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Abstract
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Revised: 15 June 2025 designing a data-driven classification model based on the CatBoost machine learning algorithm. The
Accepted:01 July 2025 proposed model classifies projects into three decision categories—Selected, Reserved, and

Rejected—using 13 indicators derived from two integrated dimensions: sustainability (with its
economic, social, and environmental sub-dimensions) and agility. The dataset comprises 380 real-
world projects, each annotated with corresponding indicator values and expert-labeled final
decisions. A rigorous statistical analysis was conducted to confirm data quality, balance, and absence
of multicollinearity. Subsequently, the CatBoost model was trained and optimized via
hyperparameter tuning and cross-validation techniques. Its classification performance was
benchmarked against Support Vector Machine (SVM) and Artificial Neural Network (ANN)
models. Results revealed the superiority of CatBoost, which achieved an accuracy of 91.21% and an
F1-score of 90.32%, outperforming both alternative models across all key metrics including
precision and recall. Confusion matrix analysis further highlighted its robustness in correctly
identifying projects in each of the three categories. The study demonstrates that advanced machine
learning models—particularly those optimized for mixed-type and nonlinear datasets—can
significantly improve multi-criteria decision-making processes in urban project management. The
model’s capability to integrate sustainability and agility perspectives offers a novel approach to
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1. Introduction

In today's fast-paced and complex world, a significant
portion of human and organizational activities is defined
and implemented in the form of projects. From
technological development to environmental interventions,
and from social programs to economic plans, the project-
based approach has become the dominant paradigm for
achieving strategic objectives (Zarjou & Khalilzadeh,
2022). Among these projects, urban infrastructure
initiatives hold a special place, as they directly impact the
quality of urban life, economic productivity, environmental
sustainability, and social cohesion (Yeh & Chen, 2020;
Zeynali et al., 2025). Given the scale, complexity, and
long-term consequences of this category of projects, it is
essential to design their evaluation and prioritization
frameworks in a precise and scientific manner.
Infrastructure project evaluation—particularly in the field
of urban development—has traditionally been based on a
limited set of economic and financial indicators such as
Return on Investment (ROI), Benefit-Cost Ratio, Net
Present Value (NPV), and Payback Period. Although these
indicators provide important insights, they are inadequate
for the multidimensional analysis of urban development
projects in the 21st century. In practice, many projects that
score highly within traditional frameworks may not align
with broader social goals or may lack the required long-
term sustainability. As a result, relying solely on traditional
criteria may lead to suboptimal decisions and misallocation
of resources, especially in the public sector (Lee et al.,
2020; Tavakoli et al., 2024).

To overcome these limitations, modern project evaluation
frameworks increasingly incorporate the dimensions of
sustainability and agility. These two paradigms reflect the
fundamental characteristics of contemporary infrastructure
projects and ensure that projects are evaluated not only
from an economic perspective but also in terms of
environmental responsibility, social inclusion, and
adaptive capacity (Nessari et al., 2024). Over the past two
decades, the concept of sustainability has become a core
pillar in infrastructure planning and evaluation. Broadly
defined, sustainability refers to the ability to meet present
needs without compromising the ability of future
generations to meet theirs and encompasses three main
dimensions: environmental, social, and economic (Sharma
& Joshi, 2023; Tajally et al., 2025). In the context of urban
infrastructure, sustainable development requires balancing
growth with resource conservation. Projects should be
evaluated not only based on immediate efficiency but also
on long-term environmental impacts, their contribution to
social equity, and alignment with climate resilience goals
(GhanavatiNejad et al., 2025; Mohagheghi & Mousavi,
2021; Sazvar et al., 2022). Indicators such as carbon
emissions, resource efficiency, waste management,
stakeholder participation, and lifecycle costs are among the
key criteria for measuring project sustainability.
Integrating these indicators into the project selection
process facilitates cities’ transition toward inclusive and
green development.

In contrast, agility refers to the ability of systems,
organizations, or projects to respond quickly and
effectively to change (Sharma et al., 2022). In an era
marked by uncertainty, disruption, and rapid shifts in
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demand, urban infrastructure must be designed with the
necessary flexibility, adaptability, and resilience. Agility in
project management includes rapid decision-making,
iterative development, modular design, and responsiveness
to stakeholder feedback (Molaei et al., 2025; Rostami et al.,
2023). In infrastructure projects, agility can manifest
through adaptive construction methods, scalable systems,
probabilistic planning, and smart technology integration.
Project agility is assessed using indicators such as time-to-
operation, modularity of design, risk responsiveness,
stakeholder engagement, and operational flexibility.
Projects that score higher in this area perform more
effectively in dynamic urban environments (Gertzen et al.,
2022; Javan-Molaei et al., 2024).

