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Extended Abstract

Introduction

Compound channels, consisting of a main channel and adjacent floodplains, play a crucial role in river engineering.
Their hydraulic behavior involves complex interactions between fast main channel flows and slower floodplain flows,
creating velocity differentials that generate shear layers and momentum exchange. While previous studies have mainly
examined prismatic channels using simplified models, non-prismatic geometries with converging floodplains remain
underexplored. These configurations are particularly important in practical applications like bridge crossings and
natural river systems. This study utilizes advanced CFD to investigate flow in symmetrically converging compound
channels, aiming to: 1) validate and compare Flow-3D and ANSY'S Fluent against experimental data; 2) evaluate mesh
type impacts (Cartesian vs. Curvilinear); and 3) analyze how convergence angle, relative depth, and discharge affect
flow behavior.

Materials and Methods

The research employed experimental data from Bousmar et al. (2004), using a 10-meter flume with a width of 1.20 m,
bed slope of 0.99x1073, and Manning's coefficient of 0.0107. Two symmetric converging configurations were tested:
Cv2 (2m length, 11.3° angle) and Cv6 (6m length, 3.8° angle). The simulations applied RANS equations with RNG k-¢
turbulence model and VOF method for free surface tracking. Flow-3D used a structured Cartesian grid (0.01 m cells),
while ANSYS Fluent employed a body-fitted Curvilinear grid. Various hydraulic conditions were simulated,
incorporating different convergence angles, relative depths (H* = 0.2-0.5), and discharges (Q = 10-20 L/s). Model
accuracy was evaluated using R?, RMSE, and relative error metrics, comparing numerical results with experimental data
for water surface profiles, velocity distributions, and discharge ratios. A theoretical sensitivity analysis based on
momentum balance equations complemented the assessment.

Results and Discussion
Model Validation and Flow Analysis

The 3D models, particularly Flow-3D, showed high accuracy in replicating experiments, with R2 > 0.96 and relative
errors < 2% for water surface profiles. The drawdown effect was significantly more pronounced in the Cv2 case
(0.00475 m/m) than in Cv6 (0.00237 m/m), highlighting the dominant influence of the convergence angle. The
distribution of discharge between the channel and floodplain was captured with <5% error. Momentum balance analysis
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for the Cv6 case confirmed the physical consistency of the model, showing a positive convective term, a negative
pressure term, and a negligible momentum transfer term, with the overall balance closing with minimal error.
Sensitivity Analysis

A theoretical analysis quantitatively ranked key parameters:

Convergence Angle (0): The most influential parameter. The sharper angle (11.3°) produced approximately double the
drawdown rate of the milder angle (3.8°).

Relative Depth (H*): An increase from 0.3 to 0.5 enhanced the drawdown rate by a factor of 1.42.

Discharge (Q): An increase from 10 L/s to 12 L/s resulted in a 23% increase in drawdown.

Comparative Performance of Flow-3D and Fluent

Both models predicted general flow behavior successfully. However, Flow-3D's Cartesian grid demonstrated superior
accuracy in critical regions with high-velocity gradients (e.g., the channel-floodplain interface), reproducing sharp
transitions with high fidelity. In contrast, ANSY'S Fluent's Curvilinear grid showed acceptable overall agreement (R? >
0.89) but larger deviations (up to 8% error) at the edges, indicating the Cartesian grid provided a more precise
resolution of complex 3D flow structures.

Conclusion

This study successfully demonstrated the capability of three-dimensional numerical models to simulate the complex
hydrodynamics of non-prismatic compound channels with converging floodplains. The key findings are:

1. The Flow-3D model, utilizing a Cartesian grid, exhibited marginally higher accuracy than the ANSYS Fluent model
with a Curvilinear grid, especially in resolving interfacial shear layers and boundary velocity gradients.

2. The convergence angle is the paramount geometric parameter controlling water surface drawdown, followed by
relative depth and discharge, which predominantly influence momentum transfer and flow velocity, respectively.

3. The mid-section and convergence zone of the channel are the most sensitive areas, where geometric and hydraulic
changes have the most significant impact.

The research underscores the necessity of employing high-fidelity 3D numerical models for the accurate design and
analysis of complex channel geometries. The insights gained are directly applicable to improving the design of
hydraulic structures, flood risk assessment, and sustainable river management practices. Future work should investigate
the effects of asymmetric convergence, transient flow conditions, and the presence of vegetation or other roughness
elements.
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Fig 1. Schematic of flow exchange and momentum transfer at the interface between the main channel and floodplain in
a compound channel
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Fig 2. 3D view, plan, and cross-section of the modeled non-prismatic compound channel
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Fig 4. Comparison of water surface profiles between the numerical model and experimental data under conditions of
0=11.3°, H*=0.2, Q=10 L/s (Cv2 cross-section)
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Fig 5. Comparison of water surface profiles between the numerical model and experimental data under conditions of
0=11.3°, H*=0.3, Q=12 L/s (Cv2 cross-section)
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Fig 6. Comparison of water surface profiles between the numerical model and experimental data under conditions of
0=3.8°, H*=0.3, and Q=12 L/s (Cv6 cross-section)
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Table 2. Statistical indicators for evaluating the accuracy of the Flow-3D numerical model with Cartesian mesh in
reconstructing water surface profiles under four different scenarios
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