
INTERNATIONAL JOURNAL OF ADVANCED STRUCTURAL ENGINEERING (2024) 14  

  
 

1 
 

 

ORIGINAL RESEARCH 

 

Assessment of Machine Learning Models in Liquefaction Prediction with 

Emphasis on ROC Curve and AUC Index Differences 
 

Agha kasiri Sh. 1* Shahraki M.2 Agha kasiri S. 3 

 

 

Abstract: 

 

This study presents a novel approach for predicting soil liquefaction potential, a critical 

concern in geotechnical engineering. Liquefaction refers to the behavior of soil under dynamic 

loading or transient shear wave excitation, during which the soil completely loses its shear strength 

and temporarily transforms into a fluid-like state. By integrating empirical geotechnical 

relationships with advanced machine learning techniques, the research offers a modern perspective 

on evaluating the likelihood of liquefaction occurrence. The analysis is based on data derived from 

Cone Penetration Test (CPT) records. Three soft computing models were implemented: Artificial 

Neural Networks (ANN), Logistic Regression (LR), and Neuro-Fuzzy Network. Their 

performance was evaluated using Receiver Operating Characteristic (ROC) curves. Among 

the models compared, Logistic Regression demonstrated superior performance, with the 

Area Under the Curve (AUC) from the “All” dataset reaching approximately 0.975, 

indicating high reliability in classification accuracy. In this study, the logistic regression 

model achieved an AUC of 0.975 on the full dataset, followed by the artificial neural 

network (AUC = 0.925) and the fuzzy logic system (AUC = 0.71). 
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1.Introduction

Liquefaction is one of the most critical 

phenomena influencing the instability of 

buildings and infrastructure during 

earthquakes, making it a key focus in seismic 

research and foundation design. Nearly every 

major earthquake results in widespread 

ground deformations due to soil liquefaction, 

leading to significant and often catastrophic 

damage to both soils and foundations. The 

characteristics of liquefaction can vary 

depending on geometry, soil type, and local 

conditions, influenced by several factors 

including unusual wave propagation, seismic 

amplification, and geological conditions such 

as grain distribution, soil density, and 

groundwater level [1]. 

Liquefaction is classified as a form of ground 

failure typically triggered by strong ground 

shaking during earthquakes. The first widely 

documented cases of severe liquefaction 

damage occurred during the 1964 Niigata 

earthquake in Japan and the 1964 Alaska 

earthquake in the United States [2]. 

Earthquakes have consistently attracted the 

attention of civil and geotechnical engineers, 

especially due to their role in triggering 

liquefaction [3]. Numerous researchers have 

studied the seismic behavior of soils and 

structures over the past decades [4-6]. 

Following the extensive liquefaction events 

observed in the 1964 Niigata and Alaska 

earthquakes, geotechnical researchers 

increasingly focused on understanding this 

phenomenon [7]. In Iran, liquefaction 

zonation studies commenced after the 

destructive Manjil earthquake, led by the 

International Institute of Earthquake 

Engineering and Seismology. The outcome 

was a national-scale liquefaction hazard map 

at 1:1,000,000 scale [8]. 

Over the past four decades, significant 

progress has been made in understanding the 

mechanisms and influencing factors of soil 

liquefaction. Initially, most research focused 

on clean sands, as it was believed that 

liquefaction occurred only in such soils and 

that coarse- or fine-grained soils lacked the 

capacity to generate excess pore water 

pressure, which is the main cause of 

liquefaction. However, with the occurrence of 

recent earthquakes and observations of 

liquefaction in a wider variety of soils, 

researchers have expanded their studies to 

identify the influencing factors in both fine- 

and coarse-grained soils [9]. 

Ahmad et al. (2021) evaluated the 

performance of four machine learning (ML) 

algorithms for earthquake-induced 

liquefaction assessment using cone 

penetration test (CPT) data and field case 

histories [10]. García et al. (2011) developed 

a large database combining CPT, SPT, and Vs 

measurements with historical earthquake 

liquefaction performance records. They 

applied: (1) an artificial neural network 

(ANN) to map key index features to 

resistance parameters, (2) a fuzzy neural 

system for estimating liquefaction occurrence 

and developing a multidimensional fuzzy 

liquefaction index, and (3) a regression tree 

for generating or supplementing seismic 

loading information [11]. 

