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Abstract. This study proposes a hybrid framework for automated glaucoma detection and classification from reti-
nal fundus images, leveraging an Adaptive Neuro-Fuzzy Inference System (ANFIS) optimized via a novel Modified
Cuckoo Search (MCS) algorithm, designed to enhance convergence and accuracy in fuzzy rule training. Fundus
images from the publicly available RIGA dataset were preprocessed to isolate the optic disc and cup using a Gabor
wavelet-based filtering method applied to the green channel, which offers superior vascular contrast. Morphological
parameters, specifically the Cup-to-Disc Ratio (CDR) and Rim-to-Disc Ratio (RDR), were extracted to form a
discriminative feature set. An ANFIS model was then trained to classify images as glaucomatous or healthy. Opti-
mization of ANFIS membership function parameters was performed using both Particle Swarm Optimization (PSO)
and the proposed MCS algorithm for comparison. Model performance was evaluated using Root Mean Square Error
(RMSE), Mean Squared Error (MSE), regression coefficient (R), and area under the ROC curve (AUC). The MCS-
optimized ANFIS outperformed the PSO-based model, achieving a lower RMSE of 0.0009963 (vs. 0.001723) and a
higher test-phase regression coefficient of R = 0.9832 (vs. R = 0.4811). This corresponds to a 42.15% reduction in
RMSE and a 104.4% relative improvement in R, demonstrating the significance of the MCS optimizer in enhancing
model accuracy. The model demonstrated a high AUC of 0.90 for vessel segmentation and maintained robust clas-
sification accuracy across a 70 : 30 train-test split on 195 annotated fundus images. The proposed MCS-optimized
ANFIS framework offers a reliable and interpretable solution for early glaucoma detection. Its superior performance
in both segmentation and classification tasks highlights its potential for integration into clinical decision-support
systems for ophthalmic screening.

AMS Subject Classification 2020: 03B52; 68W50; 62J86
Keywords and Phrases: Glaucoma Detection, Fundus Image Classification, Gabor Filter, Adaptive Neuro-Fuzzy
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1 Introduction

Glaucoma is a neurodegenerative disorder characterized by progressive loss of retinal ganglion cells and their
axons, leading to irreversible vision impairment if left untreated. Vision loss in glaucoma arises from damage
to the optic nerve, which functions much like an electrical cable containing over one million fibers that
transmit visual information to the brain. Although elevated intraocular pressure (IOP) is a major risk factor
in glaucoma pathogenesis, it is neither necessary nor sufficient for diagnosis in every case; nonetheless, it
remains a primary driver of disease progression. In the United States, glaucoma is the second leading cause
of blindness, and it manifests in several clinical subtypes, each with distinct signs and symptoms [1].
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Accurate detection of glaucomatous structural changes presents one of the greatest challenges in current
diagnostic practice. Common approaches include direct IOP measurement and morphometric analysis of
the optic disc and cup from fundus images. Fundus photography, a noninvasive and cost effective imaging
modality, has become widely adopted for ophthalmic screening and monitoring. It enables visualization not
only of the optic disc (OD) and optic cup (OC), but also of macular contours, foveal morphology, and vascular
abnormalitiessuch as microaneurysms, hemorrhages, exudates, and pigmentary changesthat may accompany
or mimic glaucomatous pathology [2]. As a rapid, safe, and readily accepted test by clinicians, fundus imaging
serves as the backbone of many computer aided diagnostic (CAD) systems designed to automatically flag
suspicious cases and reduce false negatives or misdiagnoses [3].

Extensive prior research on optic disc detection and segmentation in retinal fundus images has primarily
focused on two salient cues: pixel intensity and vascular convergence. Early approaches assumed that the
optic disc corresponds to the brightest region of the image and often exploited the green channelrichest in
vessel contrastto localize its center [4, 5]. While straightforward, these approaches are susceptible to con-
founding factors (e.g., retinal exudates, uneven illumination), which can generate falsebright regions and lead
to mislocalization. To overcome this limitation, subsequent techniques have incorporated vesselconvergence
informationidentifying the point at which retinal vessels radiate outwardto complement intensity cues and
improve robustness and accuracy [4, 6].

Once the optic disc is approximately localized, segmentation methods generally follow one of two strate-
gies. The first strategy performs a two-step process: it extracts a candidate region of interest around the
disc, then refines the boundary with local segmentation (e.g., active contours or region-growing) within that
window. The second strategy bypasses prior localization altogether, applying pixel-wise segmentation across
the entire fundus image to simultaneously detect all disc boundaries [4, 7]. Classical implementations in
both categories have relied on combinations of thresholding, spatial filters, and mathematical transformssuch
as the Fourier transform for frequency analysis or the Hough transform for circular boundary detectionto
delineate disc margins [8, 9, 10].

