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ABSTRACT 

 

The Neighborhood Rough Set (NRST) method is a valuable approach for se-

lecting a subset of features from a complete dataset, enabling us to preserve 

the essential information that the entire feature set provides. In financial da-

tasets, which often contain high-dimensional input features, effective feature 

selection techniques are crucial to identify the features that yield the most 

predictable results. In this work, we use neighborhood concepts to discover 

data dependencies and reduce the number of features in a financial dataset 

based solely on the data itself, without relying on additional information. This 

process also includes removing extra features. To facilitate a simple algo-

rithm, we use the properties of neighbourhood rough sets to formulate a Bi-

nary Integer Linear Programming (BILP) model. Optimal solutions to these 

problems are obtained using genetic algorithms. Our approach allows for fea-

ture reduction from minimum to maximum cardinality. We demonstrate the 

efficiency of our proposed method compared to other techniques through var-

ious tables showing the results on several benchmark datasets characterized 

by unbalanced class distributions. The financial dataset used in the present 

study is taken from the UCI Machine Learning Repository. 

 

 

1 Introduction 

Nowadays, a broad amount of data is created every day and analyzing the data is a serious challenge. 

By data mining, we refer to techniques in different fields such as information technology, mathematical 

science, and statistical analysis [30,40]. Data mining technique are useful to analyze, comprehend, and 

visualize large sums of data kept at data warehouses, databases, or other types of data repositories [31]. 
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Through data mining techniques, we can handle extensive datasets including countless number of fea-

tures. The big number of features that such datasets represent creates issues for data miners as some of 

them might be irrelevant to the data mining techniques. These irrelevant features can degrade the quality 

of the results gained through data mining, which in turn lowers the opportunity to find useful knowledge 

out of the dataset. Feature selection is one of the approaches to handle such features [18]. The big data 

are utilized for accurate classification in science and engineering fields like astronomy, medicine and 

so on. Still, such datasets feature insignificant redundant and nosy characteristics. These features may 

decrease the classifier efficiency. Selecting the proper features is important to solve the issue. Thus, in 

many fields of study, the choice of feature has a key role to play [12]. Selection of features can be a 

way to lower the redundant and irrelevant features and have a higher clustering accuracy and perfor-

mance [11]. In real-world applications, the distribution of classes in data collected from road traffic, 

medicine, credit cards, banking transactions, and the stock market may be uneven. Clearly, it is not 

possible to discover the hidden knowledge out of real-world datasets before developing novel and op-

timal techniques for feature selection in imbalanced data. Imbalanced data affects the performance 

of predictive models [6]. So far, various algorithms have been introduced for the selection of features 

in imbalanced data. In many studies, the search power of meta-heuristic algorithms has been used in 

algorithms designed to select features [28,41]. Particle Swarm Optimization (PSO) [23], Differential 

Evolution (DE) [24], Gravitational Search Algorithm (GSA) [40], Water Cycle Algorithm (WCA) [15], 

Forest Optimization Algorithm (FOA) [16], Cuckoo Search (CS) [33], Lightning Search Algorithm 

(LSA) [43], Monarch Butterfly Optimization(MBO) [44] and etc. are some of the meta-heuristics em-

ployed to solve function choice problem [41,42]. There had been a success instances of the usage of 

meta-heuristic algorithms for specific engineering and medical troubles like optimized connection 

weights with inside the neural network [5], Numerical Optimization [25], cloud computing [1], and 

stock market index prediction [20]. Due to the advancement of soft computing, researchers in finance, 

computer science, and mathematics have paid great attention to optimization research [6]. In addition, 

several algorithms for selecting features have been proposed to diagnose, classify, categorize, and detect 

patterns are available [2,3,3]. Following the introduction of rough set theory in 1981 by Pawlak [35], it 

has been used as a successful technique to select features in classified data. It is used in artificial intel-

ligence and cognitive sciences in several different fields including knowledge discovery, expert sys-

tems, inductive reasoning, decision-making, intelligent systems, data mining, information systems, pat-

tern recognition, machine learning, process control, and so on [46]. Using rough set theory, we can 

handle uncertainty, vagueness, and imprecision, a technique that is widely used for dimension reduction 

[45]. A key use of rough set theory is attribution reduction, which means eliminating redundant attrib-

utes without losing information [29]. In recent years, various researchers have used rough set theory 

combined with other methods to reduce and select features [26]. Recently, many studies have used 

rough set theory and fuzzy neighborhood theory combined with other methods in feature selection 

[4,9,14,21,22]. The paper is structured as follows: Section 2 includes the fundamental concepts of 

the rough set and the neighborhood rough theory. Section 3 details the proposed method. Sections 

4 and 5 present the simulation results and analyze the experimental findings, respectively. Fi-

nally, the concluding section summarizes the key insights and implications of the study.   

 

2 Preliminaries 

Feature selection preserves essential information by reducing the dimensionality of financial data. 

Rough set theory is a soft computing tool with various applications in data science. Data mining is one 
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of the areas where rough set theory is used. There are several studies that prove that rough set theory is 

a popular and practical tool in feature selection. Most traditional RST-based feature selection methods 

depend on reduction. In the following, we review the research conducted in the field of feature selection 

using neighbourhood rough and rough set theory. 

2.1. Rough Set Theory 

 Rough Set Theory (RST) is a mathematical framework for dealing with uncertainty and vagueness in 

data analysis. It was introduced by Zdzisław Pawlak [36] in the early 1980s and has since become a 

significant approach in various fields, including data mining, machine learning, and decision-making. 

RST provides tools for handling imprecise or incomplete information without requiring prior probabil-

ity distributions. 

2.2. Information and decision systems 

An information system is a pair 𝑆 =  (𝑈, 𝐴), where  : 𝑈  is a non-empty finite set of objects (the 

universe). 𝐴  is a set of attributes (features), where each attribute  𝑎 ∈  𝐴  is associated with a function  

𝑓ₐ: 𝑈 →  𝑉ₐ , mapping objects to their attribute values.  𝑉ₐ  is the value set of attribute  𝑎. 

2.3. Indiscernibility 

  For any subset of attributes  𝐵 ⊆  𝐴 , the indiscernibility relation  𝐼𝑁𝐷(𝐵)  groups objects that have 

the same values for the attributes in  𝐵 :[36]: 

𝐼𝑁𝐷(𝐵) = {(𝑥, 𝑥′) ∈   𝑈2: ∀𝑎 ∈  𝐵, 𝑎(𝑥) =  𝑎(𝑥′)}. (1) 

If (𝑥, 𝑥′)  ∈  𝐼𝑁𝐷𝑆(𝐵), then 𝑥 and 𝑥′ are indiscernible by attributes in 𝐵. The equivalence classes of 

the 𝐵 − 𝑖𝑛𝑑𝑖𝑠𝑐𝑒𝑟𝑛𝑖𝑏𝑖𝑙𝑖𝑡𝑦 relation are given [𝑥]𝐵. 

2.4. Lower and Upper Approximations 

Let 𝑆 = (𝑈, 𝐴), 𝑋 ⊆ 𝑈  and  𝐵 ⊆ 𝐴. 𝑋 be estimated based on the information within 𝐵 by construct-

ing the B-lower and B-upper approximations of  X: 

𝐵𝑋 = {𝑥 ∈  𝑈 | 𝐼𝑁𝐷(𝐵)(𝑥)  ⊆  𝑋}.   
(2) 

𝐵𝑋 =  {x ∈  U | IND(B)(x) ∩  X ≠  ∅}.  
(3) 

As mentioned above, the upper approximation set has all elements needed to classify it as 𝑈. The 

lower approximation has the minimum set of the feasible elements of 𝑈. It is such a tuple ⟨𝐵𝑋, 𝐵𝑋⟩ 

that is named a rough set [34]. 

