
Journal of Modern Processes in Manufacturing and Production, Volume 14, No. 2, Spring 2025 

 

27 

 
DOI: 10.71762/0zkg-qn68 

Research Paper 

 

Investigation of the Effect of a Nonlinear Ion Concentration Function 

on the Electromechanical Behavior of Ionic Polymer–Metal 

Composites 

 
Reza Poureini1, Hamid Soleimanimehr2*, Navid Seyedkazem Viliani3, Ali Abdollahi2 

1Ph.D. Student, Department of Mechanical and Aerospace Engineering, SR.C., Islamic Azad University, 

Tehran, Iran 
2Associate Professor, Modern Automotive Research Center, Department of Mechanical and Aerospace 

Engineering, SR.C., Islamic Azad University, Tehran, Iran 
3Assistant Professor, Department of Mechanical Engineering, Ab.C., Islamic Azad University, Abhar, Iran 

*Email of the Corresponding Author: Ha.Sol@iau.ac.ir 
Received: July 11, 2025; Revised: August 27, 2025; Accepted: August 30, 2025 

 

 

Abstract  

The effect of nonlinear ion concentration distribution and electric potential gradient on the induced 

biaxial moments in ionic polymer–metal composite (IPMC) actuators is investigated. To accurately 

model the bending behavior, a combined approach is employed, integrating the Euler–Bernoulli beam 

theory, the principle of minimum potential energy, and a nonlinear field- and time-dependent 

mechanical property model. In this framework, the ion concentration distribution is assumed to be 

nonlinear along both longitudinal and transverse directions. The coupled electro-ionic interactions 

are analyzed using the Nernst–Planck and Poisson equations. Numerical results demonstrate that 

adopting a nonlinear ion distribution leads to nearly equal induced electrical moments in both 

directions at the mid-plane, significantly reducing biaxial bending and yielding a more balanced 

deformation profile. This approach yields a 95% reduction in transverse moment compared to the 

linear model, underscoring the superior effectiveness of the proposed nonlinear method in mitigating 

undesirable biaxial bending in IPMC actuators. 
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1. Introduction 

Ionic–metal polymer composites (IPMCs) have garnered significant attention in fields such as soft 

robotics, biomedical applications, and microelectromechanical systems (MEMS) due to their high 

flexibility, low-voltage actuation, and ability to operate at small scales [1, 2]. The precise design of 

multi-material structures can significantly enhance the mechanical properties of polymer composites 

[3]. An approach that has also been considered for improving the electromechanical performance of 

IPMC. One of the key challenges in developing smart composites is accurately modeling their 

mechanical and electromechanical behavior. In particular, at micro- and nanoscale dimensions, 
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classical models fail to provide precise predictions. Therefore, the Timoshenko beam theory has been 

extended by incorporating small-scale effects to analyze the bending and vibrational behavior of 

nanoscale beams more accurately. It has been demonstrated that neglecting these effects yields 

inaccurate results in modeling micro- and nanoscale structures [4]. 

By analyzing the Nernst–Planck equation for ionic–metal polymer beams under clamped boundary 

conditions, it has been found that the maximum stress and displacement are concentrated at the center 

of the beam and in the electrode regions. This condition is a key insight for designing MEMS and 

precision actuators [5]. A model based on ion transport has also been developed, which accurately 

simulates the relationship between input voltage and deformation in IPMCs. The analytical results of 

this model have shown high accuracy compared to classical models (especially in the case of small 

deformations) when validated against experimental data [6]. Bending models using resistive 

electrodes have enabled investigation of the role of electrical conductivity in dynamic responses and 

voltage distribution [7]. 

The effect of ionic liquids on the bending behavior of IPMCs has been recently examined. It was 

found that ions play a significant role in actuation and bending performance and must be considered 

in precise design [8]. In this regard, the use of hybrid electrodes has enabled the achievement of 

desired bending deformation and strain under specific voltages, opening a new pathway for the design 

of assistive devices and human–machine interfaces [9]. 

Coupled electrochemical–mechanical numerical models have been developed to predict the precise 

relationship between applied voltage and bending in IPMCs [10]. To enhance durability and 

conductivity, the use of SWCNT and PEDOT: PSS electrodes has been proposed, yielding positive results 

[11]. 

The bending behavior of copper-based IPMCs has also been investigated, revealing a direct 

correlation between applied voltage and deformation. For instance, a maximum displacement of 0.42 

mm was reported under 5 volts. Moreover, the von Mises stress in the electrodes increases with 

increasing voltage [12]. Another study examined the effect of time on the bending response of IPMCs 

with silver electrodes. The results indicate that high voltage causes a faster decay of bending response 

over time—an exploitable feature in robotics and MEMS applications [13]. 

Although numerous studies have analyzed and modeled the bending response of IPMCs, most are 

based on uniaxial bending, evaluating structural response in only one bending direction (typically 

along the longitudinal axis). However, due to the anisotropic nature and non-uniform distribution of 

electric and ionic fields in these materials, biaxial bending also occurs. Neglecting this characteristic 

may lead to significant errors in predicting actual responses and designing accurate functionality. 

Therefore, the development of models that account for biaxial bending is considered a fundamental 

research need in the field of IPMCs. 

In most previous analyses, including those based on the classical Maxwell approach [14], the focus 

has been on calculating stresses and electromechanical forces via body or surface force densities. 

However, these methods, particularly in multiphase and heterogeneous systems like IPMCs—where 

ionic fields, viscosity, and complex deformations are simultaneously involved—are unable to predict 

the distribution of moments and biaxial curvature accurately. In this article, an energy-based approach 

is employed, wherein the bending moments induced by electric fields are directly derived from the 

system’s free energy derivatives. This approach enables precise consideration of the interaction 
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between ion distribution, potential fields, and mechanical response. Unlike the Maxwell model, it 

does not require explicit calculation of surface forces. As a result, the energy-based method is not 

only more accurate but also mathematically more consistent, with the capacity to be extended to more 

complex conditions such as biaxial bending. 