In a 2024 study, Liu et al. developed machine 

learning models to estimate building 

settlements induced by liquefaction. Five ML 

models ridge regression, partial least squares 

regression, random forest, gradient boosting 

decision tree, and support vector regression 

were trained on a database generated through 

numerical simulations involving various 

building soil profiles subjected to ground 

motions of different intensity measures [12]. 

Abbasimaedeh (2024) investigated 

liquefaction potential in seismic events using 

leading predictive models based on machine 

learning techniques such as logistic 

regression, decision trees, and support vector 

machines [13]. 

Ozsagir et al. (2022) evaluated machine 

learning approaches for predicting 

liquefaction potential in fine-grained soils 

using seven ML algorithms, including logistic 
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regression, artificial neural networks, decision 

trees, support vector machines, k-nearest 

neighbors, stochastic gradient descent, and 

random forest [14]. Obaidullah (2024) also 

applied four ML models logistic regression, 

support vector machine, decision tree, and 

Artificial Neural Networks to field-based 

liquefaction prediction, finding decision trees 

to be the most effective algorithm [15]. 

Kumar et al. (2021) proposed the application 

of deep learning algorithms for the 

assessment of soil liquefaction using Cone 

Penetration Test (CPT) data [16]. In a similar 

line of research, Raja et al. (2024) developed 

intelligent prediction models for lateral 

spreading caused by liquefaction, utilizing 

techniques such as Genetic Algorithms (GA), 

Artificial Neural Networks (ANN), and k-

Nearest Neighbors (KNN) [17]. Mohammadi 

Kish et al. (2023) applied a fuzzy-incomplete 

clustering approach for liquefaction 

evaluation based on CPT and shear wave 

velocity (Vs) measurements [18]. More 

recently, Şehmusoğ et al. (2025) implemented 

various artificial intelligence methods such as 

logistic regression and support vector 

machines for liquefaction prediction. Their 

findings highlighted the potential of machine 

learning tools in mitigating seismic risks 

associated with liquefiable soils [19]. 

In light of the increasing demand for reliable 

and rapid prediction of liquefaction potential, 

especially in urban areas prone to seismic 

activity, this study aims to evaluate and 

compare the performance of three soft 

computing models—Artificial Neural 

Networks (ANN), Logistic Regression (LR), 

and Neuro-Fuzzy systems. The integration of 

CPT-based data and advanced classification 

techniques aims to provide a robust 

framework for identifying liquefiable soils, 

contributing to safer geotechnical designs and 

informed urban planning. The structure of the 

paper is organized as follows: Section 3 

presents CPT testing fundamentals, Section 4 

discusses liquefaction hazard calculations, 

Section 4 elaborates on ML-based modeling 

approaches, and Sections 5–7 present model 

evaluation and performance analysis. 

2. Literature Review 

 

Numerous studies have been conducted to 

assess the effectiveness of machine learning 

techniques in predicting soil liquefaction. For 

example, Ahmad et al. (2021) applied 

multiple ML algorithms using CPT data and 

found that decision tree models had relatively 

high accuracy[10]. Ozsagir et al. (2022) 

implemented seven ML models for fine-

grained soils, among which LR and ANN 

showed promising results[14]. Liu et al. 

(2024) focused on liquefaction-induced 

building settlement prediction using gradient 

boosting and random forest models[12]. In 

another study, Obaidullah (2024) concluded 

that decision trees outperformed SVMs and 

logistic regression in field-based 

prediction[15]. These comparative insights 

establish the foundation for this study and 

highlight the significance of model evaluation 

using ROC and AUC indices. 

 

3. Cone Penetration Testing (CPT) 

 

Since its introduction in geotechnical 

engineering, the Cone Penetration Test (CPT) 

has been widely employed in numerous 

applications such as bearing capacity 

estimation, shallow and deep foundation 

design, and liquefaction resistance assessment 

[20–24]. CPT allows for the efficient 

estimation of key soil parameters. In this 

context, Marzouk et al. (2024) provided a 

detailed review of the Standard Penetration 

Test (SPT) and its integration with deep 

learning techniques in civil engineering 

projects[25]. 

4. Calculation of Liquefaction Hazard 

 

Determining the liquefaction resistance of soil 

based on analysis results requires the 

calculation or estimation of two variables. 