With the advent of machine learningand especially deep learningthe accuracy and generalizability of
detection and segmentation models have increased dramatically. Artificial neural networks (ANNs) [11],
convolutional neural networks (CNNs) [12, 13, 14], and more recent architectures such as U-Net [15] have
been widely adopted. These deep models leverage multiscale feature extraction and non linear representation
learning from large datasets to achieve precise delineation of both the optic disc and optic cup. Hybrid ap-
proaches that combine traditional classifiers (e.g., support vector machines) with deep feature representations
have also yielded competitive performance in several studies.

Despite the significant progress made by deep learning modelsparticularly CNNs and vision transformersin
the field of glaucoma detection, several limitations remain unaddressed. A recent systematic review by
Meedeniya et al. [16] highlights key challenges in current approaches, including the need for large annotated
datasets, high computational demands, limited interpretability, and reduced robustness when applied to real-
world clinical images with variable quality. While these models demonstrate high accuracy under controlled
conditions, their black-box nature and sensitivity to data shifts present barriers to clinical translation.

Unlike deep learning models such as CNNs and U-Net, which often require large annotated datasets and
are prone to overfitting on small or imbalanced data [16], Adaptive Neuro-Fuzzy Inference System (ANFIS)
operates effectively with smaller training sets and delivers rule-based outputs that are easier to interpret [17].
While CNN-based models offer powerful end-to-end learning capabilities, their black-box nature and sensitiv-
ity to variations in image quality can hinder trust and generalizability in real-world clinical environments. In
contrast, ANFIS provides a transparent and explainable framework with lower computational overhead. This
makes it especially suitable for medical applicationssuch as glaucoma detectionwhere model interpretability
and stability under variable imaging conditions are critical.

To overcome these issues, the present study introduces a hybrid framework based on ANFIS optimized by a
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Modified Cuckoo Search (MCS) algorithm. By combining the transparency and rule-based reasoning of fuzzy
logic with the adaptability of neuro-inference and metaheuristic optimization, our method enables robust clas-
sification using interpretable featuresnamely, the cup-to-disc ratio (CDR) and rim-to-disc ratio (RDR)derived
from Gabor-filtered vessel segmentation. This hybrid approach aims to deliver clinically meaningful, com-
putationally efficient, and generalizable performance in glaucoma detection without reliance on large-scale
deep models. Given the inherent variability in fundus images due to patient-specific anatomical differences
and acquisition inconsistencies, the integration of a metaheuristically optimized ANFIS framework allows for
dynamic adjustment of membership functions and improved generalization across diverse cases, enhancing
segmentation robustness in clinical settings.

All experiments are conducted in the MATLAB environment, and the proposed ANFIS MCS framework
is evaluated both numericallyusing metrics such as Root Mean Square Error (RMSE), accuracy, regression
coefficient, and standard deviationand graphically, through convergence and response surface analyses. We
also benchmark our results against traditional optimization trained ANFIS and Particle Swarm Optimization
(PSO) trained ANFIS, comparing final objective function values, convergence speed, computational efficiency,
and stability across multiple algorithmic runs. The outcomes demonstrate that our optimized ANFIS model
attains superior diagnostic accuracy and robustness, highlighting its potential as a decision support tool for
early glaucoma detection in routine clinical practice.

Based on the identified limitations in existing methods, especially under variable clinical imaging condi-
tions, this study addresses the following research questions:

1. Can a hybrid ANFIS-based framework optimized using a metaheuristic algorithm (MCS) provide ac-
curate and robust classification of glaucomatous fundus images under diverse conditions?

2. How effective is Gabor wavelet-based vessel and edge segmentation in enhancing feature representation
for glaucoma diagnosis?

3. Does the proposed MCS-optimized ANFIS significantly outperform conventional optimization methods
such as PSO in terms of regression accuracy, error minimization, and convergence stability?

To answer these questions, we developed a hybrid system integrating Gabor-based preprocessing and vessel
detection with a neuro-fuzzy classifier, trained using both PSO and our modified cuckoo search method. The
system’s performance was evaluated comprehensively and benchmarked across multiple metrics.

2 Related Work

Automated glaucoma detection from retinal fundus images has been addressed through three main strate-
gies: (i) segmentation-only models, (ii) classification-only approaches, and (iii) integrated segmentation-
classification pipelines.

Segmentation-only methods focus on delineating the optic disc (OD), optic cup (OC), and vessel structures
as a basis for downstream analysis. For instance, Shyamalee and Meedeniya [18] proposed an attention-based
U-Net to segment OD and OC regions, showing improved boundary accuracy. Similarly, methods based on
thresholding, Hough/Fourier transforms, or vessel convergence have been used to localize optic structures
[19, 20, 21].

