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Abstract 

In Block Compressed Sensing (BCS), the image is divided into small blocks and sampled with the same 
operator. At the decoder side, each block is treated as an independent sub-CS reconstruction task. This often 
results in generating some blocking artifacts and losing global structure of the image. In this paper, we propose 
data sorting into the BCS framework to overcome the BCS problems and improve the reconstruction result. We 
refer this new block-based CS technique as sort-based BCS (SBCS). In this method, the original image is sorted in 
such a way that a smooth image is produced. Then, block-based sampling and reconstruction are applied on the 
smoothed image. We use iterative projected Land Weber (PL) and iterative soft thresholding (IST) algorithms for 
image reconstruction. Simulation results show that the proposed SBCS image reconstruction provides significant 
improvement over the existing block-based CS image reconstruction methods, in terms of both subjective and 
objective evaluations.  
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1. Introduction 

Over the past few years, a new framework 
called as compressed sensing (CS) [1] has 
been developed for simultaneous sampling 
and compression of signals at sub-Nyquist 
rates [2]. It is shown that under certain 
conditions, the signal can be reconstructed 
exactly from a small set of measurements. As 
applied to 2D images, CS faces several 
challenges including a computationally 
expensive reconstruction process and huge 
memory required to store the random 
sampling operator [3]. Several fast 
algorithms have been developed for CS 
reconstruction [3, 4]. The memory challenge 
was first addressed in [2] using a block-based 
sampling operation. 

In Block-based compressed sensing (CS), 
the original image is divided into small 
blocks and each block is sampled 
independently using the same measurement 

operator. The main advantages of this 
method include: (a) Measurement operator 
can be easily stored and implemented 
through a random under sampled filter bank; 
(b) BCS is more suitable for real-time 
applications as the encoder does not need to 
send the sampled data until the whole image 
is measured; (c) Since each block is 
processed independently, the initial solution 
can be easily obtained and the reconstruction 
process can be substantially speeded up. 
Despite these advantages, dividing the image 
into blocks and treating each image block as 
an independent sub-CS reconstruction task 
would generate some blocking artifacts and 
reduce the visual quality. To reduce the 
blocking artifact and smooth the image, a 
smoothing filter (e.g. Wiener filter [2]) is 
applied in the spatial domain. However, this 
results in losing the details and fine structures 
of the reconstructed image. 



R. Keshavarzian :Improved Block Compressed Sensing Image Reconstruction by Data Sorting 
 

38 
 

CS theory shows that the sparsity degree of 
a signal plays a significant role in 
reconstruction. The higher sparsity degree of 
a signal, the higher reconstruction quality it 
will have [5].An image reconstruction can be 
formulated in form of an optimization 
problem under regularization-based 
framework. Classical regularization term 
reflects the local prior information of the 
image (e.g. local smoothness) and represents 
the local sparsity model. Local smoothness 
describes the closeness of neighboring pixels 
in 2D space domain of images, which means 
the intensities of the neighboring pixels are 
quite similar. In other words, local sparsity 
models are built on the assumption that 
images are locally smooth except at the edges 
[6]. Thus, they will demonstrate high 
effectiveness in reconstructing smooth areas. 
There exist various choices for local sparsity 
model. In these models, to seek a basis or 
domain where the image can exhibit a high 
degree of sparsity is a main challenge. Most 
of the conventional CS reconstruction 
methods use predefined bases (e.g. DCT, 
DWT and gradient domain). Each of these 
bases are efficient at describing a given class 
of images. For example, DWT and gradient 
domain are suitable for piecewise-smooth 
images. Thus, these bases provide sparser 
representations for smoother images. 

Considering the above two points, in this 
paper, we propose a method to improve the 
BCS image reconstruction scheme via data 
sorting. In this method, the original image is 
sorted in such a way that a smooth image is 
produced. Then, block-based sampling and 
reconstruction are applied on the smoothed 
image. Since smoother images give a better 
match to the local sparsity models, better 
reconstruction will be obtained. The sort-
based BCS (SBCS) can be used coupled with 

existing reconstruction algorithms. We use 
the iterative projected Land Weber (PL) [7] 
and iterative soft thresholding (IST) [8] 
algorithms for image reconstruction. The 
proposed SBCS image reconstruction 
scheme effectively reduces the blocking 
artifacts introduced in BCS even without 
using of the smoothing filter while 
preserving the details of the image. 
Experimental simulations verify that the 
proposed CS reconstruction based on SBCS 
outperforms equivalent reconstruction based 
on the BCS. 