Complex mechanical behaviors such as biaxial bending, especially under electrical stimulation, make 

the precise control of these actuators challenging. These phenomena mainly arise from the interaction 

between the electric field and the ion distribution. Relying on the Euler–Bernoulli beam theory and 

the energy method, this paper employs the Nernst–Planck equation to model ion transport and 

investigate its effect on the electromechanical bending behavior of ionic polymer–metal composites 

(IPMCs). The governing equations are derived to provide a strategy for reducing biaxial bending by 

considering the time- and field-dependent nature of mechanical properties such as Young’s modulus 

and shear modulus. The core innovation lies in the formulation of a strain energy model for IPMC 

actuators, in which the dependencies of both Young’s and shear moduli on time and electric field 

intensity are simultaneously incorporated as combined exponential functions. Moreover, by 

integrating the Nernst–Planck and Poisson equations with piezoelectric relations, a comprehensive 

analytical framework is presented to link electrical excitation, ion distribution, and mechanical 

response. This model enables the analysis of undesired biaxial bending behavior and proposes 

methods to mitigate it. These innovations represent a significant step forward compared to previous 

works such as [6-14], which have only addressed uniaxial bending. 

2. IPMC Analysis 

In the Euler–Bernoulli beam theory, the rotation of cross-sections is considered negligible compared 

to the displacement. Also, the angular deformation due to shear is neglected in comparison with the 

bending deformation. 

The Euler–Bernoulli beam theory applies to beams whose lengths are significantly greater than their 

depths (at least 10 times), and whose displacements are small relative to the depth. 

It is important to note that the Euler-Bernoulli beam theory assumes small deformations and neglects 

shear effects. While this provides a simplified analytical framework suitable for many actuator 

designs, it may not fully capture the behavior of IPMCs under large deformations or with high 

flexibility. In future studies, the model can be extended using Timoshenko beam theory or nonlinear 

strain formulations to predict behavior in such scenarios better. 

When the transverse displacement of the beam’s centerline is denoted by 𝑤, the displacement 

components of any point in the cross-section, assuming that cross-sections remain flat and 

perpendicular to the centerline, are given as follows [15]: 

𝑢 = −𝑧
𝜕𝑤(𝑥, 𝑡)

𝜕𝑥
 (1) 

𝑣 = 0  

𝑤 = 𝑤(𝑥, 𝑡)  

 

Where, 𝑢, 𝑣, and 𝑤 are the displacement components in the 𝑥, 𝑦, and 𝑧 directions, respectively. The 

corresponding strain and stress components based on this displacement field are given by [15]: 
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𝜀
𝑥𝑥

=
𝜕𝑢

𝜕𝑥
= −𝑧

𝑑2𝑤

𝑑𝑥2
 

𝜀
𝑦𝑦

= 𝜀
𝑧𝑧

= 𝜀
𝑥𝑦

= 𝜀
𝑦𝑧

= 𝜀
𝑧𝑥

= 0 

(2) 

 

Here, 𝑤(𝑥) is the vertical displacement of the beam. Assuming a linear stress–strain relationship and 

using Young’s modulus 𝐸, the stress is given by: 

𝜎
𝑥𝑥

= 𝐸 ∙ 𝜀 = −𝐸𝑧
𝑑2𝑤

𝑑𝑥2
 

𝜎
𝑦𝑦

= 𝜎
𝑧𝑧

= 𝜎
𝑥𝑦

= 𝜎
𝑦𝑧

= 𝜎
𝑧𝑥

= 0 

(3) 

 

The strain energy 𝜋 of the system can be expressed as follows [15]: 

𝜋 =
1

2
∭ (𝜎

𝑥𝑥
𝜀

𝑥𝑥
+ 𝜎

𝑦𝑦
𝜀

𝑦𝑦
+ 𝜎

𝑧𝑧
𝜀

𝑧𝑧
+ 𝜎

𝑥𝑦
𝜀

𝑥𝑦
+ 𝜎

𝑦𝑧
𝜀

𝑦𝑧
+ 𝜎

𝑧𝑥
𝜀

𝑧𝑥
)

 

𝑉

=
1

2
∫ 𝐸𝐼 (

𝑑2𝑤

𝑑𝑥2
)

2

𝑑𝑥
𝑙

0

 

(4) 

 

Where 𝐼 is the second moment of area of the beam cross-section with respect to the 𝑦-axis [15]: 

𝐼 = 𝐼𝑦 = ∬ 𝑧2𝑑𝐴

 

𝐴

 (5) 

  

These relations form the foundation of the classical equilibrium equation for Euler–Bernoulli beams 

and serve as a starting point for analyzing biaxial bending in IPMCs. For a more accurate assessment 

of the mechanical behavior of the beam, calculating the bending strain energy based on stress and 

strain according to the Euler–Bernoulli theory is essential. 

In the analysis of ionic–metallic polymer actuators, when the material is subjected to bending in two 

orthogonal planes (typically the 𝑥𝑧 and 𝑦𝑧 planes), the bending strain energy must include both 

bending components. In this case, the bending curvature along the 𝑥-axis is characterized by the 

vertical displacement 𝑤(𝑥), and the transverse bending is described by the lateral displacement 𝑣(𝑦). 

Specifically, the following two curvatures are defined [16]: 
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Figure 1. Force induced by applied voltage 

 

Bending of the beam in the 𝑥𝑧 plane, which represents the longitudinal curvature of the structure, is 

described by the curvature component. 𝜅𝑥 =
𝑑2𝑤

𝑑𝑥2
. In this relation, 𝑤 denotes the vertical displacement 

along the 𝑥-direction. The resistance of this bending against deformation is specified by the bending 

stiffness 𝐸𝐼𝑥, where 𝐸 is the Young’s modulus of the material and 𝐼𝑥 is the second moment of area 

about the horizontal axis. 