Classification-only models bypass segmentation and predict glaucoma labels directly from fundus images.
Shyamalee et al. [22] employed a CNN trained on labeled data, achieving acceptable accuracy but lacking
anatomical interpretability. Deep classifiers like ResNet, DenseNet, and VGG have also been explored in
recent works for end-to-end classification [23, 24].

Segmentation followed by classification is a more interpretable approach that extracts anatomical or
morphological features (e.g., Cup-to-Disc RatioCDR) for diagnostic decisions. Shyamalee and Meedeniya
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[25] applied a two-stage framework combining segmentation and machine learning classification. Similarly,
several studies extract CDR and vessel-based features from OD/OC regions before applying classifiers like
SVM, ANN, or decision trees [26, 27].

While deep models show strong performance, they often act as ”black boxes” and require large annotated
datasets. Moreover, their sensitivity to image quality and lack of explicit rule-based reasoning limit trust in
clinical practice.

Our proposed method addresses these gaps by combining interpretable fuzzy logic (ANFIS) with optimized
rule learning through Modified Cuckoo Search. By leveraging Gabor-based segmentation and extracting ro-
bust structural features (CDR, RDR), our framework achieves high accuracy, fast convergence, and enhanced
generalization, as demonstrated in comparative evaluations with PSO-trained models.

3 Methods

The workflow of our proposed glaucoma detection pipeline comprises three sequential stages: image prepro-
cessing, feature extraction, and ANFIS based classification.

3.1 Image Preprocessing

3.1.1 Fundus Image Database

We utilized a publicly available dataset of retinal fundus images collected from healthy volunteers and glau-
coma patients [28]. These color images serve as the raw input for our method, wherein the optic disctypically
the brightest regionprovides an initial cue for glaucoma screening.

figures/

3.1.2 RGB to Grayscale Conversion

To simplify downstream analysis and reduce computational overhead, each RGB fundus image is converted to
a single channel grayscale representation. Although this step discards chrominance information, it preserves
the essential luminance contrast needed to delineate vascular and structural features (e.g., optic disc, cup,
vessels). A sample grayscale output is illustrated in Figure 1.

Figure 1: An example of RGB to grayscale image conversion: (a) original RGB image, (b) grayscale-
converted image
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3.2 Feature Extraction

3.2.1 Gabor Wavelet Filtering

We extract multiscale, multi orientation texture features using a 2D Gabor wavelet bank. Although the fundus
images are initially converted to grayscale to facilitate certain preprocessing operations, the Gabor wavelet-
based filtering for vessel and edge detection is applied directly to the green channel of the original RGB image,
not to the grayscale version. This choice is based on the fact that the green channel in fundus images typically
exhibits the highest contrast for retinal vessels and optic disc boundaries, making it optimal for accurate
segmentation. Using the green channel preserves critical structural details that may be diminished during
grayscale conversion, thereby enhancing the performance of subsequent feature extraction and classification
steps.

Mathematically, the continuous Gabor wavelet transform of an image f ∈ L2 is defined as

Tψ(b, θ, a) = C
−1/2
ψ · 1

a

∫
ψ∗ (a−1r−θ(x− b)

)
f(x) d2x (1)

where b is the translation vector, θ the rotation angle, a the scale parameter, and ψ the complex Gabor
kernel. We sample θ from 0◦ to 170◦ in 10◦ increments and record the maximum magnitude response,

Mψ(b, a) = max
θ

|Tψ(b, θ, a)| (2)

Each pixel is thus represented by a feature vector of Gabor magnitudes across scales, which effectively
highlights local vessel structures against background noise. We normalize these feature vectors to zero mean
and unit variance:

v̂i =
vi − µi
σi

(3)

where µi and σi are the mean and standard deviation of feature vi over the dataset. We adopted Gabor
filters over other feature extraction techniques (such as standard wavelets or edge detectors) because of their
superior joint localization in both spatial and frequency domains. This makes them particularly effective for
enhancing oriented structures like blood vessels, which are critical for detecting optic disc and cup boundaries.
Gabor filters also provide robustness against intensity variations and background clutter in retinal images,
improving the quality of downstream segmentation and classification tasks.

3.2.2 Optic Disc and Cup Segmentation

Following Gabor filtering, we localize and segment the optic disc (OD) and optic cup (OC) using an edge
detectionbased approach on the red channel, which provides maximal contrast for disc boundaries [29]. A
400400 pixel region centered on the OD is cropped and submitted to a Prewitt based gradient operator in
MATLAB to detect the disc margin. The Prewitt operator was selected for its simplicity and effectiveness in
capturing prominent horizontal and vertical gradients, which align with the anatomical structure of the optic
disc boundary, while maintaining robustness against noise in retinal fundus images. The resulting binary
mask yields precise OD and OC dimensions, from which we compute the Cup to Disc Ratio (CDR) and
Rim to Disc Ratio (RDR). Both CDR and RDR serve as unitless clinical indices in [0, 1], distinguishing
glaucomatous from healthy eyes [19].

