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Abstract:

This study presents a novel approach for predicting soil liquefaction potential, a critical
concern in geotechnical engineering. Liquefaction refers to the behavior of soil under dynamic
loading or transient shear wave excitation, during which the soil completely loses its shear strength
and temporarily transforms into a fluid-like state. By integrating empirical geotechnical
relationships with advanced machine learning techniques, the research offers a modern perspective
on evaluating the likelihood of liquefaction occurrence. The analysis is based on data derived from
Cone Penetration Test (CPT) records. Three soft computing models were implemented: Artificial
Neural Networks (ANN), Logistic Regression (LR), and Neuro-Fuzzy Network. Their
performance was evaluated using Receiver Operating Characteristic (ROC) curves. Among
the models compared, Logistic Regression demonstrated superior performance, with the
Area Under the Curve (AUC) from the “All” dataset reaching approximately 0.975,
indicating high reliability in classification accuracy. In this study, the logistic regression
model achieved an AUC of 0.975 on the full dataset, followed by the artificial neural
network (AUC = 0.925) and the fuzzy logic system (AUC = 0.71).
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1.Introduction

Liquefaction is one of the most critical
phenomena influencing the instability of
buildings  and infrastructure  during
earthquakes, making it a key focus in seismic
research and foundation design. Nearly every
major earthquake results in widespread
ground deformations due to soil liquefaction,
leading to significant and often catastrophic
damage to both soils and foundations. The
characteristics of liquefaction can vary
depending on geometry, soil type, and local
conditions, influenced by several factors
including unusual wave propagation, seismic
amplification, and geological conditions such
as grain distribution, soil density, and
groundwater level [1].

Liquefaction is classified as a form of ground
failure typically triggered by strong ground
shaking during earthquakes. The first widely
documented cases of severe liquefaction
damage occurred during the 1964 Niigata
earthquake in Japan and the 1964 Alaska
earthquake in the United States [2].
Earthquakes have consistently attracted the
attention of civil and geotechnical engineers,
especially due to their role in triggering
liquefaction [3]. Numerous researchers have
studied the seismic behavior of soils and
structures over the past decades [4-6].

Following the extensive liguefaction events
observed in the 1964 Niigata and Alaska
earthquakes, geotechnical researchers
increasingly focused on understanding this
phenomenon [7]. In Iran, liquefaction
zonation studies commenced after the
destructive Manjil earthquake, led by the
International  Institute  of  Earthquake
Engineering and Seismology. The outcome
was a national-scale liquefaction hazard map
at 1:1,000,000 scale [8].

Over the past four decades, significant
progress has been made in understanding the
mechanisms and influencing factors of soil
liquefaction. Initially, most research focused
on clean sands, as it was believed that
liquefaction occurred only in such soils and

that coarse- or fine-grained soils lacked the
capacity to generate excess pore water
pressure, which is the main cause of
liquefaction. However, with the occurrence of
recent earthquakes and observations of
liquefaction in a wider variety of soils,
researchers have expanded their studies to
identify the influencing factors in both fine-
and coarse-grained soils [9].

Ahmad et al. (2021) evaluated the
performance of four machine learning (ML)
algorithms for earthquake-induced
liquefaction  assessment  using  cone
penetration test (CPT) data and field case
histories [10]. Garcia et al. (2011) developed
a large database combining CPT, SPT, and Vs
measurements with historical earthquake
liquefaction performance records. They
applied: (1) an artificial neural network
(ANN) to map key index features to
resistance parameters, (2) a fuzzy neural
system for estimating liquefaction occurrence
and developing a multidimensional fuzzy
liquefaction index, and (3) a regression tree
for generating or supplementing seismic
loading information [11].

In a 2024 study, Liu et al. developed machine
learning models to estimate building
settlements induced by liquefaction. Five ML
models ridge regression, partial least squares
regression, random forest, gradient boosting
decision tree, and support vector regression
were trained on a database generated through
numerical simulations involving various
building soil profiles subjected to ground
motions of different intensity measures [12].
Abbasimaedeh (2024) investigated
liquefaction potential in seismic events using
leading predictive models based on machine
learning  techniques such as logistic
regression, decision trees, and support vector
machines [13].

