w(x, ) : X → [0,∞) is lower semicontinuous on

(X, τDp
);

(wp3) for each ε > 0 there exists δ > 0 such that w(x, y) ⩽ δ and w(x, z) ⩽ δ imply
p(y, z) ⩽ ε+ p(y, y).

Then, we have

Theorem 4.1 For a partial metric space (X, p) the following conditions are equivalent.
(1) (X, p) is complete.
(2) For every self-map T of X such that there are a w-distance w on (X, p) and a

constant c ∈ (0, 1) satisfying

w(Tx, Ty) ⩽ cw(x, y),

for all x, y ∈ X, T has a (unique) fixed point z ∈ X. Moreover, w(z, z) = 0.
(3) For every self-map T of X such that there is a function φ : X → [0,∞) which is

lower semicontinuous on (X, τDp
) and satisfies

p(x, Tx) ⩽ φ(x)− φ(Tx),

for all x ∈ X, T has a fixed point.
(4) For every self-map T of X such that there is a constant c ∈ (0, 1) satisfying

p(x, Tx) ⩽ 2p(x, y) ⇒ p(Tx, Ty) ⩽ cp(x, y),

for all x, y ∈ X, T has a (unique) fixed point.

Remark 6 The equivalence between (1) and (2) was obtained in [9]. The equivalence
between (1) and (3) was proved in [1], while the equivalence between (1) and (4) was
shown in [29].
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74 S. Romaguera / J. Linear. Topological. Algebra. 14(01) (2025) 61-74.

[13] E. H. Connell, Properties of fixed point spaces, Proc. Amer. Math. Soc. 10 (1959), 974-979.
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