3.3 ANFIS Based Classification and Cuckoo Optimization

We employ an ANFIS to classify each fundus image into glaucoma or healthy. The input to ANFIS comprises
the normalized Gabor wavelet features concatenated with the CDR and RDR values. Given N images and
two scalar parameters per image, the classification dataset contains 2N training vectors.

ANFIS architecture consists of five consecutive layers:
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1. Fuzzification Layer: Gaussian membership functions for each input dimension map crisp features to
fuzzy degrees.

2. Rule Layer: Implements fuzzy ifthen rule firing strengths via the product (AND) operator.

3. Normalization Layer: Normalizes each rules firing strength.

4. De-fuzzification Layer: Computes weighted linear functions of the inputs for each rule.

5. Output Layer: Aggregates rule outputs into a single crisp decision.

Figure 2 illustrates the architecture of the ANFIS model employed in this study. The system receives
two input parametersthe Cup-to-Disc Ratio (CDR) and Rim-to-Disc Ratio (RDR)which are fuzzified using
Gaussian membership functions. These fuzzified inputs activate fuzzy rules, which are normalized and aggre-
gated through multiple layers of inference and defuzzification, resulting in a crisp classification output that
denotes the likelihood of glaucoma. This structure enables interpretability, adaptability, and precise mapping
between retinal features and diagnostic decisions.
A two rule example is:

• Rule 1: If x is A1 and y is B1, then f1 = p1x+ q1y + r1

• Rule 2: If x is A2 and y is B2, then f2 = p2x+ q2y + r2

As a baseline, we initialize ANFIS using the hybrid LSE backpropagation approach. The consequent
parameters θ are estimated by solving a linear system

Aθ = Y, θ = (ATA)−1ATY (4)

where A is the regression matrix of fuzzy rule outputs and Y the target labels. This yields a closed form
update for consequent coefficients but can be sensitive to data noise.

To further refine both premise (membership function) and consequent parameters, we adopt a modified
Cuckoo Search Algorithm [30]. MCS features:

• Lvy flightbased global exploration,

• Adaptive discovery probability Pα ∈ (0, 1),

• A three stage nest discarding and elite replacement scheme to enhance convergence.

While the standard Cuckoo Search (CS) algorithm, which we used as a baseline, employs a Lvy flight
search pattern and replaces a fixed fraction of host nests with new solutions, our MCS introduces two
key enhancements to improve convergence and avoid local minima. First, we replaced the fixed discovery
probability with an adaptive discovery probability. This allows the algorithm to dynamically adjust the rate at
which inferior solutions are discarded, balancing exploration and exploitation more effectively throughout the
search process. Second, a more sophisticated three-stage “nest-discarding” and “elite replacement” scheme
was incorporated to accelerate convergence. Unlike the standard CS, where the worst nests are simply
abandoned, our MCS identifies a subset of the best-performing solutions as “elite nests” at each iteration.
These elite nests are preserved and used as templates to generate new candidate solutions through a multi-
mode local search, or “mutation”. This strategy ensures that the most promising regions of the solution
space are thoroughly exploited, leading to faster and more stable convergence to a high-quality solution, as
demonstrated by the lower RMSE and superior regression performance in our results.

A pseudocode sketch of MCS:
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1. Initialize a population of n nests (candidate parameter sets).

2. Repeat until maximum iterations:

• Generate new solutions via Lvy flights.

• Evaluate fitness F (·) for each nest.

• Replace poorer solutions, apply abandonment probability Pα ∈ (0, 1).

• Perform a three mode local search (mutation) to improve elite nests.

3. Select the best nest as final ANFIS parameter set.

As stated above, to further enhance convergence, an elite replacement scheme is adopted in the MCS
algorithm. In this scheme, a subset of top-performing solutionstermed elite nestsis identified based on their
fitness values (i.e., solutions with the lowest objective function values such as RMSE). These elite nests are
preserved from replacement and serve as central reference points for generating new candidate solutions.
At each iteration, poorer solutions (non-elite nests) are probabilistically replaced with offspring generated
through local search around elite nests, ensuring exploitation of promising regions while maintaining diversity.
This balance between elite preservation and probabilistic replacement improves the stability and convergence
speed of the optimization process.

MCS training is conducted after LSE initialization, yielding membership functions and rule consequent
that minimize the ANFIS training RMSE while avoiding local minima.

The dataset was split 70:30 for ANFIS training and testing. Performance metrics include classification
accuracy, sensitivity, specificity, and area under the ROC curve (AUC).