2.4.1. Feature Dependency and Significance 

In Rough Set Theory, the concept of positive region is crucial for understanding how certain attrib-

utes can classify objects into specific classes. The positive region, denoted as  𝑃𝑂𝑆𝐶(𝐷) , refers to the 

set of objects that can be definitively classified into a target set based on the information provided by a 

given set of attributes. The positive region with respect to the decision attribute 𝐶  and the subset  𝐷  is 

defined as: 

𝑃𝑂𝑆𝐶(𝐷) = { x ∈  U ∣  IND(B)(x)  ⊆  D }  (4) 

𝐼𝑁𝐷(𝐵)  represents the indiscernibility relation defined by a subset of attributes 𝐵  (which 
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could include all attributes or a selected subset). The set  𝑃𝑂𝑆𝐶(𝐷)  consists of those objects in the 

universe 𝑈 whose equivalence class (under the indiscernibility relation) is entirely contained within 

the target set  𝐷. The quality of classification in Rough Set Theory is another key concept that 

evaluates the accuracy and predictive capability of classification models. Rough Set Theory is 

recognized as an analytical tool for processing data and extracting information from it without 

requiring prior assumptions about the distribution of the data.  

𝑘 = 𝛾𝐶(𝐷) =
|𝑃𝑂𝑆𝐶(𝐷)|

|𝑈|
  (5) 

Where the numerator  |𝑃𝑂𝑆𝐶(𝐷)| counts the number of objects that can be positively classified 

into the target set  𝐷. |𝑈| contains the total number of objects in the universe. The value of  𝑘  varies 

between 0 and 1.  

1. If  𝑘 =  1 : which means that all items in the universe may be definitely categorized into the target 

set D, the classification is complete.   

2. If  𝑘 =  0 : This indicates that none of the objects in the universe can be classified into  𝐷 . 

3. A higher value of  𝑘  indicates better classification quality, meaning a greater proportion of objects 

can be successfully classified into the desired class. 

The significance of an attribute can be evaluated primarily based on its ability to help distinguish 

between different classes. An attribute is considered significant if its presence improves the classifica-

tion quality. The importance of an attribute 𝑎  relative to a decision attribute  𝐶  can be quantitatively 

assessed using various measures, such as: 

𝜎𝐶(𝐷, 𝑎) = 𝛾𝐶(𝐷) − 𝛾(𝐶−{𝑎})(𝐷). (6) 

Where 𝛾𝐶(𝐷)  is the classification accuracy when attribute  𝑎  is included and 𝛾(𝐶−{𝑎})(𝐷)  is the 

classification accuracy when attribute  𝑎  is excluded. 

2.4.2. Reducts and Core 

A reduct of a set of features (attributes) in a dataset is a minimal subset of features that preserves the 

classification ability of the original set. In other words, if  𝐴  is the original set of attributes and  𝑅  is a 

reduct, then: 𝑅 ⊆  𝐴   and   the classification using 𝑅 is equivalent to that using 𝐴.The core is the 

intersection of all reducts of a set of features. It consists of those attributes that are essential for main-

taining the classification capability. If  𝐶  is the core, then (7). Where  𝑅𝑖  represents all possible reducts 

of the attribute set  𝐴, it is represented as 𝑅𝐸𝐷(𝐴). This means that every reduct must include the 

attributes in the core. In summary, while a reduct provides a minimal subset of attributes sufficient for 

classification, the core identifies those attributes that are indispensable across all possible reducts. 

 

𝐶𝑂𝑅𝐸(𝐴) =⋂𝑅𝑖 ∈ 𝑅𝐸𝐷(𝐴)

𝑅𝑖

                     (7) 
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2.4.3. Neighbourhood Rough Set Theory 

Neighbourhood Rough Set Theory (NRST) is an extension of classical rough set theory that incor-

porates the concept of "neighbourhood" to handle continuous and numerical data without the need for 

discretization. It defines neighbourhoods based on distance metrics and uses them to approximate deci-

sion classes, enabling feature selection, classification, and noise reduction. In financial applications 

such as stock price prediction, credit scoring, fraud detection, and portfolio optimization NRST can be 

used to identify relevant features or patterns from complex and noisy datasets. However, despite its 

strengths, NRST has several limitations when applied to real-world financial data, which we will now 

explore in detail The performance of NRS is highly dependent on the choice of parameters like the 

neighbourhood radius (𝜀) or the number of nearest neighbours(𝑘). Inappropriate values can lead to 

overfitting or under fitting. Too small ε results in too few neighbours, resulting in unstable approxima-

tions. Too large ε leads to the inclusion of irrelevant samples, resulting in a loss of discriminatory power.  

For example, in credit risk assessment, choosing an inappropriate 𝜀 can cause high-risk applicants 

to be grouped with low-risk applicants, leading to poor decision-making. 

 We consider an information system 𝑆 = (𝑈, 𝐴), where 𝑈 is a finite and non-empty set of samples 

{𝑥1,  𝑥2, . . . , 𝑥𝑛}, known as a universe. The set 𝐴 represents attributes (also called inputs, features, 

or variables) {𝑎1, 𝑎2, . . . , 𝑎𝑚} that define the characteristics of the samples. In this context, ⟨𝑈, 𝐴⟩ 

forms a decision table when 𝐴 = 𝐶 ∪ 𝐷, where C, represents the set of condition attributes and and 

𝐷 is the decision attribute. For an object  𝑥𝑖 ∈  𝑈 and a subset 𝑞 ⊆  𝐶, the neighbourhood 𝛿𝑃(𝑥𝑖) of 

𝑥𝑖 in feature space P is defined as follows: 

𝛿𝑃(𝑥𝑖)={𝑥𝑗 ∈ 𝑈| ∆
𝑃(𝑥𝑖, 𝑥𝑗) ≤ 𝛿} = [𝑥𝑖]𝛿,𝑃  (8) 

This definition helps us identify objects that are similar to  𝑥𝑖 based on their attribute values within 

a specified distance  𝛿. The notation  ∆𝑃 represents a distance function, which satisfies the following 

properties for any  𝑥𝑖 , 𝑥𝑗 , 𝑥𝑘 ∈ 𝑈: 

(1) ∆𝑃(𝑥𝑖, 𝑥𝑗) ≥ 0, (The distance is always non-negative.) 

(2) ∆𝑃(𝑥𝑖, 𝑥𝑗) = 0 if and only if 𝑥𝑖 = 𝑥𝑗 , (The distance between two identical points is zero.) 

(3) ∆𝑃(𝑥𝑖, 𝑥𝑗) = ∆
𝑃(𝑥𝑗, 𝑥𝑖), (The distance between two points is symmetric.) 

(4) ∆𝑃(𝑥𝑖, 𝑥𝑗) + ∆
𝑃(𝑥𝑗, 𝑘) ≥ ∆

𝑃(𝑥𝑖, 𝑥𝑘). (The triangle inequality holds.) 