Despite the growing importance of sustainability and
agility, operationalizing these concepts in project screening
systems still faces challenges. Many existing evaluation
frameworks are either too generic or static in nature and
lack the adaptability required for complex and changing
urban projects. Moreover, traditional decision-making
tools often underperform when faced with multi-criteria
and non-linear data. With the rise of smart cities and the
growing availability of big data, there is a new opportunity
to leverage advanced analytical methods to enhance the
quality of project evaluation systems. In this context, data-
driven approaches and machine learning models play a
pivotal role. Unlike static scoring methods or subjective
judgments, machine learning can process large volumes of
data, identify hidden patterns, adapt to new information,
and generate predictive insights (ForouzeshNejad, 2024;
Nessari et al., 2024). By training on historical project data,
stakeholder preferences, and contextual variables, these
algorithms can perform project screening with greater
accuracy, consistency, and transparency. Especially in
complex, multi-criteria, and dynamic settings, such models
outperform traditional ones and enable continuous learning
and improvement (Kettunen & Lejeune, 2022; Zeynali et
al., 2024). In this study, machine learning is considered not
merely a computational tool but a novel paradigm for
rethinking infrastructure project evaluation.

Accordingly, the aim of this research is to develop a data-
driven screening model for urban infrastructure projects
that integrates the dimensions of sustainability and agility
in a unified manner. The proposed model employs
supervised machine learning techniques to classify and
rank projects based on historical and contextual data,
incorporating indicators aligned with environmental,
social, and adaptive performance. This model seeks to
bridge the gap between theoretical frameworks and
practical screening processes and to offer an innovative
tool for urban policymakers.

In the following, Section 2. Literature review is presented,
which reviews the related literature and identifies the
research gap. Section 3. Methodology is written, and
Section 4. Case Study and Evaluation Criteria is provided.
Section 5. Findings is reported, Section 6 presents
managerial insights and Section 7. Conclusion is presented.

2. Literature review

This section provides a concise review and analysis of
studies related to project evaluation. For example,
(Mahmoudi et al., 2021) proposed a comprehensive
framework for large-scale multi-criteria decision-making
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in the presence of incomplete data. They used the PCA
method to cluster criteria and the K-means algorithm to
cluster alternatives, thereby structuring the decision-
making process. Then, fuzzy TOPSIS and the Ordinal
Priority Approach (OPA) were applied to rank the clusters.
A case study was conducted at a refinery equipment
manufacturing company, and the results indicated high
accuracy, flexibility, and efficiency of the proposed data-
driven method under incomplete data conditions.
Similarly, (Yang et al., 2022) proposed an optimized
method for project site selection using an improved genetic
algorithm. They collected and integrated spatial data and
designed evaluation indicators to build the site selection
framework. The algorithm was improved by focusing on
eigenvalue  enhancement and correlation factor
optimization. Experimental results showed that the method
achieved high compatibility with target projects (90—
100%) and user satisfaction (95-99%), confirming its
robustness.

