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Abstract  
This study aims to advance the evaluation and screening process of urban infrastructure projects by 

designing a data-driven classification model based on the CatBoost machine learning algorithm. The 

proposed model classifies projects into three decision categories—Selected, Reserved, and 

Rejected—using 13 indicators derived from two integrated dimensions: sustainability (with its 

economic, social, and environmental sub-dimensions) and agility. The dataset comprises 380 real-

world projects, each annotated with corresponding indicator values and expert-labeled final 

decisions. A rigorous statistical analysis was conducted to confirm data quality, balance, and absence 

of multicollinearity. Subsequently, the CatBoost model was trained and optimized via 

hyperparameter tuning and cross-validation techniques. Its classification performance was 

benchmarked against Support Vector Machine (SVM) and Artificial Neural Network (ANN) 

models. Results revealed the superiority of CatBoost, which achieved an accuracy of 91.21% and an 

F1-score of 90.32%, outperforming both alternative models across all key metrics including 

precision and recall. Confusion matrix analysis further highlighted its robustness in correctly 

identifying projects in each of the three categories. The study demonstrates that advanced machine 

learning models—particularly those optimized for mixed-type and nonlinear datasets—can 

significantly improve multi-criteria decision-making processes in urban project management. The 

model’s capability to integrate sustainability and agility perspectives offers a novel approach to 

address the complexities of modern infrastructure planning, especially in dynamic and data-rich 

environments. From a practical perspective, the proposed model supports urban policymakers, 

planners, and evaluators in selecting high-impact, future-ready projects. Theoretically, the research 

contributes to bridging the gap between strategic planning paradigms and intelligent computational 

tools. Future developments may explore integration with GIS data, real-time analytics, and adaptive 

learning features to expand applicability across urban development domains.  
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1.
 
Introduction

 

In today's fast-paced and complex world, a significant 

portion of human and organizational activities is defined 

and implemented in the form of projects. From 

technological development to environmental interventions, 

and from social programs to economic plans, the project-

based approach has become the dominant paradigm for 

achieving strategic objectives (Zarjou & Khalilzadeh, 

2022). Among these projects, urban infrastructure 

initiatives hold a special place, as they directly impact the 

quality of urban life, economic productivity, environmental 

sustainability, and social cohesion (Yeh & Chen, 2020; 

Zeynali et al., 2025). Given the scale, complexity, and 

long-term consequences of this category of projects, it is 

essential to design their evaluation and prioritization 

frameworks in a precise and scientific manner.
 

Infrastructure project evaluation—particularly in the field 

of urban development—has traditionally been based on a 

limited set of economic and financial indicators such as 

Return on Investment (ROI), Benefit-Cost Ratio, Net 

Present Value (NPV), and Payback Period. Although these 

indicators provide important insights, they are inadequate 

for the multidimensional analysis of urban development 

projects in the 21st century. In practice, many projects that 

score highly within traditional frameworks may not align 

with broader social goals or may lack the required long-

term sustainability. As a result, relying solely on traditional 

criteria may lead to suboptimal decisions and misallocation 

of resources, especially in the public sector (Lee et al., 

2020; Tavakoli et al., 2024).
 

To overcome these limitations, modern project evaluation 

frameworks increasingly incorporate the dimensions of 

sustainability and agility. These two paradigms reflect the 

fundamental characteristics of contemporary infrastructure 

projects and ensure that projects are evaluated not only 

from an economic perspective but also in terms of 

environmental responsibility, social inclusion, and 

adaptive capacity (Nessari et al., 2024). Over the past two 

decades, the concept of sustainability has become a core 

pillar in infrastructure planning and evaluation. Broadly 

defined, sustainability refers to the ability to meet present 

needs without compromising the ability of future 

generations to meet theirs and encompasses three main 

dimensions: environmental, social, and economic (Sharma 

& Joshi, 2023; Tajally et al., 2025). In the context of urban 

infrastructure, sustainable development requires balancing 

growth with resource conservation. Projects should be 

evaluated not only based on immediate efficiency but also 

on long-term environmental impacts, their contribution to 

social equity, and alignment with climate resilience goals 

(GhanavatiNejad et al., 2025; Mohagheghi & Mousavi, 

2021; Sazvar et al., 2022). Indicators such as carbon 

emissions, resource efficiency, waste management, 

stakeholder participation, and lifecycle costs are among the 

key criteria for measuring project sustainability. 

Integrating these indicators into the project selection 

process facilitates cities’ transition toward inclusive and 

green development.
 

