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Table 2- Artificial Neural Network Model Structure for the Variable of Stock Price Changes
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Table 3- Artificial Neural Network Model Structure for the Variable of Total Investment Return
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Table 4- Artificial Neural Network Model Structure for the Variable of Holding or Selling Tendency

ANN DNN RNN LSTM
e Y olass Y Y Y+ V+)
Y 2 50 Loy, ol FED Y \YA D5F DYY FE+ Y FELTY
©99)9 Lo S0 S0 S 3910 Slojy 5 ) dadigad| (F5g 10 o Sloj ) adiges
7o el o) o) o) T~
Ol sleaY ilo Jlaé &b RELU RelLU tanh + ReLU tanh + ReLU
T aY Gile s LU sigmoid sigmoid sigmoid sigmoid
aje &b Binary Crossentrop| Binary Crossentrop| Binary Crossentrop Binary Crossentrop
dropout 3l ¥ Y "™
0,99 Yoo Voo Voo Voo
FERR vY vY vY vY

,SM.A/ 5)) 6[.:»4_,.9[; o)

sl SigMoid 25,5 (5l led @b ablbige (6,0L jite S piio (nl ol 4 4z g b

Binary Crossentrop sbs LaJos plos ;o ocil S 5 00 s b Jow (5,5 1) s

WS oo § S0l (P |y (adly ez g 0BGty Sl Ol

Yy




VPP ybimo /50 0yl /15 0590 [ yIoles 3 yel o oo g (Jlo et dobibiad

ST Ao pus Slosouad yuin (gl (omars Al Joo jLSLw -0 Jgu
Table 5- Artificial Neural Network Model Structure for the Variable of Investment Decisions
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Table 6- Artificial Neural Network Model Structure for the Variable of Trading Pattern
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Table 7- Modeling Results for the Variable of Trading Volume
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Table 8- Modeling Results for the Variable of Stock Price Changes
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Table 9- Modeling Results for the Variable of Total Investment Return
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Table 10- Modeling Results for the Variable of Holding or Selling Tendency
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Table 11- Modeling Results for the Variable of Investment Decisions
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Table 12- Modeling Results for the Variable of Trading Patterns
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Abstract
Today, individual investors play a key role in the dynamics of financial
markets, and their decisions significantly affect price volatility, market liquidity,
and overall efficiency. The behavior of this group is typically influenced by various
factors, including macroeconomic indicators, market conditions, and behavioral
finance components. A proper understanding of these behaviors can contribute to
the enhancement of trading strategies and the development of more accurate

predictive models. Accordingly, the present study aims to model the impact of

guantitative variables on the behavior of individual investors and to forecast the
behavior of retail investors in Iran’s capital market using artificial and deep neural

networks. In this regard, six dependent variables were selected: buy and sell

volumes, stock price fluctuations, total investment returns, the tendency to hold or
sell, market entry or exit decisions, and trading patterns (long-term or short-term).
These were modeled using four learning approaches—ANN, DNN, RNN, and
LSTM—trained on real market data, including market information, technical

indicators, and economic indices. The results revealed that recurrent models,

especially LSTM, achieved higher accuracy in predicting time-series and
continuous variables compared to other models. Furthermore, in binary (classified)
variables, the DNN model outperformed others in certain cases, such as investment

decisions and trading patterns. However, the findings also suggest that the mere use

of more complex architectures does not necessarily lead to improved performance.

As this study focused on quantitative variables, it is recommended that future
research incorporate qualitative factors into the modeling process to gain a more
comprehensive understanding of investor behavior.
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Network

1-Department of Financial Management, Central Tehran Branch, Islamic Azad University, Tehran,
Iran. m.abbasikarchegan@iau.ac.ir

2-Department of Financial Management, Central Tehran Branch, Islamic Azad University, Tehran,
Iran. (Corresponding Author) 2200077025@iau.ac.ir

3-Department of Financial Management, Central Tehran Branch, Islamic Azad University, Tehran,
Iran. hos.mombeini@iauctb.ac.ir

¥



mailto:m.abbasikarchegan@iau.ac.ir
mailto:2200077025@iau.ac.ir
mailto:hos.mombeini@iauctb.ac.ir

(o0 9 g0 oy B U5 wlie/ oy 3105 Loy 3Ly 60y g 05 6B o 3 U g 3w oo

Extended abstract
Intoduction

Stock market investment plays a fundamental role in the dynamism of the
economy, and individual investor behavior is a key determinant of price volatility,
liquidity, and market efficiency. This behavior is shaped by macroeconomic
conditions, market variables, and psychological factors, and its proper
understanding can enhance trading strategies and improve predictive models. In
recent years, artificial intelligence (Al), with its capability to identify complex
patterns and nonlinear relationships, has emerged as a robust alternative to
traditional econometric models. Neural networks, by learning hidden patterns in
financial data, enable more accurate forecasting and simultaneous analysis of both
quantitative and qualitative information.