The rest of the paper is organized as 
follows: In section II, the compressed sensing 
problem as well as BCS technique 
reintroduced briefly. In section III, an 
improved BCS image reconstruction method 
is presented. The simulation results are 
described in section IV. Finally, the 
conclusions are provided in section V.  

2. Background 

2.1.Compressed sensing problem 

Consider a finite-length signal𝐮 ∈ ℝே . A 
number of M (𝑀 ≪ 𝑁) linear, non-adaptive 
measurement of  𝐮 are acquired through the 
following linear transformation: 

𝐲 = 𝚽𝐮 + 𝐞 (1) 

where 𝐲 ∈ ℝெ  is the measurement vector, 
𝚽 ∈ ℝெ×ே  is a measurement matrix and 𝐞 
denotes possible measurement noise vector 
with ‖𝐞‖ଶ ≤ 𝜖 . The usual choice for the 
measurement matrix 𝚽  is a random matrix 
[3]. We wish to reconstruct the signal 𝐮 from 
𝐲  by solving (1). Since 𝑀 ≪ 𝑁 , the 
reconstruction of 𝐮  from 𝐲  is ill-posed in 
general. However, if 𝐮  is spares (or 
compressible), then exact reconstruction is 
possible. Many signals themselves are not 
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sparse, but when they are expressed in a 
convenient basis will have sparse 
representations. In this case, the signal 𝐮 can 
be represented as 

𝐮 = ି𝟏𝐱 (2) 

where is a sparsifying basis or dictionary 
and 𝐱 ∈ ℝே  is the coefficient vector that 
most entries of which are zero or close to 
zero. 

To reconstruct the signal𝐮from𝐲,one could 
search for the sparsest coefficient vector (i.e. 
the vector 𝐱 with the smallest 𝑙଴ norm) 
consistent with the measurement 𝐲 by solving 
the optimization problem 

min
𝐱

‖𝐱‖଴     𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    ฮ𝐲

− 𝚽ି𝟏𝐱ฮ
ଶ

≤ 𝜖 
(3) 

and then reconstruct 𝐮  using (2). 
Unfortunately, this optimization problem is 
NP-hard that can only be solved using a 
combinatorial approach [9]. Thus, alternative 
procedures to find out a suboptimal solution 
have been proposed in recent years. One of 
these, is to relax the 𝑙଴ norm, replacing it by a 
continuous or even smooth approximation 
[10].Examples of such approximations 
include𝑙௣ norms for some 0 < 𝑝 ≤ 1[11] or 

even smooth functions such as Logarithm 
[12], Exponential [13].A popular choice for 
the approximation function is 𝑙ଵ norm which 
leads to the convex optimization problem 

min
𝐱

‖𝐱‖ଵ     𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    ฮ𝐲

− 𝚽ି𝟏𝐱ฮ
ଶ

≤ 𝜖 

        
(4) 

 

This optimization problem known as basis 
pursuit denoising (BPDN) can be recast into 
the unconstrained optimization problem 

min 
𝐱

1

2
ฮ𝐲 − 𝚽ି𝟏𝐱ฮ

ଶ

ଶ
+‖𝐱‖ଵ (5) 

which the second term is a regularization 
term that reflects prior information of the 
signal and is the regularization parameter. 
With an appropriate choice of the  , the 
problem in (5) will yield the same solution as 
that in (4) [14]. This problem can be solved 
by many efficient algorithms such as iterative 
soft thresholding (IST) algorithm. This 
algorithm is simple to be implemented; 
however, it converges quite slowly. Some 
accelerated versions of IST have been 
proposed, including two-step IST (TwIST) 
[15] and fast IST (FISTA) [16]. Other 
algorithms include iterative projected Land 
Weber (PL), iteratively reweighted least 
squares (IRLS) [17], augmented direction 
method of multipliers (ADMM) [18], split 
Bergman iterations (SBI) [19] and Douglas-
Rachford splitting (DRS) [20]. 