The first parameter is the Cyclic Stress Ratio 

(CSR), which indicates the level of cyclic 

loading that may be caused by an earthquake, 

and the second parameter is the Cyclic 

Resistance Ratio (CRR), which indicates the 
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soil's resistance to liquefaction. The cyclic 

stress ratio induced during an earthquake 

(CSR) is defined by Seed and Idriss (1971) as 

follows [26]: 

 
CSR = 0.65 * (amax / g) * (σv / σ'v) * rd (1) 

 

where amax is the peak horizontal ground 

acceleration during the earthquake, g is the 

gravitational acceleration, σv and σ'v are the 

total and effective vertical stresses, 

respectively, and rd is the stress reduction 

coefficient. Average values for rd based on 

depth are defined by Liao and Whitman 

(1986) for engineering applications [27]: 

 
rd = [1.0 - 0.00765z , for z ≤ 9.15m 

      1.174 - 0.0267z , for 9.15 < z ≤ 23m] 

(2) 

z is the depth (in meters). The Cyclic 

Resistance Ratio (CRR) is also defined by 

Robertson and Ride (1998) [28] as follows. In 

this method, it is necessary to adjust the cone 

tip resistance corrected for overburden stress 

(qc1N) when determining liquefaction 

resistance. The parameter qc1N is normalized 

using the overburden stress correction factor 

(CQ) as shown in the equations below: 

 
qc1N = CN * (qc / Pa) * (Pa / σ'v)^n (3) 

CQ = (Pa / σ'v)^n (4) 

 

where qc is the measured cone tip resistance, 

CQ is the overburden stress correction factor, 

Pa is the reference pressure (e.g., Pa = 100 

kPa if qc is in kPa or Pa = 0.1 MPa if qc is in 

MPa), and n is a coefficient that varies with 

soil type and is usually 0.5. The maximum 

value of CQ = 2 generally applies to shallow 

CPT data. The normalized cone resistance 

qc1N is dimensionless. 

Robertson and Wride (1998) indicated [28] 

that the CPT friction ratio increases with 

increasing fines content and soil plasticity. 

The granular characteristics of sandy soils can 

be directly estimated from CPT data using 

soil behavior type charts, such as the one 

shown in Figure 1 (Robertson, 1990) [29]. 

Also, the Soil Behavior Type Index (Ic) can 

be defined as follows [29]: 

 
Ic = sqrt[ (3.47 - log Q)^2 + (log F + 1.22)^2 ] (5) 

Q = (qc1N / Pa) (6) 

F = (fs / (qc - σv)) * 100% (7) 

 

where Q is the normalized tip resistance, F is 

the normalized friction ratio, n is typically 

1.0, and σv and σ'v are the total and effective 

overburden stresses, respectively.  

The boundaries of soil behavior type based on 

the Ic index are shown in Table 1. 

 
Table 1: Soil Behavior Type Boundaries [29] 

Classification SBT (Figure 1)     

Gravelly to Dense Sand 7 

Sand: Clean Sand to Silty 

Sand 

6 

Sand Mixtures: Silty Sand 

to Sandy Silt 

5 

Silt Mixtures: Clayey Silt 

to Silty Clay 

4 

Clay: Silty Clay to Clay 3 

Organic Soils 2   

 

 
Fig. 1. Normalized CPT soil behavior type 

diagram, as proposed by Robertson in 

1990[29]. 
 The proposed equation to obtain the 

equivalent clean-sand normalized CPT 

resistance qc1Ncs as a function of measured 

resistance, soil characteristics, is as follows: 

 
qc1Ncs = qc1N * Kc (8) 

Here, Kc is the correction factor representing 

the soil’s grain structure, defined by equations 

9 and 10: 

 
If Ic ≤ 1.64, then Kc = 1.0 (9) 

If Ic > 1.64, then Kc = 5.581 * Ic^3 - 0.403 * 

Ic^4 - 21.63 

(10) 
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If Ic > 2.6, data should be directly plotted on 

Robertson’s chart assuming qc1Ncs=Q. 