Ozsagir et al. (2022) evaluated machine
learning approaches for predicting
liquefaction potential in fine-grained soils
using seven ML algorithms, including logistic
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regression, artificial neural networks, decision
trees, support vector machines, k-nearest
neighbors, stochastic gradient descent, and
random forest [14]. Obaidullah (2024) also
applied four ML models logistic regression,
support vector machine, decision tree, and
Artificial Neural Networks to field-based
liquefaction prediction, finding decision trees
to be the most effective algorithm [15].

Kumar et al. (2021) proposed the application
of deep learning algorithms for the
assessment of soil liquefaction using Cone
Penetration Test (CPT) data [16]. In a similar
line of research, Raja et al. (2024) developed
intelligent prediction models for lateral
spreading caused by liquefaction, utilizing
techniques such as Genetic Algorithms (GA),
Artificial Neural Networks (ANN), and k-
Nearest Neighbors (KNN) [17]. Mohammadi
Kish et al. (2023) applied a fuzzy-incomplete
clustering  approach  for  liquefaction
evaluation based on CPT and shear wave
velocity (Vs) measurements [18]. More
recently, Sehmusog et al. (2025) implemented
various artificial intelligence methods such as
logistic regression and support vector
machines for liquefaction prediction. Their
findings highlighted the potential of machine
learning tools in mitigating seismic risks
associated with liquefiable soils [19].

In light of the increasing demand for reliable
and rapid prediction of liquefaction potential,
especially in urban areas prone to seismic
activity, this study aims to evaluate and
compare the performance of three soft
computing models—Artificial Neural
Networks (ANN), Logistic Regression (LR),
and Neuro-Fuzzy systems. The integration of
CPT-based data and advanced classification
techniques aims to provide a robust
framework for identifying liquefiable soils,
contributing to safer geotechnical designs and
informed urban planning. The structure of the
paper is organized as follows: Section 3
presents CPT testing fundamentals, Section 4
discusses liquefaction hazard calculations,
Section 4 elaborates on ML-based modeling
approaches, and Sections 5-7 present model
evaluation and performance analysis.

2. Literature Review

Numerous studies have been conducted to
assess the effectiveness of machine learning
techniques in predicting soil liquefaction. For
example, Ahmad et al. (2021) applied
multiple ML algorithms using CPT data and
found that decision tree models had relatively
high accuracy[10]. Ozsagir et al. (2022)
implemented seven ML models for fine-
grained soils, among which LR and ANN
showed promising results[14]. Liu et al.
(2024) focused on liquefaction-induced
building settlement prediction using gradient
boosting and random forest models[12]. In
another study, Obaidullah (2024) concluded
that decision trees outperformed SVMs and
logistic regression in field-based
prediction[15]. These comparative insights
establish the foundation for this study and
highlight the significance of model evaluation
using ROC and AUC indices.

3. Cone Penetration Testing (CPT)

Since its introduction in geotechnical
engineering, the Cone Penetration Test (CPT)
has been widely employed in numerous
applications such as bearing capacity
estimation, shallow and deep foundation
design, and liquefaction resistance assessment
[20-24]. CPT allows for the efficient
estimation of key soil parameters. In this
context, Marzouk et al. (2024) provided a
detailed review of the Standard Penetration
Test (SPT) and its integration with deep
learning techniques in civil engineering
projects[25].

4. Calculation of Liquefaction Hazard

Determining the liquefaction resistance of soil
based on analysis results requires the
calculation or estimation of two variables.
The first parameter is the Cyclic Stress Ratio
(CSR), which indicates the level of cyclic
loading that may be caused by an earthquake,
and the second parameter is the Cyclic
Resistance Ratio (CRR), which indicates the
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soil's resistance to liquefaction. The cyclic
stress ratio induced during an earthquake
(CSR) is defined by Seed and Idriss (1971) as
follows [26]:

CSR = 0.65 * (amax / g) * (ov / 6'v) * rd 1)

where amax is the peak horizontal ground
acceleration during the earthquake, g is the
gravitational acceleration, ov and c'v are the
total and effective vertical  stresses,
respectively, and rd is the stress reduction
coefficient. Average values for rd based on
depth are defined by Liao and Whitman
(1986) for engineering applications [27]:

rd =[1.0 - 0.00765z , for z<9.15m 2)
1.174 - 0.0267z , for 9.15 <z < 23m]

z is the depth (in meters). The Cyclic
Resistance Ratio (CRR) is also defined by
Robertson and Ride (1998) [28] as follows. In
this method, it is necessary to adjust the cone
tip resistance corrected for overburden stress
(gcIN)  when determining liquefaction
resistance. The parameter qclN is normalized
using the overburden stress correction factor
(CQ) as shown in the equations below:

qcIN=CN * (qc/ Pa) * (Pa/c'v)"n 3)
CQ=(Pa/c'v)*n (4)

where gc is the measured cone tip resistance,
CQ is the overburden stress correction factor,
Pa is the reference pressure (e.g., Pa = 100
kPa if gc is in kPa or Pa=0.1 MPa if qc is in
MPa), and n is a coefficient that varies with
soil type and is usually 0.5. The maximum
value of CQ = 2 generally applies to shallow
CPT data. The normalized cone resistance
gc1N is dimensionless.

Robertson and Wride (1998) indicated [28]
that the CPT friction ratio increases with
increasing fines content and soil plasticity.
The granular characteristics of sandy soils can
be directly estimated from CPT data using
soil behavior type charts, such as the one
shown in Figure 1 (Robertson, 1990) [29].
Also, the Soil Behavior Type Index (Ic) can
be defined as follows [29]:

Ic =sqrt[ (3.47 - log Q)2 + (log F + 1.22)"2 ] (5)

Q =(gc1N/Pa) (6)
F=(fs/(qc - ov)) * 100% (7)

where Q is the normalized tip resistance, F is
the normalized friction ratio, n is typically
1.0, and ov and c'v are the total and effective
overburden stresses, respectively.
The boundaries of soil behavior type based on
the Ic index are shown in Table 1.

Table 1: Soil Behavior Type Boundaries [29]

Classification SBT (Figure 1)
Gravelly to Dense Sand 7
Sand: Clean Sand to Silty 6
Sand
Sand Mixtures: Silty Sand 5
to Sandy Silt
Silt Mixtures: Clayey Silt 4
to Silty Clay
Clay: Silty Clay to Clay 3
Organic Soils 2
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Fig. 1. Normalized CPT soil behavior type
diagram, as proposed by Robertson in
1990[29].

The proposed equation to obtain the
equivalent clean-sand normalized CPT
resistance qclNcs as a function of measured

resistance, soil characteristics, is as follows:

gclNcs = qcIN * Kc (8)
Here, Kc is the correction factor representing
the soil’s grain structure, defined by equations
9 and 10:

If Ic < 1.64, then K¢ = 1.0 9)
If Ic > 1.64, then Kc = 5.581 * I1c"3 - 0.403 * (10)
Ic™4 - 21.63
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If Ic > 2.6, data should be directly plotted on
Robertson’s chart assuming qclNcs=Q.
If Ic < 2.6, the power for Q calculation should
be adjusted to n = 0.5 (i.e., calculate qc1N
using Eg. (3)), then recalculate Ic based on
gcIN and F. If the recalculated Ic remains
below 2.6, the data should be plotted on the
Robertson chart using (n=0.5). However, if
the recalculated Ic fluctuates around 2.6, a
value of (n=0.75) should be used for
calculating gc1Ncs. Equations 5, 8, 9, and 10
can be combined to directly estimate the
clean-sand equivalent normalized cone
resistance qc1Ncs from CPT data. Then, CRR
for an earthquake magnitude (M=7.5) can be
estimated using the simplified equations
below:

If 50 < qc1Ncs < 160, CRR =93 +0.08 * (12)
gclNcs
If qc1Ncs < 50, CRR =0.833 * qc1Ncs / 100 12)

5. Subsurface Layer lIdentification Using
CPT and Deep Learning Techniques

Developing a model to describe the type,
extent, and geotechnical properties of
subsurface soil layers remains a fundamental
task in  geotechnical investigations.
Traditionally, this modeling has relied on
interpretations of field exploration data, such
as trenches and boreholes, often constrained
by the minimum number of tests required by
relevant standards [30]. This process demands
both broad expertise in subsurface data
interpretation and region-specific knowledge.
In many cases, such interpretations are
supported only partially by empirical tools
such as the Soil Behavior Type (SBT) charts
proposed by Robertson or by analytical
correlations [31-34]. Consequently, CPT-
based interpretation for machine learning
modeling often depends on the subjective
judgment of engineers.