On the other hand, bending in the 𝑦𝑧 plane is referred to as transverse bending, and its corresponding 

curvature is defined by 𝜅𝑦 =
𝑑2𝑣

𝑑𝑦2 Where 𝑣 represents the displacement in the transverse 𝑦 direction. 

The stiffness of this bending is expressed as 𝐸𝐼𝑦, where 𝐼𝑦 is the second moment of area with respect 

to the vertical axis. 

Given that the beam has a length-to-width ratio of 10 (Figure 1), and for improved accuracy, the 

lateral displacement function 𝑣 is considered as a function of 𝑦, and second derivatives with respect 

to yy are taken into account. 

Taking into consideration the contribution of both curvature components in the strain energy, the 

general form of the total bending strain energy under biaxial bending is expressed as: 

𝑈𝑏𝑖𝑎𝑥𝑖𝑎𝑙−𝑏𝑒𝑛𝑑 =
1

2
∫ ∫ [𝐸𝐼𝑥 (

𝑑2𝑤

𝑑𝑥2
)

2

+ 𝐸𝐼𝑦 (
𝑑2𝑣

𝑑𝑦2
)

2

]
𝐿

0

𝑑𝑥𝑑𝑦

𝑏

2

−
𝑏

2

 (6) 

 

This equation forms the basis for energy analysis when the material is subjected to loads causing 

simultaneous bending in two principal directions. 

In the Euler–Bernoulli beam theory, the strain energy due to internal bending is given by [15]: 

𝑈𝑏𝑒𝑛𝑑 =
1

2
∫ 𝐸𝐼 (

𝑑2𝑤

𝑑𝑥2
)

2

𝑑𝑥
𝑙

0

 (7) 

 

Now, assume that an external distributed moment is applied along the beam length as a function of 

𝑥, denoted by 𝑀𝑒𝑙𝑒𝑐(𝑥) (Figure 2). This moment tends to change the curvature of the beam. 

The virtual work done by this moment due to the bending of the beam is: 
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𝛿𝑤𝑒𝑙𝑒𝑐 = ∫ 𝑀𝑒𝑙𝑒𝑐(𝑥) ∙ 𝛿 (
𝑑2𝑤

𝑑𝑥2
) 𝑑𝑥

𝑙

0

 (8) 

 
Figure 2. Rectangular shaft (a) before and (b) after applying torque [19] 

 

If we now wish to write the equivalent potential energy of this bending load, by definition: 

𝑈𝑒𝑙𝑒𝑐 = −𝑤𝑒𝑙𝑒𝑐 = ∫ 𝑀𝑒𝑙𝑒𝑐(𝑥)
𝐿

0

∙
𝑑2𝑤

𝑑𝑥2
𝑑𝑥 (9) 

 

The negative sign indicates that this energy corresponds to an external force, which appears with a 

negative sign in the Lagrangian formulation (as opposed to the strain energy, which is positive). 

As a result of electrical stimulation, the internal moment arising from ion displacement and the 

resulting potential gradient in the IPMC is modeled as an external moment in the analysis. The 

equivalent strain energy due to this moment is modeled as: 

𝑈𝑒𝑙𝑒𝑐 = − ∫ 𝑀𝑒𝑙𝑒𝑐(𝑥)
𝐿

0

∙
𝑑2𝑤

𝑑𝑥2
𝑑𝑥 (10) 

 

Where, 𝑀𝑒𝑙𝑒𝑐(𝑥) is the induced electric moment along the beam due to ionic actuation. 

For the case in which the beam undergoes biaxial bending (i.e., bending occurs both in the 𝑥𝑧-plane 

and in the 𝑦𝑧-plane), the electric moments can act in both planes. In this case, the potential energy 

resulting from the electric moments is expanded as follows: 

𝑈𝑒𝑙𝑒𝑐 = − ∫ ∫ [𝑀𝑒𝑙𝑒𝑐
(𝑤) (𝑥) ∙

𝑑2𝑤

𝑑𝑥2
+ 𝑀𝑒𝑙𝑒𝑐

(𝑣) (𝑦) ∙
𝑑2𝑣

𝑑𝑦2
] 𝑑𝑥𝑑𝑦

𝑏

2

−
𝑏

2

𝐿

0

 (11) 
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As a result, the total potential energy of the system, which is a combination of the biaxial bending 

energy and the energy resulting from electric actuation, is expressed as follows: 

𝜋 = 𝑈𝑏𝑖𝑎𝑥𝑖𝑎𝑙−𝑏𝑒𝑛𝑑 + 𝑈𝑒𝑙𝑒𝑐 

𝜋 =
1

2
∫ ∫ [𝐸𝐼𝑥 (

𝑑2𝑤

𝑑𝑥2
)

2

+ 𝐸𝐼𝑦 (
𝑑2𝑣

𝑑𝑦2
)

2

]
𝐿

0

𝑑𝑥𝑑𝑦

𝑏

2

−
𝑏

2

− ∫ ∫ [𝑀𝑒𝑙𝑒𝑐
(𝑤) (𝑥) ∙

𝑑2𝑤

𝑑𝑥2
+ 𝑀𝑒𝑙𝑒𝑐

(𝑣) (𝑦) ∙
𝑑2𝑣

𝑑𝑦2
] 𝑑𝑥𝑑𝑦

𝑏

2

−
𝑏

2

𝐿

0

 

(12) 

The first term represents the bending strain energy due to curvature in the longitudinal and transverse 

directions of the beam; the second term is the potential energy induced by electric actuation, which 

generates internal bending moments. 