In contrast, agility refers to the ability of systems, 

organizations, or projects to respond quickly and 

effectively to change (Sharma et al., 2022). In an era 

marked by uncertainty, disruption, and rapid shifts in 

demand, urban infrastructure must be designed with the 

necessary flexibility, adaptability, and resilience. Agility in 

project management includes rapid decision-making, 

iterative development, modular design, and responsiveness 

to stakeholder feedback (Molaei et al., 2025; Rostami et al., 

2023). In infrastructure projects, agility can manifest 

through adaptive construction methods, scalable systems, 

probabilistic planning, and smart technology integration. 

Project agility is assessed using indicators such as time-to-

operation, modularity of design, risk responsiveness, 

stakeholder engagement, and operational flexibility. 

Projects that score higher in this area perform more 

effectively in dynamic urban environments (Gertzen et al., 

2022; Javan-Molaei et al., 2024).
 

Despite the growing importance of sustainability and 

agility, operationalizing these concepts in project screening 

systems still faces challenges. Many existing evaluation 

frameworks are either too generic or static in nature and 

lack the adaptability required for complex and changing 

urban projects. Moreover, traditional decision-making 

tools often underperform when faced with multi-criteria 

and non-linear data. With the rise of smart cities and the 

growing availability of big data, there is a new opportunity 

to leverage advanced analytical methods to enhance the 

quality of project evaluation systems. In this context, data-

driven approaches and machine learning models play a 

pivotal role. Unlike static scoring methods or subjective 

judgments, machine learning can process large volumes of 

data, identify hidden patterns, adapt to new information, 

and generate predictive insights (ForouzeshNejad, 2024; 

Nessari et al., 2024). By training on historical project data, 

stakeholder preferences, and contextual variables, these 

algorithms can perform project screening with greater 

accuracy, consistency, and transparency. Especially in 

complex, multi-criteria, and dynamic settings, such models 

outperform traditional ones and enable continuous learning 

and improvement (Kettunen & Lejeune, 2022; Zeynali et 

al., 2024). In this study, machine learning is considered not 

merely a computational tool but a novel paradigm for 

rethinking infrastructure project evaluation.
 

Accordingly, the aim of this research is to develop a data-

driven screening model for urban infrastructure projects 

that integrates the dimensions of sustainability and agility 

in a unified manner. The proposed model employs 

supervised machine learning techniques to classify and 

rank projects based on historical and contextual data, 

incorporating indicators aligned with environmental, 

social, and adaptive performance. This model seeks to 

bridge the gap between theoretical frameworks and 

practical screening processes and to offer an innovative 

tool for urban policymakers.
 

In the following, Section 2. Literature review is presented, 

which reviews the related literature and identifies the 

research gap. Section 3. Methodology is written, and 

Section 4. Case Study and Evaluation Criteria is provided. 

Section 5. Findings is reported,
 

Section 6 presents 

managerial insights
 
and Section 7. Conclusion is presented.

 

2.
 
Literature review

 

This section provides a concise review and analysis of 

studies related to project evaluation. For example, 

(Mahmoudi et al., 2021)
 

proposed a comprehensive 

framework for large-scale multi-criteria decision-making 
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in the presence of incomplete data. They used the PCA 

method to cluster criteria and the K-means algorithm to 

cluster alternatives, thereby structuring the decision-

making process. Then, fuzzy TOPSIS and the Ordinal 

Priority Approach (OPA) were applied to rank the clusters. 

A case study was conducted at a refinery equipment 

manufacturing company, and the results indicated high 

accuracy, flexibility, and efficiency of the proposed data-

driven method under incomplete data conditions. 

Similarly, (Yang et al., 2022) proposed an optimized 

method for project site selection using an improved genetic 

algorithm. They collected and integrated spatial data and 

designed evaluation indicators to build the site selection 

framework. The algorithm was improved by focusing on 

eigenvalue enhancement and correlation factor 

optimization. Experimental results showed that the method 

achieved high compatibility with target projects (90–

100%) and user satisfaction (95–99%), confirming its 

robustness. 

(Namazi et al., 2023) also presented a strategic approach 

for R\&D project portfolio selection using efficiency–

uncertainty maps. Their goal was to align project portfolios 

with organizational mission and vision by leveraging 

expert knowledge. In their method, projects are mapped 

into four strategic zones (Exploitation, Challenge, 

Desperation, Discretion) to facilitate simultaneous analysis 

of strategic perspective and quantitative data. This helps 

decision-makers align portfolios with organizational goals. 