In recent years, numerous machine learning
techniques have been proposed to address
various geotechnical problems, including
liquefaction assessment [22], pile settlement

prediction [21], and tunnel boring
performance forecasting [35].

6. Selection of Data and Machine Learning
Methods

6.1. Data Selection

The computational dataset employed in this
study was primarily derived from field data
obtained through Cone Penetration Tests
(CPT) conducted in coastal cities of
Mazandaran Province. In addition,
supplementary datasets were extracted from
previously published and peer-reviewed
scientific  literature to  enhance the
comprehensiveness and diversity of the
training data [36,37].

6.2. Artificial Neural Network (ANN)

Artificial Neural Networks (ANNSs) are
among the most widely used machine
learning techniques due to their ability to
model complex, nonlinear relationships in
data. Inspired by the structure and function of
the human brain, an ANN is composed of
numerous interconnected processing elements
known as neurons. Each neuron receives
signals from the input layer, processes them
using an activation function, and transmits the
result to the next layer via weighted
connections.

These connections carry different weights that
determine the importance of each input. The
input signals are multiplied by these weights
and summed together along with a bias term,
then passed through activation functions in
hidden layers. This flow of information from
the input layer through hidden layers to the
output layer is referred to as forward
propagation. Conversely, during training,
errors are propagated back from the output to
adjust the weights this process is known as
backpropagation.

ANNs can learn from large volumes of data
and adapt their structure iteratively to
minimize prediction errors, thereby improving
their accuracy over time. Depending on the
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nature of the problem, different activation
functions may be applied. Once trained, the
ANN can reliably classify or predict unseen
data related to soil liquefaction [38].

6.3. Logistic Regression Method

Logistic regression is a supervised learning
algorithm and a statistical model commonly
used to estimate the probability of a binary
outcome such as liquefiable vs. nonliquefiable
conditions based on one or more independent
input variables.

The model uses a logistic (sigmoid) function
to map linear combinations of the input
features into probabilities between 0 and 1.
The logistic function is expressed as:

(13)

pP=
1+s~%

where z is a linear combination of input
variables, bias, and coefficients.

Z= fS,+f5,x, +5, 3, + . +3 %, (14)

The output value e represents the probability
of a positive class (e.g., liquefiable soil). To
optimize  prediction  performance, the
algorithm  adjusts feature weights by
minimizing a cost function that measures the
difference between predicted and actual
outcomes. The logistic regression cost
function is given by:

J(h,y)= -y log(h) — (1 — y) log(1 — k) (15)

where vy is the actual label, h is the predicted
probability, and log is the natural logarithm.
Weight optimization is typically performed
using gradient descent, and training continues
until the cost function reaches its minimum.

Once trained, the model can be used to
estimate the liquefaction potential of new
data. Model performance is evaluated using
metrics such as accuracy, precision, recall,
and the Area Under the ROC Curve (AUC-

ROC). Overall, logistic regression offers a
reliable and interpretable machine learning
approach for assessing soil liquefaction
potential, particularly when dealing with large
datasets and complex variable interactions.

6.4. Fuzzy Logic System

Fuzzy logic provides a structured framework
for handling uncertainty and imprecision in
probabilistic systems. It is particularly
effective  in  managing  input-related
uncertainties within datasets. A fuzzy
inference system (FIS) consists of three core
components: fuzzifier, inference engine, and
defuzzifier. In fuzzy logic, each input variable
IS associated with a membership function,
which graphically represents the degree of
belonging of a variable to a fuzzy set. Based
on expert judgment and data analysis,
parameters such as the number, shape, and
range of membership functions can be
defined. The fuzzifier converts crisp inputs
into fuzzy values, which are then processed
by the inference engine using a set of
predefined rules. The output is finally
translated into a crisp value through the
defuzzification process. Common types of
FIS include: (1) Mamdani-type, (2) Sugeno-
type, and (3) Tsukamoto-type fuzzy systems
[39].