In this context, ∆𝑃 defines a distance function, and the pair ⟨𝑈, ∆𝑃⟩ represents a metric space. For any 

two samples 𝑥𝑖 = (𝑎1(𝑥𝑖), 𝑎2(𝑥𝑖), … , 𝑎𝑚(𝑥𝑖)) a commonly used metric is the Euclidean distance, de-

fined as follows: 

∆𝑃(𝑥𝑖 , 𝑥𝑗) = (∑|𝑎(𝑥𝑖) − 𝑎(𝑥𝑗)|
2

𝑁

𝑘=1

)

1
2

 
(9) 

In this equation m  represents the number of dimensions or features in the dataset, a(xi)  and a(xj)    

denote the values of the  𝑘 − 𝑡ℎ feature for samples xi and xj, respectively. The Euclidean distance 

measures the straight-line distance between two points in a multi-dimensional space, providing a quan-

titative measure of how similar or different the two samples are. It satisfies the properties of a metric, 

including non-negativity, identity of indiscernible, symmetry, and the triangle inequality. Thus, ( U, Δᴾ ) 

forms a valid metric space. 
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2.4.4. Lower and Upper Neighbourhood Approximation 

In the hybrid decision system 𝑆 = (𝑈, 𝐶), where 𝑞 ⊆ 𝐶 and 𝑋 ⊆ 𝑈, Nq denotes a neighborhood 

relation. The lower and upper approximations of 𝑋 with respect to the attribute set 𝑞  are defined by 

the following formulas [38]: 

𝑁𝑞(X)={𝑥𝑖 ∈ 𝑈|[𝑥𝑖]𝛿,𝑞 ⊆ 𝑋} (10) 

𝑁𝑞(X)={𝑥𝑖 ∈ 𝑈|[𝑥𝑖]𝛿,𝑞 ∩ 𝑋 ≠ ∅} (11) 

Obviously, 𝑁𝑞(X) ⊆ 𝑋 ⊆ 𝑁𝑞(X). The boundary region of 𝑋 is defined as follows: 

𝐵𝑁𝐷𝑞(X) =  𝑁𝑞(X) − 𝑁𝑞(X) (12) 

Typically, the partition 𝑈/𝑑 induces 𝑋, indicating a specific class. The approximations described 

above provide a method to characterize the specific class 𝑋 based on neighbourhood sets. The positive 

and negative regions of 𝑋 with respect to 𝑞 are defined as: 

𝑃𝑂𝑆𝑞(X) =  𝑁𝑞(X) (13) 

𝑁𝐸𝐺𝑞(X) =  𝑈 − 𝑁𝑞(X) (14) 

2.4.5. Example 

The hybrid decision system of a Portuguese banking institution consists of nominal and numerical 

attributes, which are presented in Table 1 and Table 2, respectively. Direct marketing campaigns serve 

as the data source for the banking system. The dataset includes 20 features and 54,211 customer rec-

ords. In Tables 3 and 4, the data types, their descriptions, and corresponding categorical values are 

presented. The "Selector" serves as a class label to categorize groups (0 𝑜𝑟 1). The campaigns em-

ployed phone calls, and in many instances, multiple calls were necessary for a single client to determine 

whether a product was subscribed (1) or not (0). We analyzed the information in Table 1 and Table 2 

using neighborhood rough set theory (𝛿 =  0.2). Clearly, the conditional attributes in the aforemen-

tioned tables consist of mixed data. Therefore, the decision system is defined as a hybrid 𝐻𝐷𝑆 =

 (𝑈, 𝑉, 𝐶 ∪  𝑑, 𝑓), where 𝐶 represents a combination of nominal and numerical data. 

Step1: The numerical values in the decision table are normalized to a range between  0 and 1. 

Step2: By applying Equations (10) and (11), we obtain the following values: 

[𝑥1]𝛿,𝐶  =  {𝑥1}, [𝑥2]𝛿,𝐶  =  {𝑥2}, 

[𝑥3]𝛿,𝐶  =  {𝑥3}, [𝑥4]𝛿,𝐶  =  {𝑥4}, 

[𝑥5]𝛿,𝐶  =  {𝑥5, 𝑥6}, [𝑥6]𝛿,𝐶  =  {𝑥5, 𝑥6}, 

[𝑥7]𝛿,𝐶  =  {𝑥7}, [𝑥8]𝛿,𝐶  =  {𝑥8}, 

[𝑥9]𝛿,𝐶  =  {𝑥9}, [𝑥10]𝛿,𝐶  =  {𝑥10}. 
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Step3: We compute the approximations of the decision classes using Equations (12) and (13). Addi-

tionally, we can divide the decision attribute into two subsets based on equivalence relations using the 

decision classes: 

𝑈/𝑑 =  {{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥6, 𝑥8, 𝑥9}, {𝑥5, 𝑥7, 𝑥10}}, 

𝐷1  =  {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥6, 𝑥8, 𝑥9 }, 

𝐷2  =  {𝑥5, 𝑥7, 𝑥10}, 

𝑁𝑋(𝐷1) =  {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥8, 𝑥9}, 

𝑁𝑋(𝐷1) = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥6, 𝑥8, 𝑥9} 

𝑁𝑋(𝐷2) =  {𝑥7, 𝑥10}, 

𝑁𝑋(𝐷2)  =  {𝑥5, 𝑥6, 𝑥7, 𝑥10}. 

Step4: The degree of dependency of the decision classes can be calculated using Equation (5): 

𝛾𝐶(𝐷) =
|{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥7, 𝑥8, 𝑥9, 𝑥10}|

|{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8, 𝑥9, 𝑥10}|
= 0.8 

Table 1:  Sample of Portuguese banking institution nominal attributes. 

U Job Marital Education Default 
Hous-

ing 
Loan Contact Month Day Pout come Class 

x1 blue-collar married basic.4y 
un-

known 
yes no 

tele-

phone 
aug tue non-existent 1 

x2 housemaid divorced degree no yes yes cellular nov thu non-existent 1 

x3 admin. married high. School no no yes cellular aug mon success 1 

x4 housemaid divorced course no yes no cellular nov mon success 1 

x5 technician married degree no yes yes cellular may fri non-existent 0 

x6 retired married degree no yes no cellular mar fri non-existent 1 

x7 manage-
ment 

single basic.4y no no no 
tele-

phone 
may mon non-existent 0 

x8 services married high.School 
un-

known 
yes no 

tele-

phone 
may mon non-existent 1 

x9 self-employed divorced high.School no no no cellular sep tue success 1 

x10 
admin. divorced high.School no no no 

tele-

phone 
jul mon non-existent 0 

 

Table 2: Sample of Portuguese banking institution numeric attributes.  

U Age Duration Campaign P-days Previous Emp.var.rate Cons.price.idx Cons.conf.idx month rate Nr.employed Class 

𝑥1 53 1186 4 999 0 1.4 93.444 -36.1 4.968 5228.1 1 

𝑥2 54 653 1 999 0 -0.1 93.2 -42 4.076 5195.8 1 

𝑥3 31 155 2 4 1 -2.9 92.201 -31.4 0.884 5076.2 1 

𝑥4 67 655 2 5 5 -1.1 94.767 -50.8 1.039 4963.6 1 

𝑥5 41 170 4 999 0 -1.8 92.893 -46.2 1.313 5099.1 0 

𝑥6 73 179 1 999 0 -1.8 92.843 -50 1.531 5099.1 1 

𝑥7 32 73 7 999 0 1.1 93.994 -36.4 4.858 5191 0 

𝑥8 41 679 2 999 0 1.1 93.994 -36.4 4.857 5191 1 

𝑥9 39 261 1 3 1 -3.4 92.379 -29.8 0.788 5017.5 1 

𝑥10 48 352 2 999 0 1.4 93.918 -42.7 4.96 5228.1 0 
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Table 3:  Features Description of The Bank Marketing Financial Data Set 

 

 