Figure 2: Schematic representation of the ANFIS architecture with three inputs

4 Results and Discussion

In this section, the proposed method described earlier is implemented for the diagnosis and classification of
glaucoma using a dataset of fundus images. The images were obtained from a public repository [28], and
a total of 195 fundus images were selected as the experimental dataset. Each image was processed using
a Gabor-based wavelet transform to enhance textural features and localize the optic disc region. Following
preprocessing, relevant featuresincluding the CDR and RDRwere extracted, and these parameters, along
with Gabor-derived descriptors, were used to classify the images into glaucomatous or healthy categories via
the trained ANFIS model. The dataset consisted of 195 labeled retinal fundus images, of which 84 were
glaucomatous and 111 were healthy. To address the slight class imbalance, stratified sampling was applied
during both the 70 : 30 train-test split and the 5-fold cross-validation process, ensuring that class proportions
remained consistent across all evaluation folds.
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4.1 Gabor Transform Results

A representative example of Gabor-wavelet filtering for vessel pixel detection in a fundus image is shown in
Figure 3. As illustrated, the procedure proceeds as follows:
Gabor Filtering and Grayscale Conversion: The original RGB fundus image is first decomposed into
its red, green, and blue channels using histogram-based separation. Because the green channel exhibits the
highest contrast for blood-vessel edges, it is selected for Gabor filtering (see Figure 4). Applying a 2D Gabor
filter across a chosen set of scales yields a filtered grayscale image that emphasizes linear vessel structures
while suppressing background variations (see Figure 3).
Binary Segmentation and Edge Extraction: The filtered image is binarized by thresholding according
to the Gabor scale parameter. Inverting this binary map reveals the vessel edge pixels with high clarity. The
region of vascular convergencecorresponding to the optic discis then localized and passed to the boundary-
detection algorithm to compute the CDR and RDR.
To quantify the Gabor filters vessel-detection performance, we construct the Receiver Operating Characteris-
tic (ROC) curve by varying the binarization threshold. The True Positive Rate (TPR) is defined as the ratio
of correctly detected vessel pixels to the total number of vessel pixels, and the False Positive Rate (FPR) is
the ratio of non-vessel pixels incorrectly classified as vessel to the total number of non-vessel pixels [31]. An
example ROC plot is presented in Figure 5.

We further summarize detection performance using the Area Under the ROC Curve (AUC). An AUC
value closer to 1 indicates superior discrimination capability. In our experiments, the Gabor-based vessel
detector achieved an AUC of 0.90, demonstrating excellent accuracy in isolating retinal blood vessels within
fundus images.

Figure 3: Results of Gabor Wavelet Transform for Vessel Detection and Optic Disc Region Identification.
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Figure 4: Separation of RGB Image Channels

Figure 5: ROC curve plotted for the test image in Figure 3
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4.2 Boundary-Based Segmentation Results

After vessel-pixel localization and optic disc/cup region identification via Gabor filtering, the boundary-
detection algorithm was applied to delineate the optic cup and compute the CDR and RDR. As an illustrative
example, Figure 6 shows the segmentation output on a representative test image (originally shown in Figure 3):

For this particular image, the algorithm yielded CDR = 0.248 and RDR = 0.760. These two ratios were
computed for each of the 195 fundus images in our dataset, assembling a 2195 feature matrix. A three-
dimensional scatter plot of the full CDRRDR dataset is shown in Figure 7. In total, 390 data points (CDR
and RDR pairs) were available for ANFIS classification: 273 points (70%) used for training and 117 points
(30%) reserved for testing. This split ensured robust evaluation of the ANFIS model’s generalization to
unseen data.

Figure 6: Results of the boundary detection algorithm applied to the fundus image in Figure 3

Figure 7: Calculated CDR and RDR parameters for 195 fundus images from the database



Optimized Neuro-Fuzzy Classification of Glaucoma from Fundus Images
Using Modified Cuckoo Search and Gabor Features. Trans. Fuzzy Sets Syst. 2026; 5(2) 155

Table 1: Parameter settings for PSO and MCS algorithms

Algorithm Parameter Value

PSO Initial population 14
Maximum iteration 100
Individual cognitive acceleration coefficient (c1) 0.1
Global cognitive acceleration coefficient (c2) 0.1

MCS Population Size (Number of Candidate Nests) 14
Number of Eggs per Nest 2
Maximum iteration 100
Alien egg discovery rate (pa) 0.25
Minimum Improvement 10−5

4.3 ANFIS Optimization

To fine-tune the Gaussian membership functions (MFs) of our ANFIS classifier, we compared two optimization
strategies: the classical Particle Swarm Optimization and our proposed Modified Cuckoo Search. Both
optimizers were configured with identical population sizes and a maximum of 100 iterations. Table 1 outlines
the control parameters used for both PSO and MCS algorithms in optimizing the ANFIS model. For PSO,
the initial population size determines the number of particles exploring the solution space in parallel. The
maximum iteration sets the upper limit on the optimization cycles. Both the individual cognitive coefficient
(c1 = 0.1) and the global cognitive coefficient (c2 = 0.1) controls the extent to which each particle is influenced
by its own best position and the global best, respectively. The small values of c1 and c2 help avoid overshooting
and allow finer adjustments near the optimum.