(Namazi et al., 2023) also presented a strategic approach
for R\&D project portfolio selection using efficiency—
uncertainty maps. Their goal was to align project portfolios
with organizational mission and vision by leveraging
expert knowledge. In their method, projects are mapped
into four strategic zones (Exploitation, Challenge,
Desperation, Discretion) to facilitate simultaneous analysis
of strategic perspective and quantitative data. This helps
decision-makers align portfolios with organizational goals.
(Hong et al., 2023) proposed a multi-objective mean—
semivariance model for project selection under uncertainty,
incorporating  reinvestment and synergy effects.
Investment and profit were modeled as uncertain variables,
aiming to maximize expected NPV and minimize risk.
They introduced binary versions of Jaya and Rao
algorithms, with  binMORao2 showing the best
performance across various test cases. The model
effectively captures uncertainty and inter-project synergy,
offering robust solutions for complex selection problems.
In another study, (Kandakoglu et al., 2024) conducted a
comprehensive literature review on the application of
multi-criteria decision-making (MCDA) methods in
project portfolio selection. They analyzed standalone and
hybrid uses of MCDA with other modeling techniques,
especially mathematical programming under resource
constraints. The study identified weaknesses in hybrid
approaches, discussed recent advances, and proposed a
decision tree to guide researchers in selecting appropriate
methods, along with suggestions for future research.
(Dagistanli, 2024) introduced a VIKOR-based method in
an Interval-Valued Intuitionistic =~ Fuzzy  (IVIF)
environment for selecting R\&D projects in the defense
industry. The objective was to use MCDA techniques
under uncertainty and incorporate expert opinion. In this
study, eight criteria and four alternative projects were
identified and evaluated by three decision-makers. Results
showed that the VIKOR method in the IVIF environment
provided both accuracy and consistency, and its application
in the defense sector was considered innovative. Likewise,
(Nessari et al., 2024) presented a data-driven model for
evaluating and selecting projects based on criteria of
resilience, circular economy, and Industry 4.0. The study
began by identifying 21 indicators weighted using the
FBWM method, followed by data labeling via WFIS.
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Finally, a predictive model was developed using the
LightGBM algorithm, achieving over 93% accuracy. The
most important indicators were identified as “increasing
market share via Industry 4.0 technologies” and "net
present value." (ForouzeshNejad, 2024) proposed a hybrid
data-driven framework for project portfolio selection in the
telecommunication  industry,  incorporating  both
sustainability and strategic dimensions. The study began by
identifying key evaluation criteria through literature review
and expert input, and then weighted them using the Fuzzy
Best-Worst Method (FBWM). The most critical criteria
included initial capital requirements, initial revenue,
number of specialists employed, energy consumption
reduction, and market share growth. Using Data
Envelopment Analysis (DEA), project performance was
assessed annually, and the results were labeled to train
machine learning models. Among the tested algorithms, the
random forest regressor outperformed support vector
regressors, achieving superior predictive accuracy in both
training and testing phases. The findings highlight the
effectiveness of integrating FBWM, DEA, and machine
learning for data-driven and forward-looking project
selection. (Bai et al., 2025) proposed a mathematical model
for project portfolio selection and scheduling that
incorporates dynamic synergy. The model aims to
maximize project portfolio benefits with a balanced
consideration of financial and non-financial factors, based
on the Balanced Scorecard. Synergy benefits evolve over
time and were quantified using system dynamics. The case
study showed that the proposed model helps managers
identify optimal projects and determine appropriate
implementation timelines based on dynamic synergies.
(Farahmand-Mehr & Mousavi, 2025) investigated
resource-constrained multi-project scheduling problems
(RCMPSP) under uncertainty caused by time-dependent
reliability of renewable resources. They developed a new
discrete-time binary integer programming model that
incorporates variable failure and constant repair rates of
resources over time. To solve this complex NP-hard
problem, the authors proposed a Hybrid Immune Genetic
Algorithm with Local Search (HIGALS), which features
novel encoding, initialization, and search mechanisms. The
algorithm was validated through a case study, where its
performance was benchmarked against GAMS and six
conventional algorithms. Results demonstrated that
HIGALS achieved an average makespan reduction of over
11.79%, confirming its superiority in handling large-scale,
uncertain scheduling environments.

The literature review shows that although many studies
have applied MCDA methods, optimization models, and
machine learning to project selection, most focus on areas
like R&D, defense, or industry—failing to address the
specific complexities of urban infrastructure. These studies
often lack an integrated approach that considers both
sustainability and agility, or they rely on theoretical models
and synthetic data, limiting their practical value. The main
research gap lies in the absence of a comprehensive, data-
driven model tailored to urban infrastructure projects—one
that simultaneously accounts for economic, environmental,
social, and agility indicators using real-world data. This
study addresses the gap by proposing a CatBoost-based
classification model capable of handling mixed-type data
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and delivering accurate, practical, and multi-level project
screening

3. Methodology

In this study, the CatBoost algorithm has been utilized as a
decision tree-based machine learning model to develop a
data-driven screening model for the classification of urban
infrastructure projects. CatBoost (Categorical Boosting) is
one of the most powerful implementations of gradient
boosting, specifically designed for datasets containing
categorical features, and is capable of processing them
effectively without manual encoding (Ghanavatinejad et
al., 2019; Qian et al., 2023). CatBoost performs well when
dealing with heterogeneous and multi-purpose data and,
compared to other boosting algorithms such as XGBoost
and LightGBM, offers greater stability, resistance to
overfitting, and the ability to learn complex feature
interactions (Rastgoo & Khajavi, 2023).