If Ic ≤ 2.6, the power for Q calculation should 

be adjusted to n = 0.5 (i.e., calculate qc1N 

using Eq. (3)), then recalculate Ic based on 

qc1N and F. If the recalculated Ic remains 

below 2.6, the data should be plotted on the 

Robertson chart using (n=0.5). However, if 

the recalculated Ic fluctuates around 2.6, a 

value of (n=0.75) should be used for 

calculating qc1Ncs. Equations 5, 8, 9, and 10 

can be combined to directly estimate the 

clean-sand equivalent normalized cone 

resistance qc1Ncs from CPT data. Then, CRR 

for an earthquake magnitude (M=7.5) can be 

estimated using the simplified equations 

below: 

 
If 50 ≤ qc1Ncs < 160, CRR = 93 + 0.08 * 

qc1Ncs 

(11) 

If qc1Ncs < 50, CRR = 0.833 * qc1Ncs / 100 

 

(12) 

 
 

5. Subsurface Layer Identification Using 

CPT and Deep Learning Techniques 

 

Developing a model to describe the type, 

extent, and geotechnical properties of 

subsurface soil layers remains a fundamental 

task in geotechnical investigations. 

Traditionally, this modeling has relied on 

interpretations of field exploration data, such 

as trenches and boreholes, often constrained 

by the minimum number of tests required by 

relevant standards [30]. This process demands 

both broad expertise in subsurface data 

interpretation and region-specific knowledge. 

In many cases, such interpretations are 

supported only partially by empirical tools 

such as the Soil Behavior Type (SBT) charts 

proposed by Robertson or by analytical 

correlations [31-34]. Consequently, CPT-

based interpretation for machine learning 

modeling often depends on the subjective 

judgment of engineers. 

In recent years, numerous machine learning 

techniques have been proposed to address 

various geotechnical problems, including 

liquefaction assessment [22], pile settlement 

prediction [21], and tunnel boring 

performance forecasting [35]. 

 

6. Selection of Data and Machine Learning 

Methods 

 

6.1. Data Selection 

 

The computational dataset employed in this 

study was primarily derived from field data 

obtained through Cone Penetration Tests 

(CPT) conducted in coastal cities of 

Mazandaran Province. In addition, 

supplementary datasets were extracted from 

previously published and peer-reviewed 

scientific literature to enhance the 

comprehensiveness and diversity of the 

training data [36,37]. 

 

6.2. Artificial Neural Network (ANN) 

 

Artificial Neural Networks (ANNs) are 

among the most widely used machine 

learning techniques due to their ability to 

model complex, nonlinear relationships in 

data. Inspired by the structure and function of 

the human brain, an ANN is composed of 

numerous interconnected processing elements 

known as neurons. Each neuron receives 

signals from the input layer, processes them 

using an activation function, and transmits the 

result to the next layer via weighted 

connections. 

These connections carry different weights that 

determine the importance of each input. The 

input signals are multiplied by these weights 

and summed together along with a bias term, 

then passed through activation functions in 

hidden layers. This flow of information from 

the input layer through hidden layers to the 

output layer is referred to as forward 

propagation. Conversely, during training, 

errors are propagated back from the output to 

adjust the weights this process is known as 

backpropagation. 

ANNs can learn from large volumes of data 

and adapt their structure iteratively to 

minimize prediction errors, thereby improving 

their accuracy over time. Depending on the 
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nature of the problem, different activation 

functions may be applied. Once trained, the 

ANN can reliably classify or predict unseen 

data related to soil liquefaction [38]. 

 

6.3. Logistic Regression Method 

 

Logistic regression is a supervised learning 

algorithm and a statistical model commonly 

used to estimate the probability of a binary 

outcome such as liquefiable vs. nonliquefiable 

conditions based on one or more independent 

input variables. 

 

The model uses a logistic (sigmoid) function 

to map linear combinations of the input 

features into probabilities between 0 and 1. 

The logistic function is expressed as: 

 
(13) 

P= 

 

where z is a linear combination of input 

variables, bias, and coefficients. 

 
(14)  + …+ + +Z=   

 

The output value e represents the probability 

of a positive class (e.g., liquefiable soil). To 

optimize prediction performance, the 

algorithm adjusts feature weights by 

minimizing a cost function that measures the 

difference between predicted and actual 

outcomes. The logistic regression cost 

function is given by: 

 
(15)  y -J(h,y)= 

  

 

where y is the actual label, h is the predicted 

probability, and log is the natural logarithm. 

Weight optimization is typically performed 

using gradient descent, and training continues 

until the cost function reaches its minimum. 