No Attributes Data Type 

1 Job 
admin., blue-collar, entrepreneur, housemaid, management, retired, self-employed services, student, 

technician, unemployed, unknown 

2 Marital divorced, married, single, unknown 

3 Education 
basic.4y, basic.6y, basic.9y, high. School, illiterate professional. Course, university. Degree, un-

known 

4 Default no, yes, unknown 

5 Housing no, yes, unknown 

6 Loan no, yes, unknown 

7 Contact cellular, telephone 

8 Month Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec 

9 Day Mon, Tue, Wed, Thu, Fri 

10 Pout come failure, nonexistent, success 

Table 4: Details of Impute Variables of Portuguese Bank Datase 

No Attributes(𝒂𝒊) Attribute Description Data Type 

1 Age What is the customer's age? Numeric 

2 job What is the customer's business status? Nominal 

3 Marital What is the customer's marital status? Nominal 

4 Education What is the customer's educational status? Nominal 

5 Default What is the customer's credit debt status? Nominal 

6 Housing What is the customer's real estate debt status? Nominal 

7 Loan What is the customer's personal debt status? Nominal 

8 Contact What is the customer's type of relationship? Nominal 

9 Month When was the customer's last month of interview? Numeric 

10 Day When was the last day of interview? Numeric 

11 Duration How long was the last contact? Numeric 

12 Campaign How many customers followed up during the campaign? Numeric 

13 P-days How many times the customer called since the previous campaign Numeric 

14 Previous How many times the customer been called before the campaign? Numeric 

15 Pout come When did the previous marketing campaign end? Nominal 

16 Emp.var.rate Employment Change Rate - Quarterly Index Numeric 

17 Cons.price.idx Consumer Price Index - Monthly Index Numeric 

18 Cons.conf.idx Consumer Confidence Index - Monthly Index Numeric 

19 month rate European Interbank Offered Rate 3 Months - Daily Index Numeric 

20 Nr.employed Number of Employees - Quarterly Index Numeric 

21 Customer Has the customer registered a term deposit? Binary 
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3 Proposed Method 

As mentioned earlier, formal Rough Set Theory (RST) can be used to reduce the dimensionality of 

data sets. This method can also serve as a pre-processing step for selecting the modelling approach to 

learn from the data. One of the main advantages of RST is its ability to provide abstraction, allowing it 

to be combined with various mathematical structures to achieve satisfactory results.  

In this section, we introduce a method for reducing attributes by applying distance in the boundary 

region of neighbourhood rough set theory. Many existing rough-set-based feature selection methods 

rely on information obtained from the lower approximation of a set to minimize data. These methods 

are often seen as reliable because they focus on the certainty represented by the lower approximation, 

making them crucial for scientific analysis. However, while these approaches are generally effective, 

they tend to overlook the information found in the boundary or uncertainty region. 

Additionally, some methods utilize the upper approximation. This means they evaluate the upper 

approximation as a whole, rather than treating the boundary region and lower approximation as distinct 

entities. To feature selection subsets, our proposed method considers both the lower and upper approx-

imations of the information within the boundary region. As a result, we expect that the subset chosen 

through this method will be smaller than what would be obtained from using either the upper or lower 

approximation alone. 

3.1. Distance Metric 

Machine learning algorithms are widely used for data classification in various real-world scenarios. 

Selecting an efficient distance metric is crucial in this context. Distance metrics can enhance clustering 

and classification by identifying similarities between data and improving information retrieval. For 

mixed data types, rather than calculating distances separately for nominal and numerical variables, a 

single formula can be employed.  In a hybrid decision system represented as 𝑆 =  (𝑈, 𝑉, 𝐶 ∪  𝐷, 𝑓)), 

𝐶 denotes a set of conditional attributes that consists of two parts: 𝐶𝑛 (numerical attributes) and  𝐶𝑚 

(nominal attributes). Thus, 𝐶 =  𝐶𝑛  ∪  𝐶𝑚. Let 𝐾 be a subset of 𝐶, meaning 𝐾 ⊆  𝐶, where , 𝐾 =

 𝐾𝑛 ∪ 𝐾𝑚, 𝐾𝑛 ⊆ 𝐶𝑛, 𝐾𝑚 ⊆ 𝐶𝑚. The neighbourhood relation R for the attribute set K is defined as:  

𝑅𝐾 = {(𝑥𝑖 , 𝑥𝑗) ∈ 𝑈 × 𝑈|(∆𝑖,𝑗)
𝐾 ≤ 𝛿, 0 ≤ 𝛿 ≤ 1} (15) 

In this formula, ∆𝑖,𝑗
2  calculates as follows: 

(∆𝑖,𝑗
2 )𝐾 =

(∑ 𝜒𝑙|𝑓̂𝑎𝑙(𝑥𝑖) − 𝑓̂𝑎𝑙(𝑥𝑗)|
2
+ ∑ 𝜒𝑟 (𝜑(𝑥𝑖 , 𝑥𝑗 , 𝑎𝑟))

𝐾𝑚
𝑟=1

|𝐾𝑛|
𝑙=1 )

∑ 𝜒𝑖
|𝑛+𝑚|
𝑖=1

        

(16) 
(∀𝑎𝑙 ∈ 𝐾𝑛 , ∀𝑎𝑟 ∈ 𝐾𝑚) 

This expression evaluates the distance between objects in numerical data as ∑ 𝜒𝑙|𝑓𝑎𝑙(𝑥𝑖) −
|𝐾𝑛|
𝑘=1

𝑓𝑎𝑙(𝑥𝑗)|
2
 and the distance in nominal data as∑ 𝜑(𝑥𝑖, 𝑥𝑗, 𝑎𝑟)

𝑚
𝑟=1 . According to the equation, if objects 𝑖 

and 𝑗 share the same nominal value, the distance is 0; otherwise, it is 1. 

When features are on different scales, this creates a challenge. Before calculating distances for nu-

merical data, we must ensure the data is normalized; otherwise, one feature can dominate others. A 

common normalization method is min-max normalization, which converts the maximum and minimum 

values of a feature to 0 and 1, respectively, with other values falling between 0 and 1. The min-max 
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normalization for numerical data is defined as: 

𝑓̂𝑎𝑙 =
𝑓𝑎𝑙(𝑥𝑖) − 𝑚𝑖𝑛(𝑉𝑎𝑙)

𝑚𝑎𝑥(𝑉𝑎𝑙) − 𝑚𝑖𝑛(𝑉𝑎𝑙)
 (17) 

3.2. Feature Selection Algorithm 

Feature selection is a combinatorial optimization problem that plays a pivotal role in the field of data 

mining. This process significantly enhances the performance of learning algorithms by removing irrel-

evant and redundant features. In essence, feature selection entails the identification of a subset of fea-

tures from the original feature set, thereby facilitating the extraction of patterns within a dataset and 

optimizing performance according to predefined objectives and criteria. The rough set theory approach 

to feature selection focuses on identifying minimal attribute sets and utilizes meta-heuristic algorithms 

to construct high-quality classifiers based on the selected features.  

Let  𝑂 = {(𝑥1, 𝑦1), . . . , (𝑥𝑖 , 𝑦𝑖), . . . , (𝑥𝑛, 𝑦𝑛)} denote a collection of training samples, where  𝑥𝑖 ∈ 𝑈 

and 𝑥𝑖  = (𝑎1(𝑥𝑖), 𝑎2(𝑥𝑖), … , 𝑎𝑚 (𝑥𝑖))  represents an  𝑚 -dimensional feature vector, while 𝑦𝑖 ∈ {0,1}  

indicates the corresponding class label, with  𝑛  signifying the total number of samples. Define  𝑋+ =

{𝑥𝑖|𝑦𝑖 = 1}  as the set of samples belonging to the majority class and  𝑋− = {𝑥𝑖|𝑦𝑖 = 0}  as those 

belonging to the minority class. The notation  𝑁(𝑋+)  represents the samples from the majority class  

𝑋+, while  𝑁(𝑋+) includes samples from the minority class  𝑋− , collectively forming the positive 

region. Additionally, Additionally  ∆(𝑋+)  and  ∆̅(𝑋+) denote the boundary regions. 

In this context, if two elements are neighbours, their neighbourhood structure remains preserved 

following feature selection, ensuring that the positive region remains invariant. Conversely, elements 

that are not initially neighbours may become neighbours as a consequence of the feature selection pro-

cess. The objective is to identify the factor  𝜒 = (𝜒1, 𝜒2, … , 𝜒𝑚), where 𝜒𝑖 ∈ {0,1}, which selects the 

optimal subset of features for classification purposes. 