2.2.Block-based compressed sensing (BCS) 

Suppose an image with N pixels and we 
want to acquire M CS measurements. In 
BCS, the image is divided into 𝐵 × 𝐵  non-
overlapping blocks and then each block is 
sampled independently with the same 

measurement matrix 𝚽஻ ∈ ℝ௠ಳ×஻మ
where 

𝑚஻ = ቔ
ெ஻మ

ே
ቕ .Let 𝒖௜ ∈ ℝ஻మ

is the vectorized 

signal of the i-th block through raster 
scanning. The corresponding measurement 
vector 𝒚௜ ∈ ℝெwill be as 

𝒚௜ = 𝚽஻𝒖௜ (6) 

where 𝚽஻  is an orthonormalized i.i.d 
Gaussian matrix. BCS is memory efficient as 
we just need to store an 𝑚஻ ×

𝐵ଶmeasurement operator𝚽஻ , rather than an 
𝑀 × 𝑁  one [2]. At the decoder side, each 
block of the image is reconstructed from its 
corresponding measurement vector. This, i.e. 
treating each block as an independent sub-CS 
reconstruction task, would generate some 
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blocking artifacts and reduce the visual 
quality. To reduce the blocking artifacts and 
smooth the image, a Wiener filter is applied 
in the spatial domain. Nonetheless, the 
reconstructed image still has a low quality. 

3. Improved BCS image reconstruction 

3.1. Data sorting 

As mentioned before, the sparsity degree of 
an image for a given sparsifying transform 
plays a significant role in CS reconstruction. 
The higher sparsity degree of an image, the 
higher reconstruction quality it will have. 
Some sparsifying transforms such as DCT, 
DWT and gradient provide sparser 
representations for smoother images. 
Alternatively, better reconstructions for these 
images can be obtained. When the images of 
interest are nonsmoothed, we can sort them 
to produce smooth images. Consider, 
Goldhill image and the sorted image in 
horizontal and vertical directions of it as 
shown in Fig. 1(a) and Fig. 1(b), 
respectively. The histograms of the DCT and 
DWT coefficients of the original and sorted 
images are shown in Fig. 2.It is obvious to 
see that the histogram of the transform 
coefficients of the sorted image is very sharp 
and most coefficients are near zero. So, data 
sorting can lead to sparser representations of 
the data and hence higher quality 
reconstruction. 

3.2. Sort-based BCS (SBCS) image 
reconstruction 

In order to overcome the aforementioned 
BCS problems and improve the 
reconstruction result, we use the data sorting 
into the BCS framework. In this method, 
which referred as SBCS, the original image is 
sorted independently in horizontal and 

vertical directions before applying the block-
based random sampling. Sorting the image 
helps to sparser representation of the image 
and hence higher quality reconstruction. The 
sorted image is divided into small blocks and 
each block is sampled independently using 
the same measurement operator.  

 
(a) 

(b) 

Fig. 1. (a) Goldhill image, (b) Sorted image of ‘a’

At the decoder side, each block of the 
sorted image is reconstructed from its 
corresponding measurement vector. The 
reconstructed sorted image then undergoes a 
sorting back process to generate the final 
reconstructed image. In this method, there is 
no need to apply Wiener filter, since the task 
of removing the blocking artifacts and 
retaining the visual quality is accomplished 
by the data sorting. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 2. Illustrations of improving image sparsity 
by data sorting. (a) The histogram of the DCT 

coefficients of the original image, (b) The 
histogram of the DCT coefficients of the sorted 

image, (c) The histogram of the DWT 
coefficients of the original image, (d) The 

histogram of the DWT coefficients of the sorted 
image. 

Wiener filter can lead to accelerate the 
reconstruction. The existing reconstruction 
algorithms can be used coupled with the 
SBCS. In this paper, we use the PL and IST 
algorithms and refer the combination of these 
reconstruction algorithms and SBCS 
framework as SBCS-PL and SBCS-IST, 
respectively. 