 

Once trained, the model can be used to 

estimate the liquefaction potential of new 

data. Model performance is evaluated using 

metrics such as accuracy, precision, recall, 

and the Area Under the ROC Curve (AUC-

ROC). Overall, logistic regression offers a 

reliable and interpretable machine learning 

approach for assessing soil liquefaction 

potential, particularly when dealing with large 

datasets and complex variable interactions. 

 

6.4. Fuzzy Logic System 

 

Fuzzy logic provides a structured framework 

for handling uncertainty and imprecision in 

probabilistic systems. It is particularly 

effective in managing input-related 

uncertainties within datasets. A fuzzy 

inference system (FIS) consists of three core 

components: fuzzifier, inference engine, and 

defuzzifier. In fuzzy logic, each input variable 

is associated with a membership function, 

which graphically represents the degree of 

belonging of a variable to a fuzzy set. Based 

on expert judgment and data analysis, 

parameters such as the number, shape, and 

range of membership functions can be 

defined. The fuzzifier converts crisp inputs 

into fuzzy values, which are then processed 

by the inference engine using a set of 

predefined rules. The output is finally 

translated into a crisp value through the 

defuzzification process. Common types of 

FIS include: (1) Mamdani-type, (2) Sugeno-

type, and (3) Tsukamoto-type fuzzy systems 

[39]. 

 

7. Data Analysis 

 

Before calculating the Liquefaction Potential 

Index (LPI) in detail, a two-stage 

methodological approach is recommended. 

Initially, in a preliminary assessment, 

theoretical indicators based on geological, 

geomorphological, and hydrological data can 

be used to identify liquefaction-susceptible 

zones. Subsequently, Cone Penetration Test 

(CPT) data can be used to assess liquefaction 

resistance as a function of depth. In this study, 

a dataset containing seven input features was 

selected for use in different neural network 

models: earthquake magnitude, total stress, 

effective stress, peak ground acceleration, 

cone resistance, average shear stress, and 
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mean grain size (D50). The output variable 

was binary, representing whether a soil profile 

was susceptible to liquefaction or not. 

 

8. ROC Curve Analysis 

 

A gradient descent algorithm was used to 

iteratively update model weights until the cost 

function was minimized. Once trained, the 

model was applied to unseen data to predict 

liquefaction potential. Performance was 

assessed using accuracy, precision, recall, and 

area under the ROC curve (AUC-ROC). 

Among various models tested, logistic 

regression emerged as a reliable and effective 

method for evaluating liquefaction potential, 

capable of managing large datasets and 

modeling complex variable relationships. 

results were visualized using Receiver 

Operating Characteristic (ROC) curves. The 

AUC value, ranging from 0 to 1, reflects the 

discriminative power of the model—values 

closer to 1 indicate better performance. ROC 

curves plot sensitivity versus false positive 

rate, where a diagonal line indicates 50% 

random prediction accuracy. Generally, AUC 

values greater than 0.7 are considered 

acceptable for model validation purposes. 

In this study, the logistic regression model 

achieved an AUC of 0.975 on the full dataset, 

followed by the artificial neural network 

(AUC = 0.925) and the fuzzy logic system 

(AUC = 0.71). a comparative illustration of 

the ROC curves under the "ALL" dataset 

condition is presented in Fig.2 and  a 

summary of the performance metrics for the 

evaluated models, including  accuracy, 

precision, recall and AUC is presented in 

table 2. 

 
Table 2: Model Performance Summary Table 

Model  Accuracy  Precision Recall AUC 

Logistic 

Regression 

95.2% 93.5% 
96.0% 

0.975 

Artificial 

Neural 

Network 

91.8% 90.1% 

93.2% 

0.925 

Fuzzy 

Logic 

System 

81.5% 79.8% 
82.6% 

0.710 

 

  

 
Fig. 2. The figure illustrates a comparative analysis of the ROC curves obtained from various models, 

based on the complete (‘All’) dataset 

These results suggest that all models 

performed adequately, with logistic regression 

being the most accurate. ROC curves for 

training, testing, and all-data scenarios across 

the three models (Artificial Neural Network 
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(ANN), logistic regression, and fuzzy logic) 

are shown in Figures 3-11. 