𝑀𝑖𝑛 𝑓 =∑𝜒𝑖

𝑚

𝑖=1

 

Subject to: 

{
 
 
 
 

 
 
 
 
∆𝑖,𝑗(𝜒1 , 𝜒2 , … , 𝜒𝑚) > 0, (𝑥𝑖, 𝑥𝑗) ∈ 𝑁𝐸𝐺(𝑋

+) × ∆(𝑋+)

∆𝑖,𝑗(𝜒1 , 𝜒2 , … , 𝜒𝑚) > 𝛿, (𝑥𝑖, 𝑥𝑗) ∈ 𝑁𝐸𝐺(𝑋
+) × 𝛥(𝑋+)

∆𝑖,𝑗(𝜒1, 𝜒2 , … , 𝜒𝑚) > 𝛿, (𝑥𝑖, 𝑥𝑗) ∈ 𝑁𝐸𝐺(𝑋
+) × 𝑁(𝑋+)

∆𝑖,𝑗(𝜒1 , 𝜒2 , … , 𝜒𝑚) > 0, (𝑥𝑖, 𝑥𝑗) ∈𝑁(𝑋
+) × 𝛥(𝑋+)         

∆𝑖,𝑗(𝜒1 , 𝜒2, … , 𝜒𝑚) > 𝛿, (𝑥𝑖, 𝑥𝑗) ∈ 𝑁(𝑋
+) × ∆(𝑋+)     

∆𝑖,𝑗(𝜒1 , 𝜒2 , … , 𝜒𝑚) > 𝛿, (𝑥𝑖, 𝑥𝑗) ∈ 𝑁(𝑋
+) × 𝑁𝐸𝐺(𝑋+)

𝜒𝑖 ∈ {0,1}                                                                         

 

 

 

 

 

(18) 

 

 

This optimization problem aims to minimize the selection of features 𝑓 = ∑ 𝜒𝑖
𝑚
𝑖=1  while adhering to 

specific constraints that ensure effective separation between positive and negative classes in the dataset. 

The constraints dictate that the pairwise distances  ∆𝑖,𝑗(𝜒1 , 𝜒2 , … 𝜒𝑚)  must satisfy certain conditions 

based on the classification of the samples. Specifically, if a sample  𝑥ᵢ  belongs to the negative class and 

another sample  𝑥𝑗  lies in the boundary or neighborhood of the positive class, their distance must be 
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greater than zero or exceed a predefined threshold  𝛿 . These conditions ensure that selected features 

maintain 𝑖 − 𝑡ℎ a clear distinction between classes, ultimately enhancing the model's classification per-

formance. The binary variable  𝜒𝑖  indicates whether a feature is included (1) or excluded (0), facili-

tating dimensionality reduction while preserving essential information for accurate predictions. 

𝐿𝑒𝑡 𝜒(1)  =  (𝜒1
1, 𝜒2

1, . . . , 𝜒𝑚
1  ) be a solution to (20), then 𝑅1  =  {(𝑎1, 𝜒1

1), . . . , (𝑎𝑚, 𝜒𝑚
1 )}  is a reduct 

with minimum cardinality.  If  

𝜒𝑗
1 = {

1, 𝑗 ∈ Λ1 = {𝑙1,1; 𝑙1,2;… ; 𝑙1,𝑚1
}

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Then 𝑅1 = {𝑎𝑙1,1 , 𝑎𝑙1,2 , … , 𝑎𝑙1,𝑚1}. We represent the product of non-zero component of  𝜒(1) by Π(1) as 

follows: 

Considering 𝛬1,  

Π(1) = 𝜒𝑙1,1
1 × 𝜒𝑙1,2

1 ×…× 𝜒𝑙1,𝑚1
1    (19) 

There are several ways to solve constrained optimization problems, one of which is the Penalty 

Function method. In this approach, proposed solutions can violate the problem's constraints, but each 

violation incurs a penalty based on its severity. This penalty affects the quality of the solution by altering 

the objective function value. For example, in a minimization problem, the penalty function increases 

the objective function, making the solution worse. While there are many ways to define a penalty func-

tion, certain key principles should guide its design. Based on the issues discussed and Example 2.4.5, 

we can draw the following conclusions: 

𝐶1
′ = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥8, 𝑥9}, 𝐶2

′ = {𝑥7, 𝑥10}, 𝐶1
" = {𝑥6}, 𝐶2

" = {𝑥5}. 

Equation (20) can be optimized using these constraints. The optimization method used here is similar 

to the feature selection approach discussed in this article. Various feature selection methods have been 

proposed, including heuristic methods for large datasets, which have proven to be effective. Meta-heu-

ristic optimization algorithms can be slightly modified for different optimization problems. 

With the increasing complexity of real-world issues and the need for quick solutions, traditional 

methods often fall short, leading to a rise in random algorithms. As a result, the use of heuristic and 

meta-heuristic algorithms has grown significantly over the past few decades. Unlike classical methods, 

heuristic search methods explore the search space in parallel and rely on a single fitness function to 

guide their search, leveraging swarm intelligence. Examples of these methods include the bird popula-

tion algorithm, genetic algorithm, and firefly algorithm. Meta-heuristic algorithms can be categorized 

into population-based and path-based methods. The genetic algorithm discussed in this paper utilizes a 

set of strings, and its basic concepts will be explained further in the next sections. Many meta-heuristics 

employ stochastic optimization, meaning that the solutions found depend on randomly generated vari-

ables. In combinatorial optimization, meta- heuristics can efficiently find good solutions by exploring 

a large set of feasible options, often requiring less computational effort than traditional optimization 

algorithms or simple heuristics. 

3.2.1. Genetic Algorithm 

Genetic Algorithms (GAs) are optimization techniques inspired by the process of natural selection. 

They are used to solve complex problems by mimicking the evolutionary processes that occur in nature. 

The main components of a GA include a population of potential solutions, a fitness function to evaluate 
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these solutions, and operators such as selection, crossover, and mutation. GAs are particularly useful 

for optimization problems where traditional methods may struggle, as they explore a wide solution 

space and can escape local optima [19]. Here is the pseudocode for the genetic algorithm: 

Alghorithm1: Pseudo-code of Genetic Algorithm  

1. Initialize population with random individuals 

2. Evaluate fitness of each individual in the population 

3. Repeat until stopping condition is met: 

    a. Select parents from the current population based on fitness 

    b. Generate offspring through crossover and mutation 

    c. Evaluate fitness of offspring 

    d. Replace the old population with the new offspring 

4. Return the best solution found 

 

Genetic algorithms enable efficient exploration of diverse solution spaces by starting with an initial 

population of candidate features. Each feature is evaluated using a fitness function, and through iterative 

processes like selection, crossover, and mutation, new populations are generated that converge towards 

optimal solutions. By applying the genetic algorithm to Equation 20, we can obtain the reduct set with 

the smallest cardinality.  

The time complexity of a Genetic Algorithm (GA) can be defined using the following parameters: 

• N: Population size 

• G: Number of generations 

• D: Number of variables (dimensions) 

• M: Number of inequality constraints 

in each generation, every individual (solution vector of size 𝐷) must be evaluated. This evaluation in-

cludes checking all 𝑀 constraints. Additionally, basic operations such as crossover, mutation, and se-

lection are proportional to 𝑁 and 𝐷. 