2.1 Derivation of Equations Based on the Principle of Minimum Potential Energy 

Considering bending in both the 𝑥𝑧- and 𝑦𝑧-planes, as well as the energy due to ionic actuation, the 

total potential energy of the system is given by: We use the principle of minimum potential energy 

(𝛿𝜋 = 0), where here  𝑤 = 𝑤(𝑥) is the vertical deflection in the 𝑥-direction and 𝑣 = 𝑣(𝑦) is the 

lateral deflection in the 𝑦-direction. 

𝛿𝜋 = 𝛿(𝑈𝑏𝑖𝑎𝑥𝑖𝑎𝑙−𝑏𝑒𝑛𝑑 + 𝑈𝑒𝑙𝑒𝑐) (13) 

 

Bending energy (the part related to 𝑤(𝑥)): 

𝛿𝜋𝑤 = ∫  

𝑏

2

−
𝑏

2

∫ [𝐸𝐼𝑥

𝑑2𝑤

𝑑𝑥2
∙

𝑑2𝛿𝑤

𝑑𝑥2
− 𝑀𝑒𝑙𝑒𝑐

(𝑤) (𝑥)
𝑑2𝛿𝑤

𝑑𝑥2
] 𝑑𝑥𝑑𝑦

𝑙

0

 (14) 

 

We aim to factor out 𝛿𝑤, so we perform integration by parts twice with respect to 𝑥. For the first 

integration by parts, we use the following identity [18]: 

∫ 𝑓′′(𝑥). 𝛿𝑤′′(𝑥)𝑑𝑥 = [𝑓′′(𝑥). 𝛿𝑤′(𝑥)]0
𝑙 − ∫ 𝑓′′′(𝑥). 𝛿𝑤′(𝑥)𝑑𝑥 (15) 

And again for 𝛿𝑤′(𝑥): 

∫ 𝑓′′′(𝑥). 𝛿𝑤′(𝑥)𝑑𝑥 = −[𝑓′′′(𝑥). 𝛿𝑤(𝑥)]0
𝑙 + ∫ 𝑓′′′′(𝑥). 𝛿𝑤(𝑥)𝑑𝑥 (16) 

 

Therefore, the entire variation expression becomes: 

𝛿𝜋𝑤 = ∫  

𝑏

2

−
𝑏

2

∫ [𝐸𝐼𝑥

𝑑4𝑤

𝑑𝑥4
−

𝑑2𝑀𝑒𝑙𝑒𝑐
(𝑤) (𝑥)

𝑑𝑥2
] . 𝛿𝑤𝑑𝑥𝑑𝑦 + 𝐵. 𝐶.

𝑙

0

 (17) 

Governing differential equation for bending in the 𝑥-direction: 
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𝐸𝐼𝑥

𝑑4𝑤

𝑑𝑥4
=

𝑑2𝑀𝑒𝑙𝑒𝑐
(𝑤)

(𝑥)

𝑑𝑥2
 (18) 

  

In the transverse direction of the beam, the displacement function 𝑣(𝑦) describes the bending 

deformation. To accurately model this deformation, the bending equilibrium equation is used. In this 

regard, the bending stiffness of the structure is denoted by 𝐸𝐼𝑦, where 𝐸 is Young’s modulus and 𝐼𝑦 

is the second moment of area about the transverse axis of bending. Accordingly, the bending 

equilibrium relation is expressed as follows: 

𝐸𝐼𝑦

𝑑4𝑣

𝑑𝑣4
=

𝑑2𝑀𝑒𝑙𝑒𝑐
(𝑤) (𝑦)

𝑑𝑦2
 (19) 

The remaining terms represent the natural boundary conditions: 

𝛿𝜋 = [(𝐸𝐼𝑥

𝑑2𝑤

𝑑𝑥2
− 𝑀𝑒𝑙𝑒𝑐

(𝑤) (𝑥)) . 𝛿𝑤′ − (
𝑑

𝑑𝑥
(𝐸𝐼𝑥

𝑑2𝑤

𝑑𝑥2
− 𝑀𝑒𝑙𝑒𝑐

(𝑤) (𝑥)) . 𝛿𝑤)]

𝑥=0

𝑥=𝑙

 (20) 

To examine bending equilibrium, the shear force in this direction is obtained by differentiating the 

effective bending moment with respect to 𝑥. In static equilibrium, this shear force must be zero: 

𝑉(𝑥) =
𝑑

𝑑𝑥
(𝐸𝐼𝑥

𝑑2𝑤

𝑑𝑥2
− 𝑀𝑒𝑙𝑒𝑐

(𝑤) (𝑥)) = 0 (21) 

Along the longitudinal direction of the beam, the curvature caused by bending is described by the 

displacement function 𝑤(𝑥). The bending moment in this direction consists of two components: one 

related to the bending stiffness of the structure (𝐸𝐼𝑥) and the other arising from the effects of the 

electric field 𝑀𝑒𝑙𝑒𝑐
(𝑤) (𝑥). Therefore, the net or effective bending moment is defined as: 

𝑀(𝑥) = 𝐸𝐼𝑥

𝑑2𝑤

𝑑𝑥2
− 𝑀𝑒𝑙𝑒𝑐

(𝑤) (𝑥) = 0 (22) 

 

To satisfy force equilibrium, the derivative of this moment with respect to 𝑦 must be zero: 

𝑉(𝑦) =
𝑑

𝑑𝑦
(𝐸𝐼𝑦

𝑑2𝑣

𝑑𝑦2
− 𝑀𝑒𝑙𝑒𝑐

(𝑣) (𝑦)) = 0 (23) 

Similarly, in the transverse direction of the beam, the bending displacement function is represented 

by 𝑣(𝑦). The bending moment in this direction is also a combination of transverse bending stiffness 