The prediction of soil liquefaction plays a 

crucial role in seismic hazard analysis. To 

evaluate the effectiveness of each model in 

predicting LPI, ROC curve analyses were 

performed in TRAIN, TEST, and ALL 

configurations, with results visualized in the 

corresponding figures. 
 

 

 
Fig. 3. The ROC curve corresponding to the 

train data in the artificial neural network.  

 
Fig. 4. The ROC curve corresponding to the 

test data in the artificial neural network. 

 

 
Fig. 5. The ROC curve corresponding to the 

ALL data in the artificial neural network. 

 
Fig. 6. The ROC curve corresponding to the 

train data in the Logistic Regression Method 
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Fig. 7. The ROC curve corresponding to the 

test data in the Logistic Regression Method 

 

 
Fig. 8. The ROC curve corresponding to the 

ALL data in the Logistic Regression Method 

 
Fig. 9. The ROC curve corresponding to the 

train data in the Logistic Regression Method 

 

 
Fig. 10. The ROC curve corresponding to the 

test data in the Logistic Regression Method 
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Fig. 11. The ROC curve corresponding to the 

ALL data in the Logistic Regression Method 

9. Discussion  

 

The results suggest that Logistic Regression 

(LR) outperforms both ANN and Fuzzy Logic 

in terms of classification metrics. This may be 

attributed to LR's capability in handling linear 

decision boundaries with a lower risk of 

overfitting. While ANN demonstrated strong 

predictive power, it may have been sensitive 

to parameter tuning and data imbalance. 

Fuzzy Logic, although interpretable, showed 

lower precision and recall, possibly due to 

simplified rule-based approximations. 

Comparing these findings with prior literature 

reinforces the reliability of LR for binary 

geotechnical classification tasks. 

 

10. Conclusion 

During liquefaction, soil loses its strength and 

behaves like a fluid under seismic loading, 

posing a significant threat to infrastructure 

and human life. Traditionally, engineers have 

relied on complex theoretical frameworks or 

empirical methods to assess liquefaction 

potential. However, these conventional 

approaches can be time-consuming, require 

extensive datasets, and may not fully capture 

the complex interactions among the 

influencing factors. 

Deep learning offers a powerful alternative 

for predicting soil liquefaction. These 

algorithms can be trained on large datasets 

that include geotechnical parameters, seismic 

inputs, and historical liquefaction 

occurrences. In this study, MATLAB (version 

2016a) was used to develop predictive models 

for liquefiable and non-liquefiable soil 

conditions through machine learning-based 

coding. Accuracy, precision, F1-measure, and 

recall were computed for three classification 

scenarios: liquefied, non-liquefied, and 

overall using an 80/20 train-test data split. 

Given that the Cone Penetration Test (CPT) 

provides continuous subsurface data, it plays 

a key role in accurately identifying potentially 

liquefiable soil layers. Three ensemble 

learning-based machine learning models were 

developed to assess liquefaction potential, 

with emphasis placed on their performance 

during both the training and testing phases, as 

well as in the overall dataset. 

Engineers and researchers can evaluate and 

compare model performance in predicting 

liquefaction sensitivity by considering the 

ROC-AUC metric. As shown in Figures 3 to 

11, the Area Under the Curve (AUC) provides 

a quantitative measure of each classifier’s 

performance. A higher AUC value indicates 

better model performance, where an AUC of 

1.0 represents a perfect classifier. The ROC-

AUC metric was chosen for this study as it 

enables comparison across various 

classification thresholds, making it 

particularly valuable in geotechnical 

applications where accurately identifying both 

liquefied and non-liquefied states is essential. 

Among the evaluated models, the logistic 

regression classifier exhibited superior ROC 

curve performance compared to the artificial 

neural network (ANN) and fuzzy logic 

models. 

In conclusion, among the models evaluated, 

Logistic Regression proved to be the most 

accurate and stable method for liquefaction 

prediction using CPT data. The study 

emphasizes the practicality of integrating 
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machine learning models in seismic hazard 

analysis. For future research, it is 

recommended to explore hybrid models, such 

as ensemble learning or deep CNN 

architectures. From a practical standpoint, 

local governments and urban planners can 

incorporate these predictive tools into early-

warning systems and zoning codes to enhance 

infrastructure resilience and reduce the risks 

posed by soil liquefaction in earthquake-prone 

regions. 
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