For the MCS algorithm, the population size refers to the number of candidate nests, each holding poten-
tial solutions. Each nest carries two eggs, representing alternative solution options. The maximum iteration
defines the number of cycles for nest updates. The alien egg discovery rate models the likelihood that a host
bird will discover and replace a low-quality solution, promoting diversity. Finally, the minimum improve-
ment threshold ensures that the algorithm stops when negligible progress is made, preventing unnecessary
iterations.

The optimization objective was to minimize the RMSE on a hold-out validation set:

RMSE =

√∑n
i=1(y − ŷ)2

n
(5)

where n is the number of validation samples, y is the true label, and ŷ the ANFIS prediction.
Our ANFIS model uses two inputsCDR and RDReach fuzzified by 14 Gaussian MFs, yielding 28 param-

eters (centers and widths) to optimize. The resulting MFs of the optimized ANFIS architectures obtained
by PSO and MCS are shown in Figures 8 and 9. In Figure 8, the MCS-generated membership functions
(Figure 8b) show smoother transitions and more uniformly distributed coverage of the input space compared
to the PSO results (Figure 8a), which exhibit irregular spacing. Similarly, in Figure 9b, the MCS-optimized
functions for RDR demonstrate better overlap and granularity in critical regions, which can enhance decision
boundaries and improve classification accuracy. These visual comparisons reinforce the numerical findings
that MCS yields more effective and stable ANFIS parameter tuning than PSO.

Figure 10a illustrates the PSO convergence curve over 100 iterations, culminating in an RMSE of 0.001723.
In contrast, Figure 10b shows that MCS converges more rapidly and achieves a lower final RMSE of 0.0009963.
These results demonstrate that MCS offers superior optimization of the fuzzy membership parameters, leading
to enhanced predictive accuracy.
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Figure 8: Optimized membership functions for the first input (CDR) using (a) the PSO algorithm, (b) the
MCS algorithm.

Figure 9: Optimized membership functions for the second input (RDR) using (a) the PSO algorithm, (b)
the MCS algorithm.
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Figure 10: Convergence trend and final objective function value after 100 iterations of the (a) PSO and (b)
MCS algorithms.

Table 2: Comparison of statistical indices in the training and testing stages of ANFIS using PSO and MCS
algorithms

Algorithm Train Test

MSE RMSE STD R MSE RMSE STD R
PSO 1.0305× 10−6 0.0010151 0.0010192 0.99986 0.0014055 0.03749 0.025305 0.48112
MCS 1.0012× 10−6 0.0010006 0.0010046 0.99986 7.1005× 10−5 0.0084264 0.0063896 0.98322

4.4 Classification Results Using the Optimized ANFIS Model

The performance of the proposed ANFIS-based classification model was evaluated on both training and
testing datasets derived from the fundus image collection. A typical data split of 70% for training and 30%
for testing was employed. To assess the model’s accuracy, multiple statistical indicators were used, including
Root Mean Square Error (RMSE), Mean Squared Error (MSE), standard deviation (STD), and the regression
coefficient (R), which quantifies the correlation between the predicted and actual outputs.

To analyze the effectiveness of the optimization algorithms used to train the ANFIS model, two versions
of the model were developed: one optimized using PSO and the other using the proposed Modified Cuckoo
Search. The resulting classification performances are illustrated in Figures 11 and 12, and the key performance
metrics are summarized in Table 2.

ANFIS Performance with PSO Optimization
Figure 11a shows the performance of the PSO-optimized ANFIS model on the training set. The model
achieved an MSE of 1.0305 × 10−6, RMSE of 0.0010151, and an excellent regression coefficient of R =
0.99986, indicating near-perfect fitting on the training data. However, Figure 11b demonstrates a significant
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performance drop during testing, where MSE and RMSE increased to 0.0014055 and 0.03749, respectively,
and the regression coefficient dropped to R = 0.48112. This drop indicates overfitting and poor generalization,
potentially leading to incorrect glaucoma classification on unseen images.

ANFIS Performance with MCS Optimization
Figures 12a and 12b show the training and testing results of the MCS-optimized ANFIS model. During
training, the model maintained a high regression coefficient of R = 0.99986, similar to the PSO version. More
importantly, during testing, the model preserved its predictive accuracy with a lower MSE of 0.00046248,
RMSE of 0.021505, and a high regression coefficient of R = 0.9832. These results confirm the superior gen-
eralization ability and robustness of the MCS optimization method in tuning ANFIS membership functions.
To verify the significance of performance differences between the MCS-optimized and PSO-optimized ANFIS
models, a two-sample independent t-test was conducted using the RMSE values from 10 repeated experi-
ments under identical conditions. The test yielded a p-value of 0.00037, indicating a statistically significant
improvement (p < 0.05) in the performance of the MCS-based model. This confirms that the superior results
achieved by MCS are not due to random variation but reflect a consistent optimization advantage.