𝐸𝐼𝑦 and the moment caused by the transverse electric field 𝑀𝑒𝑙𝑒𝑐
(𝑣) (𝑦). The net moment along the 𝑦-

direction is expressed as: 

𝑀(𝑦) = 𝐸𝐼𝑦

𝑑2𝑣

𝑑𝑦2
− 𝑀𝑒𝑙𝑒𝑐

(𝑣) (𝑦) = 0 (24) 
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2.2. Electrochemical coupling and biaxial bending generation 

The deformation behavior in ionic polymer-metal composite (IPMC) materials under an electric field 

can be described using the Nernst–Planck equation, which governs ion transport [17]: 

𝐽 = −𝐷 [𝛻𝐶 +
𝑧𝐹

𝑅𝑇
𝐶. 𝛻𝑉] (25) 

Where 𝐷 is the ion diffusion coefficient 
𝑚2

𝑠
, ∇𝐶 is the ion concentration gradient, 𝑧 is the ion charge 

number (e.g., positive for cations and negative for anions), 𝐹 is Faraday’s constant (96485 
𝐶𝑜𝑢𝑙𝑜𝑚𝑏𝑠

𝑚𝑜𝑙
), 

𝑅 is the universal gas constant 8.314
𝐽

𝑚𝑜𝑙 °𝐾
, 𝑇 is the absolute temperature °𝐾, and ∇𝑉  is the electric 

potential gradient. 

The non-uniform distribution of ions causes an osmotic pressure difference between the top and 

bottom layers of the IPMC, producing non-uniform internal stresses. These stresses lead to bending 

moments. The electromechanically induced stress is a function of ion concentration and electric 

potential: 

𝜎 = 𝑓(𝑐, 𝑉) (26) 

Where, 𝜎  bending and torsional stresses, 𝐶 is the ion concentration, and 𝑉 is the voltage. At steady 

state, the relation is: 

∇ ∙ 𝐽 = 0 (27) 

To connect the potential field to the ion concentration (ion distribution), the Poisson equation is used 

[17]: 

𝛻2𝑉 +
𝜌

𝜀
=

𝑧𝐹(𝑐 − 𝑐0)

𝜀
 (28) 

Where, 𝜌  is the charge density, 𝑉 is the electric potential, 𝜀  is the permittivity or dielectric constant 

of the material, and 𝑐0 is the initial concentration.  

Ions, when displaced, create electromechanical stress. This stress is equivalent to a bending moment: 

𝑀𝑒𝑙𝑒𝑐
(𝑤) (𝑥) ∝ ∫ 𝑧. 𝜎𝑒𝑙𝑒𝑐(𝑧)𝑑𝑧

ℎ

2

−
ℎ

2

 (29) 

Where, 𝜎𝑒𝑙𝑒𝑐 is a function of the distributions of 𝑉 and 𝑐.  

Now, to reduce biaxial bending, the voltage application pattern can be modified, or by applying 

gradient electric field patterns, the moments 𝑀𝑒𝑙𝑒𝑐
(𝑤)

 and 𝑀𝑒𝑙𝑒𝑐
(𝑣)

 can be driven toward equilibrium or one 

of them can be neutralized.  

Specifically, we want the direction of the biaxial bending to satisfy: 

𝜅𝑥 ≈ 𝜅𝑦    ⇒    𝑀𝑒𝑙𝑒𝑐
(𝑤) (𝑥) ≈ 𝑀𝑒𝑙𝑒𝑐

(𝑣) (𝑦) (30) 
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3. Fundamental Relations of Piezoelectric Materials 

The fundamental properties of a piezoelectric material are expressed as relations between two 

mechanical variables (stress and strain) and two electrical variables (electric field and electric 

displacement). 

The expressions for the direct and converse piezoelectric effects can be combined into a matrix 

equation. In this case, the relationship between strain and electric displacement is written as a function 

of applied stress and electric field [20]: 

{
𝑆
𝐷

} = [
𝑠 𝑑
𝑑 𝜀

] {
𝑇
𝐸

} (31) 

Where 𝑆 is the strain vector, 𝑇 is the stress vector, 𝐷 is the electric displacement vector, 𝐸 is the 

electric field vector, 𝑠 is the compliance tensor, 𝜀 is the dielectric tensor, and 𝑑 is the piezoelectric 

coefficient matrix. 

3.1 Influence of Mechanical and Electrical Boundary Conditions 

The behavior of piezoelectric materials is significantly affected by electrical and mechanical 

boundary conditions. Depending on whether electrical variables (electric field or displacement) or 

mechanical variables (stress or strain) are controlled or held fixed at the boundaries, the material 

response can vary considerably. 

In the first case (short circuit), the electrodes are connected, resulting in an electric field of zero. By 

setting 𝐸 = 0  in the piezoelectric relations: 

𝑆 = 𝑠𝑇
𝐷 = 𝑑𝑇

 (32) 

 

In the second case (open circuit), the electric displacement at the boundaries is zero; i.e., no free 

charge can move. Applying the condition 𝐷 = 0: 

𝑇 =
1

𝑠(1 − 𝑘2)
𝑆 (33) 

𝐸 =
𝑘2

𝑑(1 − 𝑘2)
𝑆 (34) 

Where: 

𝑘2 =
𝑑2

𝑠𝜀
 (35) 

is the electromechanical coupling coefficient. 

3.2 Modeling with E and G Dependence 

In soft polymeric materials, mechanical properties such as Young’s modulus and shear modulus are 

sensitive to external factors; the electric field alters the molecular structure and ion movement, 

resulting in the material becoming softer or stiffer. Time also affects behavior because these materials 

are viscoelastic—they exhibit properties between those of solids and liquids and change over time. 