The CatBoost algorithm generally follows the steps below

(Dutta & Roy, 2022; Zeynali et al., 2025):

Automatic preprocessing of categorical features:
Without the need for One-Hot Encoding or Label
Encoding, the algorithm handles categorical features
internally.

— Ordered Boosting: To prevent overfitting, the data is
ordered such that future information does not leak
into training phases.

— Sequential decision tree construction: In each
iteration, a new tree is built to reduce the residual
error of the current model.

—  Gradual model updating: Newly built trees are added
to the model with specific weights, ultimately
forming a high-accuracy ensemble model.

Overall, the methodology of this research is defined step-
by-step in four main stages:
Step 1: Defining project evaluation indicators
Initially, through literature review and theoretical analysis
of sustainability and agility, 13 key indicators were
identified for evaluating urban infrastructure projects.
These indicators were categorized under two main
dimensions (sustainability and agility) and three sub-
dimensions (social, environmental, and economic).

Step 2: Data collection

At this stage, data on 380 urban infrastructure projects were

gathered through the review of actual project
documentation, institutional reports, organizational
databases, and specialized sources in urban project

management. For each project, the 13 indicators related to
sustainability (economic, social, environmental) and
agility were extracted. All recorded values were within
real-world, valid ranges based on official documentation.
Additionally, each project was classified into one of three
labels based on its final decision status: Selected, Reserved,
or Rejected. The distribution of these labels—20%, 25%,
and 55%, respectively—reflects the actual pattern of
decision-making in project screening.

Step 3: Machine learning model implementation

The data was split into 80% for training and 20% for
testing. The CatBoostClassifier model was then trained and
used to predict the class of each project. At this stage, the
model was executed end-to-end on the features and was
able to learn the relationships between features and labels
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without the need for manual encoding or complex feature
engineering.

Step 4: Model performance evaluation

The model's performance was assessed using metrics such
as accuracy, F1-score, precision, and recall for each class.
A confusion matrix was also provided to analyze the
classification accuracy of the projects. In initial tests, the
base model achieved an accuracy of around 49%, which
was later improved through optimization to approximately
90%.

This study demonstrates that the use of the CatBoost
algorithm enables accurate, adaptive, and data-driven
screening of urban infrastructure projects. The rationale for
selecting CatBoost lies in its ability to effectively handle
heterogeneous datasets that include both categorical and
numerical variables, which are common in real-world
infrastructure evaluations. Unlike traditional machine
learning models, CatBoost eliminates the need for
extensive data preprocessing, such as one-hot encoding, by
internally processing categorical features through ordered
boosting. Additionally, CatBoost is known for its
robustness  against  overfitting, high  predictive
performance, and capacity to model complex, non-linear
interactions among features—attributes that are essential
when dealing with multi-dimensional criteria such as
sustainability (economic, social, environmental) and
agility. These strengths make it a superior choice compared
to other methods, especially in the context of urban project
selection, where decision variables are often
interdependent and derived from diverse sources. The
algorithm was also benchmarked against Support Vector
Machine (SVM) and Artificial Neural Network (ANN)
models, both commonly used in classification tasks. The
results showed that CatBoost outperformed these models
across all major evaluation metrics, including accuracy,
F1-score, precision, and recall. This further validates its
suitability for the research problem at hand. Overall, the
chosen methodology aligns with the complexity of the data
and the research objectives, ensuring both reliability and
interpretability in decision-making.

4. Case Study and Evaluation Criteria

In this study, a case study was conducted with the aim of
practically testing the proposed model on a set of urban
infrastructure projects. The dataset includes information on
380 urban projects across various infrastructure
development domains such as transportation, energy,
environment, and municipal services, all of which were
gathered from credible sources. For each project, 13 key
indicators were extracted, reflecting the dimensions of
sustainability and agility. Overall, the project evaluation
indicators are categorized as follows (Mohagheghi et al.,
2019; Mohagheghi & Mousavi, 2021; Nayeri et al., 2023;
Staron et al., 2012; Swarnakar et al., 2023; Tavakoli et al.,
2024; Thesing et al., 2021; Zarjou & Khalilzadeh, 2022):
Social Sustainability:

— Level of local stakeholder engagement: Measures the
degree of interaction between the project and the
community or local institutions.