(Hong et al., 2023) proposed a multi-objective mean–

semivariance model for project selection under uncertainty, 

incorporating reinvestment and synergy effects. 

Investment and profit were modeled as uncertain variables, 

aiming to maximize expected NPV and minimize risk. 

They introduced binary versions of Jaya and Rao 

algorithms, with binMORao2 showing the best 

performance across various test cases. The model 

effectively captures uncertainty and inter-project synergy, 

offering robust solutions for complex selection problems. 

In another study, (Kandakoglu et al., 2024) conducted a 

comprehensive literature review on the application of 

multi-criteria decision-making (MCDA) methods in 

project portfolio selection. They analyzed standalone and 

hybrid uses of MCDA with other modeling techniques, 

especially mathematical programming under resource 

constraints. The study identified weaknesses in hybrid 

approaches, discussed recent advances, and proposed a 

decision tree to guide researchers in selecting appropriate 

methods, along with suggestions for future research. 

(Dağıstanlı, 2024) introduced a VIKOR-based method in 

an Interval-Valued Intuitionistic Fuzzy (IVIF) 

environment for selecting R\&D projects in the defense 

industry. The objective was to use MCDA techniques 

under uncertainty and incorporate expert opinion. In this 

study, eight criteria and four alternative projects were 

identified and evaluated by three decision-makers. Results 

showed that the VIKOR method in the IVIF environment 

provided both accuracy and consistency, and its application 

in the defense sector was considered innovative. Likewise, 

(Nessari et al., 2024) presented a data-driven model for 

evaluating and selecting projects based on criteria of 

resilience, circular economy, and Industry 4.0. The study 

began by identifying 21 indicators weighted using the 

FBWM method, followed by data labeling via WFIS. 

Finally, a predictive model was developed using the 

LightGBM algorithm, achieving over 93% accuracy. The 

most important indicators were identified as "increasing 

market share via Industry 4.0 technologies" and "net 

present value." (ForouzeshNejad, 2024) proposed a hybrid 

data-driven framework for project portfolio selection in the 

telecommunication industry, incorporating both 

sustainability and strategic dimensions. The study began by 

identifying key evaluation criteria through literature review 

and expert input, and then weighted them using the Fuzzy 

Best–Worst Method (FBWM). The most critical criteria 

included initial capital requirements, initial revenue, 

number of specialists employed, energy consumption 

reduction, and market share growth. Using Data 

Envelopment Analysis (DEA), project performance was 

assessed annually, and the results were labeled to train 

machine learning models. Among the tested algorithms, the 

random forest regressor outperformed support vector 

regressors, achieving superior predictive accuracy in both 

training and testing phases. The findings highlight the 

effectiveness of integrating FBWM, DEA, and machine 

learning for data-driven and forward-looking project 

selection. (Bai et al., 2025) proposed a mathematical model 

for project portfolio selection and scheduling that 

incorporates dynamic synergy. The model aims to 

maximize project portfolio benefits with a balanced 

consideration of financial and non-financial factors, based 

on the Balanced Scorecard. Synergy benefits evolve over 

time and were quantified using system dynamics. The case 

study showed that the proposed model helps managers 

identify optimal projects and determine appropriate 

implementation timelines based on dynamic synergies. 

(Farahmand-Mehr & Mousavi, 2025) investigated 

resource-constrained multi-project scheduling problems 

(RCMPSP) under uncertainty caused by time-dependent 

reliability of renewable resources. They developed a new 

discrete-time binary integer programming model that 

incorporates variable failure and constant repair rates of 

resources over time. To solve this complex NP-hard 

problem, the authors proposed a Hybrid Immune Genetic 

Algorithm with Local Search (HIGALS), which features 

novel encoding, initialization, and search mechanisms. The 

algorithm was validated through a case study, where its 

performance was benchmarked against GAMS and six 

conventional algorithms. Results demonstrated that 

HIGALS achieved an average makespan reduction of over 

11.79%, confirming its superiority in handling large-scale, 

uncertain scheduling environments. 