Sample Classification Using Optimized ANFIS
To further validate the classification capability of the optimized ANFIS model, a sample fundus image (Fig-
ure 13a) was processed. Based on threshold-based rules applied to the extracted CDR and RDR values, the
classification model assigned the image to one of four glaucoma risk categories: No Risk: CDR< 0.45 and
0.1 <RDR< 0.5, Low Risk: CDR< 0.45 and RDR< 0.1, Moderate Risk: 0.45 <CDR< 0.6 and RDR< 0.1,
High Risk: CDR> 0.6 and RDR< 0.1.
According to this frameworkaligned with prior clinical guidelines [32]the model classified the example image
as representing a case of high-risk glaucoma, as shown in Figure 13b. This confirms the models ability to
accurately detect and categorize glaucoma severity based on the computed parameters.

K-Fold Cross-Validation
To further assess the generalizability and robustness of the proposed MCS-optimized ANFIS framework,
we conducted 5-fold cross-validation on the full dataset of 195 annotated fundus images. The dataset was
randomly partitioned into five equally sized folds, where four folds were used for training and one for testing
in each iteration. The process was repeated five times so that each fold served as the test set exactly once.

The average results across the five folds showed consistent performance with the mean MSE of 0.000498±
0.00009, mean RMSE of 0.02231 ± 0.0042, and mean regression coefficient (R) of 0.9802 ± 0.0065. These
results support the stability of the proposed model and demonstrate its ability to generalize across different
data subsets, thereby minimizing the risk of overfitting.

4.5 Comparative Analysis with Recent Glaucoma Detection Models

A comparative summary of our proposed MCS-optimized ANFIS model with recent studies is presented in
Table 3. Unlike prior methods that rely primarily on deep CNNs or conventional classifiers, our framework
integrates Gabor-based feature extraction, interpretable fuzzy inference, and metaheuristic optimization.
This hybrid design leads to improved accuracy (RMSE = 0.0009963, R = 0.9832) and faster convergence.
In addition to comparing with explainable CNN-based methods such as [33], we have also included recent
state-of-the-art deep learning models such as GS-Net [34] in the table, which employ advanced attention-
based CNN architectures for glaucoma detection. Despite their high AUC, these deep models often suffer
from interpretability limitations and higher computational demands. By contrast, our approach offers both
competitive performance and enhanced model transparency, thereby justifying the relevance of using an
interpretable fuzzy system like ANFIS. This strengthens the contribution of our model to real-world, reliable
glaucoma diagnosis.
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Figure 11: Results related to (a) training and (b) testing ANFIS using the PSO algorithm.
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Figure 12: Results related to (a) training and (b) testing ANFIS using the MCS algorithm.
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Figure 13: (a) Sample image for testing the performance of detection and classification using the proposed
model and (b) Results of classifying the sample image

Table 3: Comparative analysis of the proposed MCS-optimized ANFIS model with recent glaucoma detection
approaches based on retinal fundus images

Study Methodology Feature Extraction Classifier Optimization Accuracy /
AUC

Interpretability

Shyamalee et al.
(2024) [33]

CNN-based ex-
plainable model for
glaucoma detection

Combined image
and handcrafted
features

CNN (custom
architecture)

AUC = 0.88 Yes (Grad-
CAM)

Das & Nayak
(2024) [34]

GS Net: global
self-attention
guided CNN for
multi-stage glau-
coma classification

Raw fundus images CNN with
global self-
attention

AUC ∼ 0.92 No (atten-
tion maps)

Meedeniya et al.
(2025) [16]

Vision Transformer Raw image patches Transformer No

Present Study ANFIS (MCS opti-
mized)

Gabor-based vessel
and edge features
(CDR, RDR)

ANFIS MCS vs
PSO

AUC = 0.90,
R = 0.9832

Yes (rule-
based fuzzy
logic)
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To further strengthen the comparative positioning of our proposed ANFIS-MCS framework, it is instruc-
tive to consider recent studies that emphasize multi-institutional validation. For example, Li et al. [35]
demonstrated that supervised pre-training using clinically interpretable features across diverse datasetsin-
cluding DRISHTI, G1020, ORIGA, and REFUGEcan significantly enhance model generalization. Similarly,
Luo et al. [36] introduced the Harvard-GDP dataset, which integrates multimodal imaging data from multiple
centers to support both glaucoma detection and progression analysis. These studies underscore the growing
emphasis on dataset diversity and cross-institutional benchmarking in the development of clinically robust
diagnostic systems. The alignment of our methodology with these broader efforts highlights its potential for
future deployment in multi-center screening environments.