7. Data Analysis

Before calculating the Liquefaction Potential
Index (LPI) in detail, a two-stage
methodological approach is recommended.
Initially, in a preliminary assessment,
theoretical indicators based on geological,
geomorphological, and hydrological data can
be used to identify liquefaction-susceptible
zones. Subsequently, Cone Penetration Test
(CPT) data can be used to assess liquefaction
resistance as a function of depth. In this study,
a dataset containing seven input features was
selected for use in different neural network
models: earthquake magnitude, total stress,
effective stress, peak ground acceleration,
cone resistance, average shear stress, and



mean grain size (D50). The output variable
was binary, representing whether a soil profile
was susceptible to liquefaction or not.

8. ROC Curve Analysis

A gradient descent algorithm was used to
iteratively update model weights until the cost
function was minimized. Once trained, the
model was applied to unseen data to predict
liquefaction potential. Performance was
assessed using accuracy, precision, recall, and
area under the ROC curve (AUC-ROC).
Among various models tested, logistic
regression emerged as a reliable and effective
method for evaluating liquefaction potential,
capable of managing large datasets and
modeling complex variable relationships.

results were visualized using Receiver
Operating Characteristic (ROC) curves. The

AUC value, ranging from 0 to 1, reflects the
discriminative power of the model—values
closer to 1 indicate better performance. ROC
curves plot sensitivity versus false positive
rate, where a diagonal line indicates 50%
random prediction accuracy. Generally, AUC
values greater than 0.7 are considered
acceptable for model validation purposes.

In this study, the logistic regression model
achieved an AUC of 0.975 on the full dataset,
followed by the artificial neural network
(AUC = 0.925) and the fuzzy logic system
(AUC = 0.71). a comparative illustration of
the ROC curves under the "ALL" dataset
condition is presented in Fig.2 and a
summary of the performance metrics for the
evaluated models, including accuracy,
precision, recall and AUC is presented in
table 2.

Table 2: Model Performance Summary Table

Model Accuracy  Precision

Recall AUC

Logistic 95.2%
Regression

96.0% 0.975

Avrtificial 91.8%
Neural
Network

0.925
93.2%

Fuzzy 81.5%
Logic
System

0.710
82.6%

AUC-ROC CURVES

ARTIFICIAL

LOGISTIC
NEURAL REGRESSION
NETWORK (ANN)

FUZZY LOGIC

Fig. 2. The figure illustrates a comparative analysis of the ROC curves obtained from various models,
based on the complete (‘All’) dataset

These results suggest that all models
performed adequately, with logistic regression
being the most accurate. ROC curves for

training, testing, and all-data scenarios across
the three models (Artificial Neural Network



(ANN), logistic regression, and fuzzy logic)
are shown in Figures 3-11.

The prediction of soil liquefaction plays a
crucial role in seismic hazard analysis. To
evaluate the effectiveness of each model in
predicting LPI, ROC curve analyses were
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Fig. 3. The ROC curve corresponding to the
train data in the artificial neural network.
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Fig. 4. The ROC curve corresponding to the
test data in the artificial neural network.

performed in TRAIN, TEST, and ALL
configurations, with results visualized in the
corresponding figures.
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Fig. 5. The ROC curve corresponding to the
ALL data in the artificial neural network.
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Fig. 6. The ROC curve corresponding to the
train data in the Logistic Regression Method
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ALL data in the Logistic Regression Method
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Fig. 9. The ROC curve corresponding to the
train data in the Logistic Regression Method
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test data in the Logistic Regression Method
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ALL data in the Logistic Regression Method

9. Discussion

The results suggest that Logistic Regression
(LR) outperforms both ANN and Fuzzy Logic
in terms of classification metrics. This may be
attributed to LR's capability in handling linear
decision boundaries with a lower risk of
overfitting. While ANN demonstrated strong
predictive power, it may have been sensitive
to parameter tuning and data imbalance.
Fuzzy Logic, although interpretable, showed
lower precision and recall, possibly due to
simplified rule-based approximations.
Comparing these findings with prior literature
reinforces the reliability of LR for binary
geotechnical classification tasks.