The PL algorithm forms the approximation 
to the image by successively projecting and 
thresholding [3]. This algorithm begins with 
an initial approximation𝐮଴and produces the 
approximation at iteration k+1 as 

𝐮෕௞ = 𝐮௞ + 𝚽்(𝐲 − 𝚽𝐮௞) (7) 
 

𝐱ු௞ = 𝐮෕௞ (8) 
 

𝐱ത௞ = ቊ
0           𝑖𝑓  |𝐱ු௞| < τ௞

𝐱ු௞          𝑖𝑓  |𝐱ු௞| ≥ τ௞  (9) 

 

𝐮ഥ௞ = ି𝟏𝐱ത௞ (10) 
 

𝐮௞ାଵ = 𝐮ഥ௞ + 𝚽்(𝐲 − 𝚽𝐮ഥ௞) (11) 

We initialize with 𝐮଴ = 𝚽்𝐲. As done in 
[3], we employ the universal thresholding 
method to set the τfor hard thresholding in 
(9): 

𝜏௞ = 𝜎௞ඥ2 log      (12) 

where   is a constant control factor to 
manage convergence,   is number of the 
transform coefficients, and 𝜎௞  is estimated 
using a robust median estimator, 

𝜎௞ =
𝑚𝑒𝑑𝑖𝑎𝑛(ห𝐱ු୩ห)

0.6745
 (13) 

   

The IST algorithm gives the solution at the 
iteration k+1 as (7)-(11), except that uses soft 
thresholding in the form of (14) rather than 
(9): 
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𝐱ത௞

= ቐ

𝐱ු௞ − 𝛼                      𝑖𝑓     𝐱ු௞ ≥ 𝛼

 0                              𝑖𝑓     |𝐱ු௞| < 𝛼

𝐱ු௞ + 𝛼                   𝑖𝑓     𝐱ු௞ ≤ −𝛼

 
       

(14) 

In both SBCS-PL and SBCS-IST, we can 
use a spatial domain 3×3 Wiener filter in the 
beginning of each iteration to increase the 
image quality at very low measurement ratios 
(below 0.05) and accelerate the 
reconstruction process at higher measurement 
ratios. We refer the resulting methods as 
SBCS-SPL and SBCS-SIST. 

4. Simulation results 

In this section, the simulation results are 
presented to evaluate the proposed methods. 
We use two standard test images of size 
512×512as shown in Fig. 3. All simulations 
are performed using MATLAB 2016a, on a 
2GHZ laptop computer. In our 
implementations, we employ block size 𝐵 =

32, as done in [2,3], maximum number of 
iterations 𝑘௠௔௫ = 200 ,  = 6 , 𝛼 = 8 , and 
the DCT as the sparsifying transform. Peak-
Signal-to-Noise Ratio (PSNR) and the visual 
quality are employed to evaluate the quality 
of the reconstructed image. Since the quality 
of reconstruction can vary due to the 
randomness of the measurement matrix, all 
PSNR values are averaged over 5 
independent trials. We compare our results 
with BCS-SPL-DDWT [3] and NLDR [21] 
methods. The BCS-SPL-DDWT is a block-
based CS image recovery method that 
employs a smoothed version of PL (SPL) 
algorithm and the DDWT as the sparsifying 
transform. The smoothing is done by the 
Wiener filter. The NLDR is a block-based CS 
image recovery method which improves the 
CS reconstruction result by adding a nonlocal 

(NL) estimation step after the initial CS 
reconstruction from the IST algorithm. 

   
(a)                                          (b) 

Fig. 3. Standard grayscale test images. (a) Lena, 
(b) Goldhill. 

Fig. 4 and Fig. 5 show some visual results 
of CS reconstruction using 10% of 
measurements obtained by the SBCS-PL, 
SBCS-IST, SBCS-SPL and SBCS-SIST 
methods. It can be seen that the quality of the 
reconstructed images is quite high, and our 
proposed methods perform well in preserving 
the details of the images. Table I illustrates 
PSNR and reconstruction time with different 
measurement ratios, M/N. All values are 
obtained by averaging on the results of 5 
independent trails. It is obvious that the 
proposed methods produce high PSNR 
values at all measurement ratios. The SBCS-
PL and SBCS-SPL present a better 
reconstruction in the case of ratios 0.03 and 
0.05, compared with the other methods. At 
higher measurement ratios, all our methods 
produce near similar PSNR values. The using 
Wiener filter increases the reconstructed 
image quality at very low measurement ratios 
(below 0.05) and accelerates the 
reconstruction process at higher measurement 
ratios. For the measurement ratios below 
0.05, we use 𝛼 = 20 in SBCS-IST method. 