In the Iranian capital market, characterized by high complexity and volatility,
Al applications have become particularly valuable. Factors such as interest rates,
inflation, exchange rates, GDP, and stock market indices influence investor
decision-making. This study employs Artificial Neural Networks (ANN), Deep
Neural Networks (DNN), Recurrent Neural Networks (RNN), and Long Short-
Term Memory (LSTM) models to identify and predict investor behavior in the
Tehran Stock Exchange. Selecting the appropriate model is critical: RNN and
LSTM demonstrate superior performance in time-series analysis and capturing
long-term dependencies, whereas ANN and DNN are more effective in extracting
complex inter-variable features.

Individual investor behavior significantly affects market volatility and liquidity,
and is influenced by both economic and psychological factors. Modeling such
behavior using quantitative data, including macroeconomic indicators and trading
records, enables more accurate market trend forecasting. The application of
artificial neural networks and deep learning facilitates the identification of complex
and nonlinear patterns in financial data, outperforming traditional methods. The
findings of this study provide a deeper understanding of investor behavior and offer
practical insights for market participants, analysts, and policymakers.

Methods

In this study, variables were categorized into independent and dependent
groups, and data were collected over the period 2014-2024 (Iranian calendar 1393—
1403). Independent variables included market information (trading volume, closing
price, highest and lowest prices, and the overall index), economic indicators (GDP,
exchange rate, gold price, interest rate, and inflation), and stock market technical
indicators (moving averages, RSI, MACD, ATR, and On-Balance Volume).
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Annual and daily economic data were completed using statistical methods, and
technical indicators were calculated based on established financial standards.
Dependent variables comprised trading volume, returns, stock price changes,
investment decisions, holding or selling tendencies, and short- and long-term
trading patterns. To analyze investor behavior, Artificial Neural Networks (ANN),
Deep Neural Networks (DNN), Recurrent Neural Networks (RNN), and Long
Short-Term Memory (LSTM) models were employed. The data were split into
training, validation, and prediction sets, and network architectures were optimized
by adjusting the number of neurons, dropout rates, and activation functions
according to the nature of the data. Model performance was evaluated using Mean
Squared Error (MSE), Mean Absolute Error (MAE), and Accuracy. Recurrent
models were particularly applied for predicting investor decisions and multi-layer
trading patterns due to their capability to capture time-series dependencies and
complex temporal relationships. All modeling and simulations were conducted
using Python with the PyTorch framework, ensuring greater flexibility and
accuracy in model design.
Results

The findings indicate that the type of neural network model plays a critical role
in the accuracy of stock market variable predictions. For the “trading volume”
variable, recurrent models, particularly LSTM, achieved the lowest MAE and
MSE, effectively capturing temporal dependencies in the data and outperforming
ANN and DNN models. This highlights the importance of long-term memory in
analyzing market volume data.

For the “stock price changes” variable, all models performed reasonably well;
however, LSTM and RNN models, due to their ability to capture temporal
dependencies, provided higher accuracy in extracting price patterns. These results
suggest the presence of distinct temporal patterns in price fluctuations that are
better identified by memory-based models. Regarding “total investment returns,”
the DNN model exhibited the weakest performance, while LSTM and RNN
accurately predicted hidden relationships with minimal error. ANN also performed
adequately, indicating the informative value of return variables even without
temporal sequence analysis. For the “holding or selling tendency” variable, all
models achieved similar accuracy (~75.8%), reflecting a well-structured and easily
recognizable pattern without complex temporal dependencies. In predicting
“investment decisions (entry or exit),” DNN achieved the highest accuracy (86%),
whereas RNN showed weaker performance. This suggests that for binary, non-
sequential variables, deep non-recurrent models are more suitable. For “trading
patterns” prediction, DNN significantly outperformed other models with an
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accuracy of 97.33%, demonstrating its capability to identify complex nonlinear
relationships among features and trading patterns. Overall, the results indicate that
memory-based models excel in predicting variables with temporal patterns, while
deep non-sequential models perform better for structured binary and nonlinear
variables.

Discussion and Conclusion

This study aimed to model and predict six key investor behavior variables in the
capital market using four artificial intelligence models: ANN, DNN, RNN, and
LSTM. The results demonstrated that for continuous variables such as trading
volume, price changes, and investment returns, recurrent models (RNN and LSTM)
performed better due to their ability to capture temporal dependencies; specifically,
LSTM showed the lowest error in predicting trading volume, while RNN excelled
in forecasting investment returns.

Conversely, for binary variables such as holding or selling decisions and trading
patterns, the DNN model often outperformed others, highlighting its capability to
extract complex non-temporal patterns, whereas ANN exhibited limited
performance. The findings also indicate that no single model is optimal for all
variables, and model selection should consider variable type, temporal structure of
the data, and specific behavioral characteristics of investors.

This research is innovative in simultaneously examining six independent
variables and emphasizing the differential performance of models based on
variable characteristics. Despite focusing on quantitative variables, future studies
are recommended to incorporate a combination of quantitative and qualitative data,
such as investor sentiment and risk perception, to enhance the accuracy and
comprehensiveness of predictions.
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