Thus, the time complexity per generation is approximately: 𝑂(𝑁 ⋅  (𝑀 +  𝐷)), Since this process 

repeats for 𝐺 generations, the overall time complexity is: 𝑂(𝐺 ⋅  𝑁 ⋅  (𝑀 +  𝐷)) GAs maintain popu-

lation diversity while directing the search towards promising areas, allowing for the discovery of com-

plex feature interactions often overlooked by traditional optimization methods. When combined with 

numerical optimization techniques, GAs enhance the fine-tuning of features, ensuring their individual 

and collective effectiveness in improving the proposed method. The following defines the constrained 

numerical optimization problem: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑓(𝑥)    𝑥 ∈ 𝑅𝑛  

(20) 
𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜:   

{
ℎ𝑖(𝑥) = 0,
𝑔𝑖(𝑥) ≤ 0,

 
𝑖 = 1,2,… ,𝑚; 

𝑖 = 𝑚 + 1,2,… , 𝑝. 

In this formulation, ℎ𝑖(𝑥)represents equality constraints, while 𝑔𝑖(𝑥) denotes inequality constraints. 

The feasible region is defined by the set of vectors 𝑥 that satisfy all the constraints ℎ𝑖(𝑥) = 0 and 

𝑔𝑖(𝑥) ≤ 0. A vector that meets all these constraints is considered part of the feasible region.  
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In constrained optimization problems, we often seek to optimize a given objective function while 

satisfying certain constraints. However, handling constraints directly can be challenging. One effective 

approach to address this issue is the use of penalty functions. A penalty function is a technique that 

transforms a constrained optimization problem into an unconstrained one by incorporating the con-

straints into the objective function. The basic idea is to add a penalty term to the objective function that 

increases as the solution violates the constraints. This way, feasible solutions (those that satisfy the 

constraints) will have lower penalty values compared to infeasible solutions. [8]. Using this approach, 

we transform a constrained problem into a non-constrained problem as follows: 

𝐹(𝑋) = {
 𝑓(𝑥)                                  𝑥 ∈ 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑟𝑒𝑔𝑖𝑜𝑛
𝑓(𝑥)+ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦(𝑥)       𝑥 ∉ 𝑓𝑒𝑎𝑠𝑖𝑏𝑙𝑒 𝑟𝑒𝑔𝑖𝑜𝑛0

 (21) 

The function 𝐹(𝑋) is an objective function, it can be divided into two scenarios: If  𝑥  is within the 

feasible region, meaning all constraints are satisfied, then the objective function is simply  𝑓(𝑥). This 

indicates that we only focus on the original objective function value. If 𝑥 is outside the feasible region, 

meaning one or more constraints are violated, then the objective function becomes 𝑓(𝑥)  +  penalty(x). 

Here, penalty(𝑥)is an additional term that represents a penalty for violating constraints. This penalty is 

designed to increase as the violation worsens. Ultimately, if a point is neither in the feasible region nor 

has a defined penalty, the function value will be 0. This structure helps identify infeasible points during 

the optimization process and guides the search towards feasible solutions. 

Proposition: 

Let 𝑅𝑖 = {𝑎𝑙𝑖,1 , 𝑎𝑙𝑖,2 , … , 𝑎𝑙𝑖,𝑚𝑖
}, 𝑖 = 1,2, … , 𝑡 are reducts to given information system such that |𝑅1| ≤

|𝑅2| ≤ ⋯ ≤ |𝑅𝑡| due to Equation (21) define Π(2), … , Π(𝑡). Use a big M multiplier to reformulate (20) 

as follows: 

𝑀𝑖𝑛 𝑓 =∑𝜒𝑖 +𝑀∑Π(𝑗)
𝑡

𝑖=1

𝑚

𝑖=1

 

(22) 

Subject to: 

{
 
 
 
 

 
 
 
 
∆𝑖,𝑗(𝜒1 , 𝜒2 , … , 𝜒𝑚) > 0, (𝑥𝑖, 𝑥𝑗) ∈ 𝑁𝐸𝐺(𝑋

+) × ∆(𝑋+)

∆𝑖,𝑗(𝜒1 , 𝜒2 , … , 𝜒𝑚) > 𝛿, (𝑥𝑖, 𝑥𝑗) ∈ 𝑁𝐸𝐺(𝑋
+) × 𝛥(𝑋+)

∆𝑖,𝑗(𝜒1, 𝜒2 , … , 𝜒𝑚) > 𝛿, (𝑥𝑖, 𝑥𝑗) ∈ 𝑁𝐸𝐺(𝑋
+) × 𝑁(𝑋+)

∆𝑖,𝑗(𝜒1 , 𝜒2 , … , 𝜒𝑚) > 0, (𝑥𝑖, 𝑥𝑗) ∈𝑁(𝑋
+) × 𝛥(𝑋+)         

∆𝑖,𝑗(𝜒1 , 𝜒2, … , 𝜒𝑚) > 𝛿, (𝑥𝑖, 𝑥𝑗) ∈ 𝑁(𝑋
+) × ∆(𝑋+)     

∆𝑖,𝑗(𝜒1 , 𝜒2 , … , 𝜒𝑚) > 𝛿, (𝑥𝑖, 𝑥𝑗) ∈ 𝑁(𝑋
+) × 𝑁𝐸𝐺(𝑋+)

𝜒𝑖 ∈ {0,1}                                                                         

 

 

Then this optimisation problem gives reduct 𝑅𝑡+1such that |𝑅𝑡| ≤ |𝑅𝑡+1|. 

For example, referring to Table 6, we see that 𝜒1 = {𝜒1, 𝜒3, 𝜒7, 𝜒12, 𝜒14}  is one of the responses in 

Equation (20). Using Equation (24) under the same constraints, other reducts can be identified. Table 6 

shows the various reducts obtained by the proposed method for the Bank data set. The smallest reduct 

listed includes attributes 1, 3, 7, 12, 𝑎𝑛𝑑 14. Consequently, 𝜒1 = 𝜒3 = 𝜒7 = 𝜒12 = 𝜒14 = 1, with all 

other attributes set to 0. The first two reducts each contain five attributes, indicating they are minimal 

subsets that retain sufficient information for classification. The third and fourth reducts have six attrib-

utes, possibly capturing more complex relationships within the data. The fifth reduct includes seven 
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attributes, suggesting a broader coverage but with potential redundancy. As shown in Table 6, the car-

dinalities of the sets are as follows: 𝑅1 = {𝑎1, 𝑎3, 𝑎7, 𝑎12, 𝑎14} has 5 elements, 

𝑅2 = {𝑎2, 𝑎9, 𝑎11, 𝑎13, 𝑎14} has 5 elements, 𝑅3 = {𝑎1, 𝑎6, 𝑎11, 𝑎13, 𝑎14, 𝑎15}  has 6 elements,  

𝑅4 = {𝑎3, 𝑎7, 𝑎10, 𝑎11, 𝑎12, 𝑎14} has 6 elements  and  𝑅5 = {𝑎1, 𝑎3, 𝑎4, 𝑎6, 𝑎7, 𝑎9, 𝑎12} has 7 elements.  

Therefore, the cardinalities satisfy:  |𝑅1| ≤ |𝑅2| ≤ |𝑅3| ≤ |𝑅4| ≤ |𝑅5|. Choosing the appropriate reduct 

significantly affects model performance. Using fewer attributes, as in the first two reducts, tends to 

produce simpler models that are less likely to overfit. In contrast, more complex reducts, such as the 

fifth, may capture additional nuances but can reduce interpretability and increase the risk of overfitting. 