— Creation of sustainable employment in the region:
Assesses the number of long-term and high-quality
jobs generated by the project.



Journal of Optimization in Industrial Engineering,Vol.18, Issue 2, Summer & Autumn 2025, 67-75
Mahyar Abasian & et al./ Development of a data-driven model based on machine learning ...

— Impact on wurban quality of life: Evaluates
improvements in access to services, public welfare,
and overall satisfaction resulting from the project.

Environmental Sustainability:

— Reduction of pollutant emissions: Measures
reductions in greenhouse gases or air, water, and soil
pollution.

— Efficiency in natural resource consumption:
Evaluates productivity in the use of energy, water,
materials, or other resources.

— Recyclability and material lifecycle management:
Assesses the project’s capacity to manage and reuse
materials and waste.

Economic Sustainability:

— Net Present Value (NPV): Calculates the net
profitability of the project over its implementation

period.
— Attraction of external investment: Measures the
project’s ability to attract private sector or

partnership-based funding.

— Long-term maintenance and operational costs:
Assesses post-implementation costs necessary for
sustainable operation.

Agility:

— Time to initial operation: Measures how quickly the
project becomes operational and starts delivering
value.

—  Flexibility in design and implementation: Evaluates
the project's adaptability in design, resources, or
execution processes.

— Scalability and expandability: Assesses the potential
for the project to scale up or adapt to future
conditions.

— Responsiveness to risks and environmental
disruptions: Measures the project’s ability to react to
crises, regulatory changes, or unexpected events.

The proposed model is developed in alignment with these

evaluation indicators.

5. Findings

This section reports the findings of the study. As previously
noted, based on the 13 identified indicators and the
collected dataset of projects, a machine learning-based
model was developed to evaluate infrastructure projects.
The case study dataset consists of 380 urban infrastructure
projects, each described by 13 features reflecting various
dimensions of sustainability and agility. Additionally, each
project is assigned a final label representing its decision
status in one of three categories: Selected, Reserved, or
Rejected. These labeled data points served as the
foundation for training and evaluating the machine learning
model.

Statistical analysis of the features shows meaningful
variability across both numerical and categorical variables,
offering rich and diverse information about different
aspects of the projects. For instance, the average value for
Stakeholder Engagement is approximately 6.07 with a
variance of 3.93, indicating moderate dispersion in the
level of community and institutional involvement. The
Sustainable Employment index has a mean of 279 and a
standard deviation of 127.8, reflecting a wide range in the
economic impact of the projects. Similarly, features such
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as Economic NPV (mean: 43.52, variance: 1082.97) and
External Investment (mean: 45.24) highlight significant
differences among projects in terms of profitability and
investment potential.

On the other hand, indicators such as Time to Operation
(mean: 18.5 months) and Ongoing Cost (mean: \$4.26
million per year) provide essential insights into the agility,
cost structure, and scheduling of the projects. Attributes
related to design flexibility, scalability, and risk
responsiveness exhibit average values between 5 and 6,
with standard deviations around 2, reflecting variability in
the adaptability of the projects. Overall, the statistical
dispersion and relative balance of the features indicate that
the dataset is of high quality and sufficiently robust for
training a reliable and multidimensional model, making it
a valuable tool for classifying and screening urban
infrastructure projects.

To further examine the dataset, the correlation coefficients
among the features were analyzed. The correlation
heatmap (Figure 1) reveals that there are no strong and
direct linear relationships among most of the variables; in
other words, the majority of Pearson correlation values fall
near zero. The absence of high correlations (e.g., above 0.7
or below -0.7) among most features suggests that they
provide non-redundant and distinct information. This
indicates a low risk of multicollinearity within the dataset
and implies that the relationships between variables are
primarily non-linear or complex. Consequently, the
structure of the features is statistically sound, and the
dataset demonstrates a high level of quality for machine
learning modeling. This characteristic is especially
advantageous for tree-based algorithms such as CatBoost.
After performing statistical analysis and evaluating feature
correlations, it was determined that the dataset used in this
study possesses a high level of quality. The balanced
distribution of features, absence of strong multicollinearity
among variables, and diversity in recorded values indicate
that the data is well-suited for training machine learning
models. Accordingly, the CatBoostClassifier algorithm
was selected as the primary classification model. CatBoost
is a gradient boosting algorithm specifically designed for
mixed-type datasets (numerical and categorical), and it
performs exceptionally well when handling complex
feature interactions and relatively imbalanced data.