10. Conclusion

During liquefaction, soil loses its strength and
behaves like a fluid under seismic loading,
posing a significant threat to infrastructure
and human life. Traditionally, engineers have
relied on complex theoretical frameworks or
empirical methods to assess liquefaction
potential. However, these conventional
approaches can be time-consuming, require
extensive datasets, and may not fully capture
the complex interactions among the
influencing factors.

10

Deep learning offers a powerful alternative
for predicting soil liquefaction. These
algorithms can be trained on large datasets
that include geotechnical parameters, seismic
inputs, and historical liquefaction
occurrences. In this study, MATLAB (version
2016a) was used to develop predictive models
for liquefiable and non-liquefiable soil
conditions through machine learning-based
coding. Accuracy, precision, F1-measure, and
recall were computed for three classification
scenarios:  liquefied, non-liquefied, and
overall using an 80/20 train-test data split.

Given that the Cone Penetration Test (CPT)
provides continuous subsurface data, it plays
a key role in accurately identifying potentially
liquefiable soil layers. Three ensemble
learning-based machine learning models were
developed to assess liquefaction potential,
with emphasis placed on their performance
during both the training and testing phases, as
well as in the overall dataset.

Engineers and researchers can evaluate and
compare model performance in predicting
liquefaction sensitivity by considering the
ROC-AUC metric. As shown in Figures 3 to
11, the Area Under the Curve (AUC) provides
a quantitative measure of each classifier’s
performance. A higher AUC value indicates
better model performance, where an AUC of
1.0 represents a perfect classifier. The ROC-
AUC metric was chosen for this study as it

enables comparison across  various
classification  thresholds, making it
particularly  valuable in  geotechnical

applications where accurately identifying both
liquefied and non-liquefied states is essential.

Among the evaluated models, the logistic
regression classifier exhibited superior ROC
curve performance compared to the artificial
neural network (ANN) and fuzzy logic
models.

In conclusion, among the models evaluated,
Logistic Regression proved to be the most
accurate and stable method for liquefaction
prediction using CPT data. The study
emphasizes the practicality of integrating
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machine learning models in seismic hazard
analysis. For future research, it is
recommended to explore hybrid models, such
as ensemble learning or deep CNN
architectures. From a practical standpoint,
local governments and urban planners can
incorporate these predictive tools into early-
warning systems and zoning codes to enhance
infrastructure resilience and reduce the risks
posed by soil liquefaction in earthquake-prone
regions.

11. References

1. Galli, P., New empirical relationships between
magnitude  and distance  for liquefaction.
Tectonophysics, 2000. 324(3): p. 169-187.
https://doi.org/10.1016/S0040-1951(00)00118-9

2. Kokusho, T., Innovative earthquake soil dynamics.
2017: CRC Press.
https://doi.org/10.1201/9781315645056

3. Zhou, J., et al., Feasibility of stochastic gradient
boosting approach for evaluating seismic liquefaction
potential based on SPT and CPT case histories.
Journal of Performance of Constructed Facilities, 2019.
33(3): p. 04019024.
https://doi.org/10.1061/(ASCE)CF.1943-5509.0001292
4. Khanbabazadeh, H., Nonlinearity effect on the
dynamic behavior of the clayey basin edge.
Geomechanics and Engineering, 2024. 36(4): p. 367-
380. https://doi.org/10.12989/gae.2024.36.4.367.