In many material models (especially polymers), mechanical properties such as 𝐸 or 𝐺 may depend 
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on physical fields like the electric field. This dependence is often modeled exponentially because it 

effectively captures rapid or nonlinear changes and matches experimental results in many materials. 

Differential equations related to these models are easier to solve.  

To consider the variability of 𝐸 and 𝐺 in the strain energy analysis of IPMC, the following methods 

can be used: Make 𝐸 and 𝐺 dependent on the electric field. 

Since some experimental studies have observed that the mechanical properties of soft polymeric 

materials, such as Young’s modulus and shear modulus, decrease under the influence of an electric 

field and over time, in this research, for simplicity of analysis and feasibility of modeling dependent 

phenomena, it has been assumed that this dependency can be defined exponentially as a combination 

of time and field. The following relations are proposed as a model, with the goal of examining the 

overall behavior of the system under this simplified assumption, rather than providing an accurate 

empirical model (equations (36) to (41)). Therefore, these parameters can be modeled as functions of 

the electric field intensity 𝐸𝑓: 

𝐸(𝐸𝑓) = 𝐸0𝑒−𝛾𝐸𝑓 (36) 

𝐺(𝐸𝑓) = 𝐺0𝑒−𝛿𝐸𝑓 (37) 

 

Where: 

𝑒 is the base of the natural logarithm, approximately equal to 2.718. This exponential function shows 

that the shear modulus 𝐺 decreases exponentially with increasing electric field intensity 𝐸𝑓. 

𝛾 and 𝛿  are constants that must be determined experimentally. 

𝐸𝑓 =
𝑈

𝑑
 is the electric field intensity calculated from the voltage 𝑈 and thickness 𝑑. 

These relations indicate that increasing the electric field leads to a decrease in both Young’s modulus 

and shear modulus, which is observed in many soft materials. 

Modeling as a Time-Dependent Function 

If time dependency is also considered, a viscoelastic model can be used: 

𝐸(𝑡) = 𝐸0 + 𝐸1𝑒−
𝑡

𝜏 (38) 

𝐺(𝑡) = 𝐺0 + 𝐺1𝑒−
𝑡

𝜏 (39) 

 

Where: 

𝐸1 and 𝐺1 represent the initial changes in stiffness. 

𝜏 is the time constant indicating how the material changes over time. 

Combining the electric field dependency and the time dependency methods provides accurate results 

for modeling the mechanical properties of IPMCs (Ionic Polymer-Metal Composites), because both 



Reza Poureini et al., Investigation of the Effect of a Nonlinear Ion Concentration Function on the…, pp.27-46 

38 

electrical stimulation effects and viscoelastic behavior influence deformation. Below is an 

explanation of how these two methods are combined: 

Combined Model for Young’s Modulus 

Considering that both time and electric field affect 𝐸, it is defined as: 

𝐸(𝑡, 𝐸𝑓) = (𝐸0 + 𝐸1𝑒−
𝑡

𝜏) 𝑒−𝛾𝐸𝑓 (40) 

where: 

𝐸0 is the initial modulus in the dry state. 

𝐸1 indicates the modulus reduction due to viscoelastic properties. 

𝜏 is the time constant related to the relaxation process. 

𝛾 is an empirical coefficient representing the effect of the electric field. 

𝐸𝑓 =
𝑈

𝑑
 is the electric field intensity. 

This relation considers two essential points: 

Viscoelasticity: 𝐸(𝑡) decreases over time. 

Electric field effect: Increasing 𝐸𝑓 reduces the material stiffness. 

1. Combined Model for Shear Modulus 

Similarly, 𝐺 is defined as: 

𝐺(𝑡, 𝐸𝑓) = (𝐺0 + 𝐺1𝑒−
𝑡

𝜏) 𝑒−𝛿𝐸𝑓  (41) 

where the values 𝐺0, 𝐺1, 𝜏, and 𝛿 are analogous to those in the 𝐸 model. 

Shear modulus also decreases over time due to the viscoelastic behavior of the material. Increasing 

the electric field causes a reduction in shear stiffness, which is crucial for the bending behavior of 

IPMCs. 

To evaluate the accuracy of the presented analytical model, its results were compared with those of 

the numerical model based on the Nernst-Planck equation and energy analysis. In the numerical 

model, by applying realistic boundary conditions and utilizing a nonlinear distribution of the electric 

field, the bending moment distribution in both longitudinal and transverse directions of the beam was 

determined, and the resulting curvatures in each direction were calculated. Then, using the time-

dependent analytical model and the electric field-dependent model for 𝐸 and 𝐺, the strain and 

curvature under similar conditions were estimated. The convergence of the analytical and numerical 

results demonstrated that the analytical model accurately describes the bending behavior of IPMC. 

Additionally, the overall trend of reduced biaxial bending in response to field and time settings was 

observed similarly in both models, which further confirms the validity of the analytical model. 
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The exponential dependency of Young’s and shear moduli on time and electric field is proposed as a 

theoretical approach based on observed trends in polymer behavior. The coefficients used in 

equations (40) and (41) are illustrative and not derived from direct experimental measurements. 

Future work should focus on calibrating these parameters using empirical data. 

4. Numerical Model 

The goal is to reduce the difference between 𝑀𝑒𝑙𝑒𝑐
(𝑤) (𝑥)and 𝑀𝑒𝑙𝑒𝑐

(𝑣) (𝑦) to minimize biaxial bending. 