The experimental findings directly respond to the core research questions outlined in the Introduction:

• In response to RQ1, the MCS-optimized ANFIS framework achieved superior classification performance,
with a test-phase regression coefficient of R = 0.9832 and RMSE of 0.0009963, outperforming the
PSO-trained counterpart (R = 0.4811, RMSE = 0.001723). These results confirm the robustness and
adaptability of our hybrid model across real-world fundus images with varying quality and contrast.

• Addressing RQ2, the Gabor-based filtering method, applied to the green channel, successfully ex-
tracted retinal vasculature and optic disc edges, resulting in an AUC of 0.90 for vessel segmentation.
This demonstrates the effectiveness of the proposed feature extraction strategy in enhancing structural
delineation critical to glaucoma detection.

• Regarding RQ3, the performance comparison with PSO demonstrated that MCS yielded a lower final
objective function value, faster convergence, and greater classification stability, validating the choice of
this metaheuristic for optimizing ANFIS parameters.

Together, these results substantiate the proposed systems clinical potential for assisting in early glaucoma
screening and decision support.

4.6 Clinical Relevance and Limitations

The proposed ANFIS-MCS framework demonstrates promising diagnostic performance in glaucoma detection,
offering both accuracy and interpretability. By leveraging morphological parameters such as the Cup-to-
Disc Ratio (CDR) and Rim-to-Disc Ratio (RDR), the system mimics key clinical reasoning steps used by
ophthalmologists, making it a potential candidate for integration into decision-support tools in primary care
or screening settings. The fuzzy rule-based nature of the model provides transparency, which can enhance
trust and adoption in clinical workflows.

However, this study also has limitations. The dataset used comprises 195 annotated fundus images
from a single source, which may not fully capture the variability seen in real-world clinical environments.
Additionally, the model was evaluated using internal validation only, without testing on independent external
datasets. This limits the generalizability of the findings, and further validation on diverse, multi-center
datasets is essential before clinical deployment.

Moreover, the model’s performance may be sensitive to the selection of MCS parameters such as popula-
tion size and discovery rate. While we empirically tuned these settings, a formal sensitivity analysis was not
conducted. Although Gabor-based feature extraction enhances vessel and edge detection, the clinical inter-
pretability of these features remains limited compared to more anatomically explicit metrics. Furthermore,
the limited dataset may restrict generalizability across different imaging devices, populations, or clinical
settings. Future work will aim to evaluate the model on larger, multi-institutional datasets and explore
integration with explainable AI techniques to enhance transparency and clinician trust.

Building on these considerations, future efforts will focus on transitioning the MCS-optimized ANFIS
framework into a deployable clinical tool. This includes validating the model across larger, multi-institutional
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datasets, improving its generalizability to diverse imaging conditions, and ensuring compliance with clinical
decision-support standards. Additionally, we plan to integrate explainability features, such as rule-based
visual interpretations, to enhance clinician trust and usabilitysimilar to recent approaches in explainable
glaucoma detection systems [33]. These steps aim to bridge the gap between algorithmic accuracy and
real-world applicability in ophthalmic diagnostics.

Finally, while the proposed ANFIS-MCS framework demonstrated strong performance on the available
dataset, it has not yet been tested under real-world clinical conditions. In practice, fundus images often vary
in resolution, quality, and acquisition device. These factors can introduce noise and structural variability,
potentially affecting model reliability. Future work will focus on validating the system using multi-center,
heterogeneous datasets that reflect real clinical environmentsan essential step toward confirming robustness
and deployment readiness in ophthalmic screening programs.

5 Conclusion

This study presented a hybrid approach for glaucoma detection and classification using fundus images, com-
bining Gabor-based feature extraction with an Adaptive Neuro-Fuzzy Inference System (ANFIS) optimized
through the Modified Cuckoo Search (MCS) algorithm. By extracting meaningful retinal featuresspecifically
the cup-to-disc ratio (CDR) and rim-to-disc ratio (RDR)from preprocessed fundus images, the proposed
method demonstrated high accuracy in identifying glaucomatous patterns. Performance evaluations showed
that the MCS-optimized ANFIS significantly outperformed the traditional PSO in terms of training conver-
gence, prediction accuracy, and robustness on unseen data. The use of Gabor wavelet transformation for
vessel segmentation and optic disc localization further enhanced the quality of feature extraction. The re-
sulting classification model achieved an RMSE of 0.0215 and a regression coefficient of 0.9832 on the test set,
indicating strong generalization performance. Overall, the results confirm that the proposed system offers an
effective and intelligent decision-support tool for early and accurate glaucoma detection, with the potential
to aid ophthalmologists in large-scale screening and clinical diagnosis.
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