Table 6: The Selected Reducts of Bank Dataset By Proposed Method 

No |𝛘| Position of  𝛘 Reducts 

1 5 1, 3, 7, 12, 14 𝑅1 = {𝑎1, 𝑎3, 𝑎7, 𝑎12, 𝑎14} 

2 5 2, 9, 11, 13, 14 𝑅2 = {𝑎2, 𝑎9, 𝑎11, 𝑎13, 𝑎14} 

3 6 1, 6, 11, 13, 14, 15 𝑅3 = {𝑎1, 𝑎6, 𝑎11, 𝑎13, 𝑎14, 𝑎15} 

4 6 3, 7, 10, 11, 12, 14 𝑅4 = {𝑎3, 𝑎7, 𝑎10, 𝑎11, 𝑎12, 𝑎14} 

5 7 1, 3, 4, 6, 7, 9, 12 𝑅5 = {𝑎1, 𝑎3, 𝑎4, 𝑎6, 𝑎7, 𝑎9, 𝑎12} 

4 Experiments and Evaluation 

The proposed algorithm was tested on the standard banking dataset in Table 5, and the results were 

compared with several other feature selection methods. Subsequently, different classification methods 

were employed to examine the effectiveness of the proposed method. The datasets were downloaded 

from the 𝑈𝐶𝐼 [13] and the implementation of 𝑅𝑂𝑆𝐸2 software of the rough set theory tool [18]. The 

importance of using datasets from the UCI Machine Learning Repository in financial data analysis lies 

in their diversity and quality. The data for this study comes from a Portuguese banking institution 

aiming to predict customers' subscription to a term deposit product. The dataset includes four sets: two 

main sets, one with 41,188 samples and 20 features, and another with 41,188 samples and 17 features 

and two smaller sets, each containing 10% of the samples to facilitate running more complex algo-

rithms like SVM. This dataset, especially the full version used in this study with 20 features, is con-

sidered a standard resource for analyzing and modeling customer behavior in direct marketing. These 

datasets provide a solid foundation for testing algorithms, developing models, and validating results. 

They help researchers and analysts understand financial patterns, improve decision-making, and en-

hance predictive accuracy. Additionally, using standardized datasets allows for better comparison of 

methods and findings across studies. 

4.1. Feature Selection Algorithm 

The proposed method was tested against several feature reduction methods using a rough set and 

neighbourhood rough set. The first method is a model of neighbourhood rough set to examine the issue 

of heterogeneous feature subset selection. The classical rough set can be utilized to examine categorical 

features and here, the classical rough set was generalized using a neighbourhood relations and a neigh-

bourhood rough set model was introduced [39]. 

Another method is to use harmony search for selection of feature for high dimensional imbalanced 

class data in this study, a new method for selecting feature was introduced known as 𝑆𝑌𝑀𝑂𝑁 that relies 

on symmetrical uncertainty and harmony search. To weigh features as to their dependence on class 
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labels, this method relies on symmetrical uncertainty [39]. In addition, for class imbalance learning, a 

weighted rough set-based method was introduced.  This paper, introduced weights into the classic rough 

set model, which balances distribution of class of a data set and develops a weighted rough set-based 

method that handles the class imbalance problem [27]. In addition, selection of feature for imbalanced 

data on the basis of neighbourhood rough set are other compared methods in this article. In addition, 

we examined the uncertainty of feature selection based on different parameters. A particle swarm opti-

mization algorithm was employed to achieve the optimized parameters in the algorithm [10].  

4.2. Classification Method 

Classification is a fundamental supervised learning technique widely employed in various domains, 

including finance, healthcare, and marketing, to categorize data into predefined classes. The process 

involves training a model on labelled datasets to enable accurate predictions for unseen instances. Sup-

port vector machines, neural networks, regression, decision trees, etc. are among the classification al-

gorithms used by researchers, which have specific applications based on the complexity and type of 

data. Evaluation metrics such as accuracy, sensitivity, specificity, and ROC are essential for assessing 

model performance, guiding us in selecting the most suitable approach for specific tasks. Overall, a 

comprehensive evaluation of feature selection algorithms is vital for enhancing classification accuracy 

and model interpretability. The proposed model is evaluated using various classification methods, as 

follows:  

4.2.1.  Evaluation Metric 

One of the performance evaluation criteria of classification models is accuracy, which evaluates the 

correctly predicted sample relative to the total samples, the formula of which is as follows : 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
|𝑇𝑃| + |𝑇𝑁|

|𝑇𝑃|  +  |𝐹𝑃| + |𝐹𝑁| + |𝑇𝑁|
 , (23) 

in which,  

TP (True Positive): The number of data instances that were actually positive and the model correctly 

predicted as positive. 

TN (True Negative): The number of data instances that were actually negative and the model correctly 

predicted as negative. 

FP  (False Positive): The number of data instances that were actually negative but the model incorrectly 

predicted as positive (Type I error). 

𝐹𝑁 (False Negative): The number of data instances that were actually positive but the model incorrectly 

predicted as negative (Type II error). 

The confusion matrix (Fig.1), shows the performance of the classification model with the values of 

𝑇𝑃, 𝐹𝑁, 𝐹𝑃, and 𝑇𝑁. 
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Sensitivity is the true positive rate and specificity is the true negative rate, which respectively char-

acterize the proportion of positive and negative tuples that are correctly identified. 

Sensitivity =  
|𝑇𝑃|

|𝑇𝑃|  +  |𝐹𝑃|
 (24) 

Specificity =  
|𝑇𝑁|

|𝑇𝑁|  +  |𝐹𝑃|
 (25) 

The ROC curve is an essential instrument in evaluating classification models, providing valuable 

insights into their capabilities and limitations across different operating conditions. ROC curves are 

particularly useful in situations where class distribution is imbalanced, allowing practitioners to deter-

mine the model's robustness against different error types. By visualizing how many true positives can 

be achieved against false positives at various thresholds, the ROC curve aids in selecting an optimal 

cut-off point for predictions.   We examined our financial dataset using the HFS, SYMON, RSFSAID 

and WRS feature selection methods to evaluate our proposed method. The results are shown in Table 

7. 

 

Table 7: The Selected Feature Financial Dataset By Various Feature Selection Algorithms, Compared With     Proposed 

Method 

Method HFS [39] SYMON [40] WAR [27] RSFSAID [7] Proposed method 
Selected Feature 1 2 3  7 13 14 15 

16 18 19 (10) 
1 3 5 4 7 11 14 

19  (8) 
1 2 4 5 6 7 8 10 

11 12 19 (11) 
1 3 5 10 12 14 

19 (7) 
3 7 10 11 12 14 (6) 

 

Table 8: AUC Using Various Classification Methods, Compared With Proposed  Method 

Method HFS SYMON WAR RSFSAID Proposed method 

Decision Tree(DT) 0.9213 0.9218 0.9376 0.9401 0.9499 

J48 0.8343 0.8525 0.8012 0.8821 0.8901 

ANN 0.8954 0.835  0.7921  0.9125 0.9209 

SVM 0.7438 0.7321 0.6989  0.728  0.9660 

Since the feature selection algorithms and feature evaluation procedures are not the same, the features 

selected by various feature selection methods differ. As mentioned, ROC and AUC are used to evaluate 

unbalanced data to verify the effectiveness of the feature selection algorithms used. The comparison of 

results for the method is reported in Table 8. 

Figures 2 and 3 present the confusion matrices for the Bank dataset test data, comparing classifiers 

Fig. 1: Confusion Matrix:  Performance of the Classification Model 
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with and without feature selection. In Figure 2, the matrices evaluate the performance of four algo-

rithms: (a) Decision Tree, (b) J48, (c) Artificial Neural Network (ANN), and (d) Support Vector Ma-

chine (SVM), all without feature selection. Among these, J48 demonstrated the best overall balance, 

particularly in terms of recall for Class 2. The Decision Tree and ANN classifiers also performed well, 

each excelling in different areas. However, the SVM model faced challenges related to class imbalance. 

While it achieved an impressive accuracy of 99.3% for Class 2, it struggled with Class 1, resulting in a 

high misclassification rate of 64.4% due to a significant number of false negatives. 