Problem data: 

Table 1. Section names of the structural members assigned in the analysis 

Parameter Value Unit 

Beam length 𝐿 0.2 𝑚 

Beam width 𝑏 0.02 𝑚 

Thickness ℎ 0.001 𝑚 

Ion diffusion coefficient 𝐷 10−9 
𝑚2

𝑠
 

Ion mobility 𝜇 5 × 10−8 
𝑚2

𝑉. 𝑠
 

Dielectric constant 𝜀 6 × 10−10 
𝐶2

𝑁. 𝑚2
 

Initial ion concentration 𝑐0 1000 
𝑚𝑜𝑙

𝑚3
 

Faraday constant F 96485 
𝐶

𝑚𝑜𝑙
 

Applied voltage V 2 𝑉 
Temperature T 300 𝐾 

 

Calculation of the electric field: 

𝐸𝑓 =
𝑉

ℎ
=

2

0.001
= 2000

𝑉

𝑚
 (42) 

Using the exponential model for 𝐸: 

𝐸(𝑡) = 𝐸0 + 𝐸1𝑒−
𝑡

𝜏   ,   𝑀𝑒𝑙𝑒𝑐
(𝑤) (𝑥) ∝

𝜕𝑐

𝜕𝑥
 (43) 

Now, we assume a nonlinear distribution solution for the concentration along the 𝑥 and 𝑦 directions. 

𝑐(𝑥) = 𝑐0 [1 + 𝛼 (
𝑥

𝐿
) + 𝛼2 (

𝑥

𝐿
)

2

]   ⟹   
𝑑𝑐

𝑑𝑥
= 𝑐0 [

𝛼

𝐿
+ 2𝛼2

𝑥

𝐿
] (44) 

Similarly, along 𝑦-direction: 

𝑐(𝑦) = 𝑐0 [1 + 𝛽 (
𝑦

𝑏
) + 𝛽2 (

𝑦

𝑏
)

3

]   ⟹   
𝑑𝑐

𝑑𝑦
= 𝑐0 [

𝛽

𝑏
+ 3𝛽2 (

𝑦

𝑏
)

2

∙
1

𝑏
] (45) 

A second-degree model (𝑥²) is suitable for symmetric behavior along the beam’s length, while a 

third-degree model (𝑦³) better captures edge effects across the beam’s width. 

Electric moments (proportional to ion gradient × thickness):  
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Longitudinal direction (𝑥): 

𝑐0 [
𝛼

𝐿
+ 2𝛼2

𝑥

𝐿
] ∙ ℎ =

𝑑𝑐

𝑑𝑥
∙ ℎ ∝ 𝑀𝑒𝑙𝑒𝑐

(𝑤) (𝑥) (46) 

 

Transverse direction (𝑦): 

𝑐0 [
𝛽

𝑏
+ 3𝛽2 (

𝑦

𝑏
)

2

∙
1

𝑏
] ∙ ℎ =

𝑑𝑐

𝑑𝑦
∙ ℎ ∝ 𝑀𝑒𝑙𝑒𝑐

(𝑣) (𝑦) (47) 

 

Now, using equations (44) to (47) as well as the values in Table (1), the electric moments at the 

specific point 𝑥 =  𝐿/2 and 𝑦 =  𝑏/2 are calculated using the proposed nonlinear model. 

𝑑𝑐

𝑑𝑥
= 𝑐0 [

𝛼

𝐿
+ 2𝛼2

𝑥

𝐿
] ⟹   

𝑑𝑐

𝑑𝑥
= 1500

𝑚𝑜𝑙

𝑚
⟹ 𝑀𝑒𝑙𝑒𝑐

(𝑤) (𝑥) = ℎ.
𝑑𝑐

𝑑𝑥
= 1.5

𝑚𝑜𝑙

𝑚
 (48) 

𝑑𝑐

𝑑𝑦
= 𝑐0 [

𝛽

𝑏
+ 3𝛽2 (

𝑦

𝑏
)

2

∙
1

𝑏
] ⟹

𝑑𝑐

𝑑𝑦
= 9375

𝑚𝑜𝑙

𝑚
⟹ 𝑀𝑒𝑙𝑒𝑐

(𝑣) (𝑦) =
𝑑𝑐

𝑑𝑦
∙ ℎ = 9.375 (49) 

 

Now, using the values obtained from equations (48) and (49), the ratio of the moments is given by 

equation (50): 

𝑀𝑒𝑙𝑒𝑐
(𝑣) (𝑦)

𝑀𝑒𝑙𝑒𝑐
(𝑤) (𝑥)

= 6.25 ⟹ 𝑀𝑒𝑙𝑒𝑐
(𝑣) (𝑦) = 6.25𝑀𝑒𝑙𝑒𝑐

(𝑤) (𝑥) (50) 

 

This condition means that the transverse moment in the 𝑦-direction is approximately 6six times 

greater than the longitudinal moment, but it has decreased significantly compared to the linear model 

(by about 30 times). By adjusting the coefficients of the nonlinear model for the distribution of ion 

concentration in the longitudinal and transverse directions to achieve nearly equal and physically 

reasonable bending moments, we assume that 𝛼₂ =  0.2, 𝛼 =  0.1, and 𝛽 =  0.3, 𝛽₂ =  −0.096.  

The values of the electric moments at the specific point 𝑥 =  𝐿/2 and 𝑦 =  𝑏/2 are calculated using 

the proposed nonlinear model: 

𝑑𝑐

𝑑𝑥
= 𝑐0 [

𝛼

𝐿
+ 2𝛼2

𝑥

𝐿
] = 1000 ×)0.5 + 1(= 1500 →  𝑀𝑒𝑙𝑒𝑐

(𝑤) (𝑥) =
𝑑𝑐

𝑑𝑥
∙ ℎ

= 1500 × 0.001 = 1.5
𝑚𝑜𝑙

𝑚
 

(51) 

𝑑𝑐

𝑑𝑦
= 𝑐0 [

𝛽

𝑏
+ 3𝛽2 (

𝑦

𝑏
)

2

∙
1

𝑏
] = 1000 × (15 − 13.5) = 1500 →  𝑀𝑒𝑙𝑒𝑐

(𝑣) (𝑦) =
𝑑𝑐

𝑑𝑦
∙ ℎ

= 1500 × 1.5 = 1.5
𝑚𝑜𝑙

𝑚
 

(52) 
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That this: 

𝑀𝑒𝑙𝑒𝑐
(𝑣) (𝑦) = 𝑀𝑒𝑙𝑒𝑐

(𝑤) (𝑥) (53) 

 

To reduce biaxial bending, using a controlled nonlinear distribution of ionic concentration, the 

nonlinear coefficients 𝛼₂  and 𝛽₂ were adjusted such that the electric moments in both directions at 

the midpoint of the member are equal. This approach reduces unwanted curvature in the transverse 

direction, thereby improving the targeted performance of the IPMC. 