To optimize model performance, hyperparameter tuning
was carefully conducted. Key parameters examined and
tested included the number of trees (iterations), learning
rate, tree depth, and the sampling strategy. Techniques such
as Grid Search and Cross-Validation were employed to
identify the optimal parameter combinations. Additionally,
regularization mechanisms were activated in the model to
mitigate overfitting. Ultimately, the trained model was able
to classify projects into the three categories—Selected,
Reserved, and Rejected—with a high degree of accuracy,
demonstrating that CatBoost is a highly suitable choice for
multi-criteria classification tasks in infrastructure project
analysis.

Figure 2 illustrates a portion of the structure of one of the
decision trees within the Random Forest model. This
graphical representation shows how the model classifies
projects into one of the three categories (“Rejected,”
"Reserved,"” or "Selected") based on different feature
values. Each node (rectangle) represents a decision made
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using a specific feature. For example, at the root of the tree,
the first decision is based on the value of
Resource\ Efficiency. If the value is less than or equal to
6.5, the left branch is followed; otherwise, the path moves
to the right. Subsequent branches use features such as
Recyclability\_Score, Sustainable\_Employment,
Time\_to\ Operation, and Economic\_NPV, which play
critical roles in determining the classification path.

Each node displays information such as the Gini impurity,
the number of samples, and the distribution of class labels
(value) within that node. For instance, a node with the value
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"value = \[64, 7, 25]" indicates that out of 96 samples
reaching that node, 64 belong to the "Rejected" class, 7 to
"Reserved," and 25 to "Selected." The majority class—
here, "Rejected"—is the predicted class for that node. This
figure clearly demonstrates how the model makes

classification decisions through a hierarchical structure and
highlights which features had the greatest influence along
the decision paths.
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Fig. 2. Part of the tree structure of the CatBoost algorithm

Subsequently, to assess the accuracy and performance of
the model, a validation process was carried out, and the
model was analyzed using a set of standard classification
evaluation metrics. These metrics included Overall
Accuracy, F1-Score, Precision, Recall, and the Confusion
Matrix. Initial results indicated that the model performed
well in classifying "Rejected” projects but required
improvement in distinguishing between the "Selected"” and
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"Reserved" categories. This multi-metric analysis provided
valuable insights into the strengths and weaknesses of the
model and served as a foundation for refining its
hyperparameters and developing more advanced versions.
Table 1 presents a comparative analysis between the
CatBoost algorithm and two other models: the Support
Vector Machine (SVM) and the Artificial Neural Network
(ANN).
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Table 1.

Comparing algorithms with different metrics
Algorithm | Accuracy F1-Score Precision Recall
CatBoost | 91.21 90.32 90.89 91.11
SVM 78.81 79.81 80.11 79.06
ANN 86.11 86.78 87.16 87.98

The results of the algorithm performance comparison
indicate that the CatBoost model, with an accuracy of
91.21% and an F1-score of 90.32%, demonstrated the best
overall performance among the evaluated methods. It also
outperformed the other algorithms in terms of Precision
and Recall, achieving a well-balanced performance
between correct predictions and minimizing classification
errors. In contrast, the Artificial Neural Network (ANN)
achieved an accuracy of 86.11% and an Fl-score of
86.78%, which, although acceptable, was slightly lower
than that of CatBoost. The Support Vector Machine (SVM)
showed the lowest performance, with an accuracy of
78.81%. These results suggest that tree-based gradient
boosting models like CatBoost offer a significant
advantage, especially when dealing with complex
problems involving mixed-type features.

Additionally, a confusion matrix was used to evaluate the
model’s classification accuracy. Figure 3 illustrates the
confusion matrix resulting from the final CatBoost model.
As shown, the model correctly classified the majority of the
samples into their respective classes. For instance, 37 out
of all "Rejected™ projects were accurately identified, with
only 4 misclassified into other categories. Furthermore, all
samples from the "Reserved" and "Selected" classes were
predicted with perfect accuracy. This distribution reflects
the model's strong performance in distinguishing between
decision categories and its high level of prediction
precision. Based on these results, the final model accuracy
was calculated at 91%, confirming the remarkable
effectiveness of CatBoost in screening urban infrastructure
projects based on sustainability and agility indicators.