Table 2 compares the PSNR values 
obtained by our methods and the BCS-SPL-
DDWT and NLDR at different measurement 
ratios. The results indicate that the proposed 
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methods considerably outperform the other 
methods in the most cases, with PSNR 
improvements of up to 20 and 15 dB, 
compared with BCS-SPL-DDWT and 
NLDR, respectively. The PSNR achieved by 
SBCS-IST at ratio 0.1 is still higher than the 
one by NLDR. The computation time needed 
for our methods is very low as compared to 
the mentioned methods. The BCS-SPL-
DDWT and NLDR take about 1-5 and 10 
minutes, respectively. These results verify 
the effectiveness of the SBCS in reducing the 
blocking artifacts introduced in BCS even 
without using of the smoothing filter while 
preserving the details of the image. 

      
(a)                                      (b) 

       
(c)                                     (d) 

Fig.4. CS reconstructed image Lena with 10% 
measurement ratio. (a) SBCS-PL (PSNR=46.3 

dB), (b) SBCS-IST (PSNR=34.43 dB), (c) 
SBCS-SPL (PSNR=47.6 dB), (d) SBCS-SIST 

(PSNR=50.8 dB). 
 

    
(a)                                                 (b) 

   
(a)                                               (b) 

Fig. 5. CS reconstructed image Goldhill with 
10% measurement ratio. (a) SBCS-PL 

(PSNR=49.2 dB), (b) SBCS-IST (PSNR=33.75 
dB), (c) SBCS-SPL (PSNR=45.44 dB), (d) 

SBCS-SIST (PSNR=50.96 dB). 

5. Conclusions 

The motivation of this paper is to improve 
the BCS based image reconstruction scheme. 
We used data sorting into the BCS 
framework and named this new block-based 
CS technique as SBCS.We adopted the 
iterative projected Land Weber (PL) and 
iterative soft thresholding (IST) for image 
reconstruction. Experimental results 
demonstrated that the proposed CS 
reconstruction based on the SBCS 
outperforms equivalent reconstruction based 
on the BCS and effectively reduces the 
blocking artifacts introduced in BCS while 
preserving the details of the image. Our 
method is able to reconstruct an image 
exactly and quickly using fewer 
measurements. 
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Table 1. PSNR and reconstruction time performance 

SBCS-SIST SBCS-SPL SBCS-IST SBCS-PL 
M/N Image 

Time PSNR Time PSNR Time PSNR Time PSNR 
14.36 29.51 14.68 40.16 12 18.95 12.89 33.73 0.03 

Lena 

14.85 42.05 12.75 42.37 12.44 24.81 11.54 44.95 0.05 

13.58 50.80 11.58 47.60 13.01 34.43 12.65 46.29 0.1 
7.8 54.02 6.37 54.69 14.32 48.19 12.53 53.20 0.2 

6.22 55.68 4.71 57.02 14.04 53.91 13.77 56.34 0.3 
5.77 56.97 4.27 58.41 11.42 55.82 11.33 57.62 0.4 

  

14.17 23.49 14.88 38.18 12 19.44 11.83 34.54 0.03 

Goldhill 

14.35 40.24 12.63 42.64 12.37 23.22 12.12 40.70 0.05 
11.87 50.96 13.05 45.44 13.2 33.75 12.42 49.19 0.1 

7.30 54.05 6.29 51.65 13.05 47.85 13.9 55.17 0.2 
6.42 55.67 4.65 55.23 12.74 54.52 11.6 57.02 0.3 
5.61 57.14 3.58 57.43 10.32 56.14 10.06 58.18 0.4 

Table 2. PSNR comparison of CS reconstruction methods. 

NLDR 
[21] 

BCS-SPL-
DDWT[3] 

SBCS-
SIST 

SBCS-
SPL 

SBCS-
IST 

SBCS-PL M/N Image 

33.67 28.31 50.80 47.60 34.43 46.29 0.1 

Lena 

36.33 31.37 54.02 54.69 48.19 53.20 0.2 

37.82 33.50 55.68 57.02 53.91 56.34 0.3 
39.02 35.20 56.97 58.41 55.82 57.62 0.4 

40.16 36.78 58.18 59.53 57.25 58.88 0.5 

  
28.94 26.96 50.96 45.44 33.75 49.19 0.1 

Goldhill 
32.10 28.93 54.05 51.65 47.85 55.17 0.2 
33.99 30.45 55.67 55.23 54.52 57.02 0.3 
35.61 31.79 57.14 57.43 56.14 58.18 0.4 

37.20 33.11 58.34 58.96 57.61 59.30 0.5 
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