5. Khanbabazadeh, H., R. lyisan, and B.Ozaslan,
Seismic behavior of the shallow clayey basins
subjected to obliguely incident wave. Geomech. Eng,
2022. 31(2): p. 183-195.
https://doi.org/10.12989/gae.2022.31.2.183

6. Khanbabazadeh, H., R. lyisan, and B. Ozaslan, 2D
seismic response of shallow sandy basins subjected to
obliquely incident waves. Soil Dynamics and
Earthquake Engineering, 2022. 153: p.107080.
https://doi.org/10.1016/j.soildyn.2021.107080

7. Matsuoka, M., et al., Evaluation of liquefaction
potential for large areas based on geomorphologic
classification. Earthquake Spectra, 2015. 31(4): p.
2375-2395. https://doi.org/10.1193/072313EQS211M
8. Bahrainy, H. and A. Bakhtiar, Manjil Earthquake of
June 20, 1990, The Lessons Learned, in Urban Design
in Seismic-Prone Regions. 2022, Springer International
Publishing: Cham. p. 49-95.
DOlhttps://doi.org/10.1007/978-3-031-08321-1

9. Uyanik, O., Soil liquefaction analysis based on sail
and earthquake parameters. Journal of Applied
Geophysics, 2020. 176: p. 104004
https://doi.org/10.1016/j.jappge0.2020.104004.

10. Ahmad, M., et al., Application of machine learning

11

algorithms for the evaluation of seismic soail
liquefaction potential. Frontiers of Structural and Civil
Engineering, 2021. 15(2): p. 490-505.
https://doi.org/10.1007/s11709-020-0669-5

11. Garcia, S., M. Romo, and E. Ovando- Shelley,
Machine learning for assessing liquefaction potential
of soils.

12. Liu, C. and J. Macedo, Machine learning- based
models for estimating liquefaction- induced building
settlements.  Soil Dynamics and  Earthquake
Engineering, 2024. 182: p. 108673.
https://doi.org/10.1016/j.soildyn.2024.108673

13. Abbasimaedeh, P., Soil liquefaction in seismic
events: pioneering predictive models using machine
learning and advanced regression techniques.
Environmental Earth Sciences, 2024. 83(7): p. 189.
https://doi.org/10.1007/s12665-024-11480-x

14. Ozsagir, M., et al., Machine learning approaches
for prediction of fine-grained soils liquefaction.
Computers and Geotechnics, 2022. 152: p. 105014.
https://doi.org/10.1016/j.compge0.2022.105014

15. Obaidullah ,S., Preliminary  Liquefaction
Susceptibility Using Different Machine Learning
Techniques. 2024, (SCEE), NUST.

16. Kumar, D., et al., A novel methodology to classify
soil liquefaction using deep learning. Geotechnical and
Geological Engineering, 2021. 39 :p. 1049-1058
https://doi.org/10.1007/s10706-020-01544-7.

17. Raja, M.N.A., T. Abdoun, and W. EIl-Sekelly,
Smart prediction of liquefaction-induced lateral
spreading. Journal of Rock Mechanics and
Geotechnical Engineering, 2024. 16(6): p. 2310-2325.
https://doi.org/10.1016/j.jrmge.2023.05.017

18. Mohammadikish, S., et al., Soil liquefaction
assessment by CPT and VS data and incomplete-fuzzy
C-means clustering. Geotechnical and Geological
Engineering, 2024. 42(3): p. 2205-2220.
https://doi.org/10.1007/s10706-023-02669-1

19. Sehmusoglu, E.H., T.F. Kurnaz, and C. Erden,
Estimation of soil liquefaction using artificial
intelligence techniques: an extended comparison
between machine and deep learning approaches.
Environmental Earth Sciences, 2025.84(5): p. 1-22.
https://doi.org/10.1007/s12665-025-12116-4

20. Niu, F., et al., Ultra-high performance concrete: A
review of its material properties and usage in shield
tunnel segment. Case Studies in Construction
Materials, 2025: p. e04194.
https://doi.org/10.1016/j.cscm.2024.04194

21. Agha Kasiri, Sh., Agha Kasiri, S., Ghazawi,M.,
Farrokhzad, F. Investigation of Sandy Soil Settlement
Due to Liquefaction Under Earthquake in PILE Group.
International Conference on Architecture, Urban
Planning, Art, Industrial Design, Construction and

Technology of Hikmat-e-Bonyan. 2025.
https://civilica.com/doc/2235759
22. Agha Kasiri, Sh.,, Emami Korandeh, M.,