Rejected

120
Reserved 0 17 [l

True label

115

10

Selected 0 0 1%

Reserved Selected

Predicted label

Reje‘cted
Fig. 3. Cat Boost algorithm confusion matrix

Therefore, it can be observed that a model with over 91%
accuracy has been developed, which can serve as a reliable
basis for the evaluation and development of urban
infrastructure projects.
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6. Managerial Insights

The findings of this study offer several valuable insights
for urban policymakers, project managers, and decision-
makers involved in infrastructure planning and investment.
First, the proposed CatBoost-based classification model
provides a practical and reliable tool for prioritizing
infrastructure projects based on a comprehensive set of
sustainability and agility indicators. By integrating
economic, environmental, social, and adaptive
performance criteria, the model allows managers to move
beyond traditional cost-based evaluations and adopt a
multidimensional view of project value.

Second, the model’s high classification accuracy and
ability to process real-world data make it suitable for use in
dynamic urban environments where timely and informed
decisions are essential. Managers can use the model not
only for screening existing project proposals but also as a
diagnostic tool to identify weaknesses in early-stage
designs or policy misalignments.

Third, the framework supports evidence-based planning by
reducing subjectivity in the decision-making process. This
is particularly useful in multi-stakeholder settings where
transparency and consistency are critical for building trust
and securing project approvals.

Finally, the adaptability of the model allows it to be
extended to different urban sectors or geographical
contexts, making it a scalable decision-support tool. With
proper integration into urban management systems, the
model can significantly improve resource allocation,
reduce risk of investment failure, and contribute to
sustainable urban development in the long term.

7. Conclusion

The complex transformations in the urban environment
have increasingly highlighted the need for innovative and
precise approaches in the evaluation and screening of
infrastructure projects. In response to this need and to
address existing gaps in the literature, this study designed
and implemented a data-driven model based on the
CatBoost algorithm to evaluate urban infrastructure
projects. By incorporating 13 key indicators across the
dimensions of sustainability  (social, economic,
environmental) and agility, the model aimed to facilitate
accurate, systematic, and reliable decision-making
regarding the selection, reservation, or rejection of
projects.

The results of the statistical analysis showed that the
extracted features exhibited appropriate variability, lacked
strong multicollinearity, and contained meaningful
diversity—making them suitable for use in advanced
machine learning models. Accordingly, the CatBoost
algorithm was selected for its strong capabilities in
handling mixed and non-linear data, as well as its resilience
to overfitting. The model was trained on a dataset of 380
projects, and through fine-tuned hyperparameter
optimization and cross-validation, it achieved a final
accuracy of over 91%. This high level of accuracy in
classifying projects into three categories (Selected,
Reserved, Rejected) demonstrates the model’s ability to
correctly identify hidden patterns in real-world data.

A comparison of CatBoost with Support Vector Machines
(SVM) and Artificial Neural Networks (ANN) showed that
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CatBoost outperformed both models across all key metrics,
including accuracy, F1-score, precision, and recall. These
findings confirm that tree-based gradient boosting models
offer greater precision and consistency than other
approaches, particularly in multi-criteria and complex
datasets. The confusion matrix further validated that
CatBoost provided a balanced and accurate performance in
predicting rejected, reserved, and selected projects, with
the majority of samples correctly classified.

From a practical perspective, the results of this study can
support urban decision-makers, policymakers, and project
managers in making more effective decisions amidst
complexity, high data volumes, and competing priorities.
The proposed model, due to its reliance on real data and
non-linear learning structure, is highly adaptable to various
types of urban projects and can be implemented within
intelligent project planning and management systems.
From a theoretical standpoint, this research represents a
step toward integrating sustainability and agility paradigms
with advanced data-driven tools, thereby bridging the gap
between theory and practice. Unlike many traditional
models that focus solely on economic indicators or
technical ~ aspects, this model introduces a
multidimensional, integrated, and data-based approach that
can serve as a foundational framework for other
infrastructure and public decision-making contexts.
Finally, it is recommended that future research test this
model across various urban scales, geographic regions, and
real-world project datasets at different time points. Further
development could include continual learning capabilities,
integration with Geographic Information Systems (GIS),
and enhancement toward real-time decision support,
paving the way for the future evolution of this approach.
This study demonstrates that the use of machine learning
algorithms is not merely a technical tool but a
transformative paradigm for redefining decision-making
processes in urban development.
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