In Figure 3, the confusion matrices for the test dataset show the performance of four classifiers: (a) 

Decision Tree, (b) J48, (c) ANN, and (d) SVM. The rows indicate the predicted classes, while the col-

umns represent the actual classes. Each cell displays the number of samples, the percentage contribu-

tion, and the class-wise accuracy for each category. Diagonal cells indicate correct classifications, while 

off-diagonal cells represent misclassifications. Feature selection plays a vital role in improving classi-

fication accuracy by removing irrelevant or redundant information. The matrices demonstrate that ANN 

and SVM outperform both Decision Tree and J48 classifiers, likely due to their ability to handle com-

plex, nonlinear relationships more effectively. These results highlight the importance of both model 

selection and feature selection in analysing the Bank dataset for classification tasks. 

The ROC curve visually represents the trade-off between the true positive rate and the false positive 

rate of a classifier. It is a useful tool for evaluating the performance of different models by illustrating 

their ability to distinguish between classes across various threshold settings. A curve closer to the top-

left corner indicates better performance, reflecting higher sensitivity and specificity. The area under the 

ROC curve (AUC) quantifies overall accuracy, where values closer to 1 indicate a more effective clas-

sifier. ROC analysis is especially valuable for comparing models on imbalanced datasets, ensuring a 

balanced assessment beyond simple accuracy metrics [32].  Below is the ROC curve for the bank data 

without using feature selection and with feature selection applied. 

Figure 4 presents the ROC (Receiver Operating Characteristic) curves for different classifiers ap-

plied to the Bank dataset without feature selection. Each subplot corresponds to a specific model: De-

cision Tree (a), J48 (b), Artificial Neural Network (ANN) (c), and Support Vector Machine (SVM) high 

classification performance. Specifically, the Decision Tree and J48 models (plots a and b) exhibit almost 

perfect separation between the classes, as indicated by the steep rise of their ROC curves and the prox-

imity to the y-axis. This suggests that these models achieve high sensitivity with minimal false positive 

rates. The ANN (plot c) also demonstrates strong performance, with its ROC curves showing quick 

increases in the true positive rate. 

However, there is a slightly more gradual ascent compared to the Decision Tree-based models, which 

may indicate marginally lower discrimination. In contrast, the SVM (plot d) demonstrates a noticeably 

less steep ROC curve, especially for Class 2, indicating somewhat lower overall classification perfor-

mance. The curve for Class 2 in the SVM plot rises more slowly and does not reach the maximum true 

positive rate as rapidly as the other models, implying that the SVM may be less effective on this partic-

ular dataset without prior feature selection. 

In summary, the Decision Tree and J48 classifiers outperform both ANN and SVM in terms of ROC 

characteristics on the raw Bank dataset, effectively distinguishing between classes with fewer false 

positives. This comparison highlights the importance of model selection when working with datasets 

that have not undergone feature selection.  
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Fig. 2: Confusion matrix of Bank dataset without feature selection. (a). Confusion Matrix on Test Dataset (Deci-

sion Tree), (b). Confusion Matrix on Test Dataset (J48), (c). Confusion Matrix on Test Dataset (ANN), (d). Con-

fusion Matrix on Test Dataset (SVM). 

 

Figure 5 illustrates the ROC curves for various classifiers applied to the bank dataset following 

feature selection. These curves indicate the high performance of all classifiers, with their proximity to 

the top-left corner of the graph signifying a strong ability to identify positive instances while minimizing 

false positives. Distinct curves for classes 1 and 2 suggest that the models exhibit similar predictive 

capabilities for both classes. Additionally, the similarity in the curves across different classifiers implies 

that feature selection has contributed to the enhancement of the dataset's quality. The grey diagonal line 

in each subplot represents random performance (AUC = 0.5), and the positioning of the curves above 

this line confirms the effectiveness of the classifiers. Overall, the results demonstrate that feature selec-

tion plays a crucial role in improving classifier performance within the bank dataset. The AUC (Area 

Under the Curve) is a key metric for evaluating classification models, especially binary ones. It 

measures how well a model distinguishes between positive and negative classes by calculating the area 

under the ROC curve, which plots true positive rate versus false positive rate across different thresholds. 

Figure 6 compares AUC values of five feature selection methods (HFS, SYMON, WAR, RSFSAID, 
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1 

and Proposed method) across four classifiers (Decision Tree, J48, ANN, SVM). The Proposed method 

consistently achieves the highest AUC, peaking at 0.965 with SVM, showing its effectiveness in select-

ing key features and boosting classifier performance. WAR performs the worst, especially with ANN 

and SVM. HFS, SYMON, and RSFSAID show moderate results but are outperformed by the proposed 

method. Decision Tree and J48 do well with most methods, while SVM benefits most from the proposed 

method, highlighting their strong combination. Overall, the proposed method significantly improves 

classification accuracy and is a robust choice for feature selection.  
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2.  Fig. 3: Confusion matrix of Bank dataset with feature selection. (a). Confusion Matrix on Test Da-

taset(Decision Tree), (b). Confusion Matrix on Test Dataset (J48), (c). Confusion Matrix on Test Da-

taset (ANN), (d). Confusion Matrix on Test Dataset (SVM). 
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(a) (b) 

(c) (d) 

Fig. 4: ROC of Bank dataset without feature selection. (a). ROC on test dataset (Decision Tree), 

(b). ROC on test dataset (J48), ROC on test dataset (ANN), ROC on test dataset (SVM) 
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(c) (d) 

Fig. 5: ROC of Bank dataset with feature selection. (a). ROC on test dataset (Decision Tree), (b). ROC on 

test dataset (J48), ROC on test dataset (ANN), ROC on test dataset (SVM) 
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5 Discussion and Conclusions 

The costs of misclassifying minority class data in data science applications can be very high. This 

can lead to many problems when the data dimensions are large. The conventional approach to solving 

this problem is to select features to best predict minority class data. In this study, the problem of feature 

selection by using the neighbourhood roughest concept and the genetic algorithm was studied by pre-

senting a new method for the selection of attributes. This method is based on elements of boundary 

region in neighbourhood rough set theory; the proposed method makes it possible to obtain fewer fea-

tures at an acceptable time. The proposed algorithm was tested on several standard datasets.  Various 

datasets (nominal, numerical, mix, and imbalance) were used to test the proposed method and experi-

mental results show that this algorithm has reasonable accuracy compared to other methods. The num-

ber of features in the proposed method is significantly different from the original number of features. 

Feature selection plays a vital role in financial data analysis by reducing dimensionality, removing ir-

relevant or redundant variables, and enhancing model efficiency. This process improves prediction ac-

curacy in tasks such as stock price forecasting, credit risk assessment, and fraud detection by concen-

trating on the most relevant factors. It also helps prevent overfitting, making models more generalizable 

to new data, and effectively addresses imbalanced classes often present in financial datasets. Moreover, 

narrowing down features increases model interpretability, allowing analysts to better understand key 

market drivers. On the other hand, the Neighborhood Rough Set Theory (NRST) provides valuable 

insights but comes with notable limitations. Its performance heavily depends on parameter settings like 

neighborhood size; improper tuning can reduce accuracy and generalizability. NRST may struggle with 

noisy or highly nonlinear financial data, where capturing complex patterns is challenging. Scalability 

issues emerge with large, high-dimensional datasets due to increased computational demands, hindering 
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Fig. 6: Value of AUCs for Various Algoriths Based on Table 8. 
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real-time applications. Furthermore, NRST alone may not fully capture all aspects of financial risk and 

uncertainty, often requiring integration with other methods. In summary, while feature selection is es-

sential for boosting model performance and interpretability in financial analysis, NRST should be ap-

plied with caution, considering its sensitivities and limitations. Combining NRST with complementary 

techniques can help overcome its drawbacks and lead to more robust financial models. 
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