The literature review shows that although many studies 

have applied MCDA methods, optimization models, and 

machine learning to project selection, most focus on areas 

like R&D, defense, or industry—failing to address the 

specific complexities of urban infrastructure. These studies 

often lack an integrated approach that considers both 

sustainability and agility, or they rely on theoretical models 

and synthetic data, limiting their practical value. The main 

research gap lies in the absence of a comprehensive, data-

driven model tailored to urban infrastructure projects—one 

that simultaneously accounts for economic, environmental, 

social, and agility indicators using real-world data. This 

study addresses the gap by proposing a CatBoost-based 

classification model capable of handling mixed-type data 
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and delivering accurate, practical, and multi-level project 

screening 

3. Methodology 

In this study, the CatBoost algorithm has been utilized as a 

decision tree-based machine learning model to develop a 

data-driven screening model for the classification of urban 

infrastructure projects. CatBoost (Categorical Boosting) is 

one of the most powerful implementations of gradient 

boosting, specifically designed for datasets containing 

categorical features, and is capable of processing them 

effectively without manual encoding (Ghanavatinejad et 

al., 2019; Qian et al., 2023). CatBoost performs well when 

dealing with heterogeneous and multi-purpose data and, 

compared to other boosting algorithms such as XGBoost 

and LightGBM, offers greater stability, resistance to 

overfitting, and the ability to learn complex feature 

interactions (Rastgoo & Khajavi, 2023). 

The CatBoost algorithm generally follows the steps below 

(Dutta & Roy, 2022; Zeynali et al., 2025): 

 Automatic preprocessing of categorical features: 

Without the need for One-Hot Encoding or Label 

Encoding, the algorithm handles categorical features 

internally. 

 Ordered Boosting: To prevent overfitting, the data is 

ordered such that future information does not leak 

into training phases. 

  Sequential decision tree construction: In each 

iteration, a new tree is built to reduce the residual 

error of the current model. 

 Gradual model updating: Newly built trees are added 

to the model with specific weights, ultimately 

forming a high-accuracy ensemble model. 

Overall, the methodology of this research is defined step-

by-step in four main stages: 

Step 1: Defining project evaluation indicators 

Initially, through literature review and theoretical analysis 

of sustainability and agility, 13 key indicators were 

identified for evaluating urban infrastructure projects. 

These indicators were categorized under two main 

dimensions (sustainability and agility) and three sub-

dimensions (social, environmental, and economic). 

Step 2: Data collection 

At this stage, data on 380 urban infrastructure projects were 

gathered through the review of actual project 

documentation, institutional reports, organizational 

databases, and specialized sources in urban project 

management. For each project, the 13 indicators related to 

sustainability (economic, social, environmental) and 

agility were extracted. All recorded values were within 

real-world, valid ranges based on official documentation. 

Additionally, each project was classified into one of three 

labels based on its final decision status: Selected, Reserved, 

or Rejected. The distribution of these labels—20%, 25%, 

and 55%, respectively—reflects the actual pattern of 

decision-making in project screening. 

Step 3: Machine learning model implementation 

The data was split into 80% for training and 20% for 

testing. The CatBoostClassifier model was then trained and 

used to predict the class of each project. At this stage, the 

model was executed end-to-end on the features and was 

able to learn the relationships between features and labels 

without the need for manual encoding or complex feature 

engineering. 

Step 4: Model performance evaluation 

The model's performance was assessed using metrics such 

as accuracy, F1-score, precision, and recall for each class. 

A confusion matrix was also provided to analyze the 

classification accuracy of the projects. In initial tests, the 

base model achieved an accuracy of around 49%, which 

was later improved through optimization to approximately 

90%. 

This study demonstrates that the use of the CatBoost 

algorithm enables accurate, adaptive, and data-driven 

screening of urban infrastructure projects. The rationale for 

selecting CatBoost lies in its ability to effectively handle 

heterogeneous datasets that include both categorical and 

numerical variables, which are common in real-world 

infrastructure evaluations. Unlike traditional machine 

learning models, CatBoost eliminates the need for 

extensive data preprocessing, such as one-hot encoding, by 

internally processing categorical features through ordered 

boosting. Additionally, CatBoost is known for its 

robustness against overfitting, high predictive 

performance, and capacity to model complex, non-linear 

interactions among features—attributes that are essential 

when dealing with multi-dimensional criteria such as 

sustainability (economic, social, environmental) and 

agility. These strengths make it a superior choice compared 

to other methods, especially in the context of urban project 

selection, where decision variables are often 

interdependent and derived from diverse sources. The 

algorithm was also benchmarked against Support Vector 

Machine (SVM) and Artificial Neural Network (ANN) 

models, both commonly used in classification tasks. The 

results showed that CatBoost outperformed these models 

across all major evaluation metrics, including accuracy, 

F1-score, precision, and recall. This further validates its 

suitability for the research problem at hand. Overall, the 

chosen methodology aligns with the complexity of the data 

and the research objectives, ensuring both reliability and 

interpretability in decision-making. 