Mohammadi, Gh., Taban, A. Deep Learning-Based
Fluidity Data Evaluation. International Conference on



Architecture, Urbanism, Art, Industrial Design,
Construction and Technology Hekmat-Bonyan, 2025.
https://civilica.com/doc/2235758

23. Agha Kasiri, Sh., Agha Kasiri, S., Farrokhzad, F,.
Qadawi, M. Comparison of settlement in single pile
and pile group under dynamic loading. Fourth
International  Congress of Civil Engineering,
Architecture and Urban Development, 2016.
https://civilica.com/doc/617967

24. Agha Kasiri, Sh., Farrokhzad, F., Qadawi, M.
Determination of bearing capacity and settlement of
piles in sandy soil in static and dynamic mode.
International Conference on New Horizons in Civil
Engineering, Architecture and Urban Planning and
Cultural Management of Cities, 2016.
https://civilica.com/doc/567742

25. Marzouk, 1., et al., A case study on advanced CPT
data interpretation: from stratification to soil
parameters. Geotechnical and Geological Engineering,
2024. 42(5): p. 4087-4113.
https://doi.org/10.1007/s10706-024-02774-9

26. Seed, H.B. and I.M. Idriss, Simplified procedure
for evaluating soil liquefaction potential. Journal of the
Soil Mechanics and Foundations division, 1971. 97(9):

p .1249-1273.
https://doi.org/10.1061/JSFEAQ.0001662

27. Liao, S.S. and R.V. Whitman, Overburden
correction factors for SPT in sand. Journal of

geotechnical engineering, 1986. 112(3): p. 373-377.
https://doi.org/10.1061/(ASCE)0733-
9410(1986)112:3(373)

28. Robertson, P.K. and C. Wride, Evaluating cyclic
liquefaction potential using the cone penetration test.
Canadian geotechnical journal, 1998. 35(3): p. 442-
459. https://doi.org/10.1139/t98-017

29. Robertson, P.K., Soil classification using the cone
penetration test. Canadian geotechnical journal, 1990.
27(1): p. 151-158. https://doi.org/10.1139/t90-014

12

30. ONorm, E., 1 [199 :[6Eurocode 7: Entwurf,
Berechnung und Bemessung in der Geotechnik—Teil,
1997. 1.

31. Robertson, P.K., Interpretation of cone penetration
tests—a unified approach. Canadian geotechnical
journal, 2009. 46(11): p. 1337-1355.

32. Robertson, P.K. Soil behaviour type from the
CPT: an update. in 2nd International symposium on
cone penetration testing. 2010. Cone Penetration
Testing Organizing Committee Huntington Beach.

33. Robertson, P.K., Cone penetration test (CPT)-
based soil behaviour type (SBT) classification system—
an update. Canadian Geotechnical Journal, 2016.
53(12): p. 1910-1927.

34. Robertson, P.K. and K. Cabal, Guide to cone
penetration testing for geotechnical engineering.
Signal Hill, CA: Gregg Drilling & Testing, 2015.

35. Niu, F., et al., Ultra-high performance concrete: A
review of its material properties and usage in shield
tunnel segment. Case Studies in Construction
Materials, 2025: p. e04194.

36. Boulanger, R.W. and I.M. Idriss, CPT and SPT
based liquefaction triggering procedures. Report No.
UCD/CGM.-14, 2014. 1: p. 134.

37 .Shen, M., et al., Predicting liquefaction probability
based on shear wave velocity: an update. Bulletin of
Engineering Geology and the Environment, 2016. 75:
p. 1199-1214. https://doi.org/10.1007/s10064-016-
0880-8

38. Haykin, S., Neural networks and learning
machines, 3/E. 2009: Pearson Education India

39. Ross, T.J. Fuzzy logic with engineering
applications. 2005: John Wiley & Sons.


https://doi.org/10.1061/JSFEAQ.0001662
https://doi.org/10.1061/(ASCE)0733-9410(1986)112:3(373)
https://doi.org/10.1061/(ASCE)0733-9410(1986)112:3(373)
https://doi.org/10.1139/t98-017
https://doi.org/10.1139/t90-014