 

 
Figure 3. Linear and nonlinear distribution of ions in the longitudinal direction 
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Figure 4. Linear and nonlinear distribution of ions in the transverse direction 

 

In the above diagram, the linear and nonlinear distribution of ions has been compared along the 

longitudinal direction 𝑥 and the transverse direction 𝑦 using equations (44) and (45); these 

coefficients have been adjusted so that at the central point 𝑥 = 𝐿/2 and 𝑦 = 𝑏/2, the electric moments 

in both directions are approximately equal. 

Modeling the Young’s modulus dependence on the field to neutralize bending effects: 

𝐸(𝑡, 𝐸𝑓) = (𝐸0 + 𝐸1𝑒−
𝑡

𝜏) 𝑒−𝛾𝐸𝑓 (54) 

 

If the goal is to reduce the curvature caused by the electric moment, one must counteract by increasing 

stiffness (increasing 𝐸) in regions with greater curvature; however, by changing the electrodes or 

modifying the geometry and loading, the effective field magnitude across the width can be reduced 

(for example, by insulation or spacing). Consequently, bending in the two directions reaches 

equilibrium, and the biaxial bending decreases. 
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Figure 5. Sensitivity of the longitudinal moment 𝑀𝑒𝑙𝑒𝑐
(𝑤) (𝑥)with respect to variations in parameters 𝛼 and 𝛼₂ 

 

In this three-dimensional plot, the sensitivity of the longitudinal moment 𝑀𝑒𝑙𝑒𝑐
(𝑤) (𝑥) to changes in 

parameters 𝛼 and 𝛼₂ is shown. As is evident, increasing either 𝛼 or 𝛼₂ causes a linear increase in the 

moment 𝑀𝑒𝑙𝑒𝑐
(𝑤) (𝑥). 

 

Figure 6. Sensitivity of the transverse moment 𝑀𝑒𝑙𝑒𝑐
(𝑣) (𝑦) with respect to variations in the two parameters 𝛽 and 𝛽2 
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In this three-dimensional plot, the sensitivity of the transverse moment 𝑀𝑒𝑙𝑒𝑐
(𝑣)

(𝑦) to changes in the 

two parameters 𝛽 and 𝛽2 is illustrated. It is clearly observed that both parameters play a crucial role 

in shaping the concentration gradient and, consequently, the magnitude of the transverse moment. 

This analysis aids in the optimal selection of 𝛽 and 𝛽2 to achieve a balance between longitudinal and 

transverse moments. 

The reduction of the transverse moment was achieved through numerical modeling and by decreasing 

the effective field intensity across the sample using a hypothetical configuration. In practice, this can 

be implemented by designing patterned electrodes, insulating certain surface regions, or applying a 

non-uniform voltage profile. However, such adjustments may lead to a reduction in generated force 

or an increase in response time, which should be experimentally optimized to achieve the desired 

outcome. 

 

5. Conclusion  

In this paper, a Multiphysics analytical model was developed to more accurately analyze biaxial 

bending in ionic polymer–metal composite (IPMC) actuators. Unlike classical models, the proposed 

approach incorporates the time- and field-dependent behavior of Young’s modulus and shear modulus 

to more realistically reflect the material’s response under electrical stimulation and over time. 

By combining the Euler–Bernoulli beam theory, the principle of minimum potential energy, and the 

Nernst–Planck and Poisson equations, the interaction between ionic distribution, electric potential 

gradient, and mechanical response was comprehensively modeled. To further enhance the control of 

biaxial bending, a nonlinear ion concentration distribution was assumed and analyzed along both 

longitudinal and transverse directions. This nonlinear profile enabled the independent adjustment of 

concentration gradients in each direction, leading to more targeted tuning of the induced electrical 

moments. 

Numerical results revealed that an imbalance in ionic concentration gradients along the two principal 

directions induces unequal electric moments, leading to significant biaxial bending. By refining the 

potential distribution and precisely controlling the ionic gradients, a better balance between the 

moments was achieved, and biaxial curvature was significantly reduced. In the linear model, the 

transverse electric moment was up to 30 times greater than the longitudinal one, causing substantial 

and undesirable transverse bending. However, by applying the nonlinear distribution, the induced 

moments reached equilibrium, and the transverse moment was reduced by up to 95% compared to 

the linear case. This significant reduction confirms the high effectiveness of the proposed model in 

mitigating biaxial bending and improving the mechanical performance of IPMCs. 

The geometry of the electrode and its surface resistance play a significant role in the distribution of 

the electric field. In this study, the electric field distribution has been modeled abstractly; however, 

in future work, electrode heterogeneity can be explicitly incorporated into the model. The use of 

segmented or resistive electrodes could lead to better control of the biaxial bending. 

The presented model not only offers high accuracy in behavior prediction but also provides sufficient 

flexibility for calibration with experimental data, making it a powerful tool for the targeted design of 

IPMC actuators in advanced applications, such as micro-robotics, nanotechnology, and biomedical 

engineering. 
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