4. Case Study and Evaluation Criteria 

In this study, a case study was conducted with the aim of 

practically testing the proposed model on a set of urban 

infrastructure projects. The dataset includes information on 

380 urban projects across various infrastructure 

development domains such as transportation, energy, 

environment, and municipal services, all of which were 

gathered from credible sources. For each project, 13 key 

indicators were extracted, reflecting the dimensions of 

sustainability and agility. Overall, the project evaluation 

indicators are categorized as follows (Mohagheghi et al., 

2019; Mohagheghi & Mousavi, 2021; Nayeri et al., 2023; 

Staron et al., 2012; Swarnakar et al., 2023; Tavakoli et al., 

2024; Thesing et al., 2021; Zarjou & Khalilzadeh, 2022): 

Social Sustainability: 

 Level of local stakeholder engagement: Measures the 

degree of interaction between the project and the 

community or local institutions. 

 Creation of sustainable employment in the region: 

Assesses the number of long-term and high-quality 

jobs generated by the project. 
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 Impact on urban quality of life: Evaluates 

improvements in access to services, public welfare, 

and overall satisfaction resulting from the project. 

Environmental Sustainability: 

 Reduction of pollutant emissions: Measures 

reductions in greenhouse gases or air, water, and soil 

pollution. 

 Efficiency in natural resource consumption: 

Evaluates productivity in the use of energy, water, 

materials, or other resources. 

 Recyclability and material lifecycle management: 

Assesses the project’s capacity to manage and reuse 

materials and waste. 

Economic Sustainability: 

 Net Present Value (NPV): Calculates the net 

profitability of the project over its implementation 

period. 

 Attraction of external investment: Measures the 

project’s ability to attract private sector or 

partnership-based funding. 

 Long-term maintenance and operational costs: 

Assesses post-implementation costs necessary for 

sustainable operation. 

Agility: 

 Time to initial operation: Measures how quickly the 

project becomes operational and starts delivering 

value. 

 Flexibility in design and implementation: Evaluates 

the project's adaptability in design, resources, or 

execution processes. 

 Scalability and expandability: Assesses the potential 

for the project to scale up or adapt to future 

conditions. 

 Responsiveness to risks and environmental 

disruptions: Measures the project’s ability to react to 

crises, regulatory changes, or unexpected events. 

The proposed model is developed in alignment with these 

evaluation indicators. 

5. Findings 

This section reports the findings of the study. As previously 

noted, based on the 13 identified indicators and the 

collected dataset of projects, a machine learning-based 

model was developed to evaluate infrastructure projects. 

The case study dataset consists of 380 urban infrastructure 

projects, each described by 13 features reflecting various 

dimensions of sustainability and agility. Additionally, each 

project is assigned a final label representing its decision 

status in one of three categories: Selected, Reserved, or 

Rejected. These labeled data points served as the 

foundation for training and evaluating the machine learning 

model. 

Statistical analysis of the features shows meaningful 

variability across both numerical and categorical variables, 

offering rich and diverse information about different 

aspects of the projects. For instance, the average value for 

Stakeholder Engagement is approximately 6.07 with a 

variance of 3.93, indicating moderate dispersion in the 

level of community and institutional involvement. The 

Sustainable Employment index has a mean of 279 and a 

standard deviation of 127.8, reflecting a wide range in the 

economic impact of the projects. Similarly, features such 

as Economic NPV (mean: 43.52, variance: 1082.97) and 

External Investment (mean: 45.24) highlight significant 

differences among projects in terms of profitability and 

investment potential. 

On the other hand, indicators such as Time to Operation 

(mean: 18.5 months) and Ongoing Cost (mean: \$4.26 

million per year) provide essential insights into the agility, 

cost structure, and scheduling of the projects. Attributes 

related to design flexibility, scalability, and risk 

responsiveness exhibit average values between 5 and 6, 

with standard deviations around 2, reflecting variability in 

the adaptability of the projects. Overall, the statistical 

dispersion and relative balance of the features indicate that 

the dataset is of high quality and sufficiently robust for 

training a reliable and multidimensional model, making it 

a valuable tool for classifying and screening urban 

infrastructure projects. 

To further examine the dataset, the correlation coefficients 

among the features were analyzed. The correlation 

heatmap (Figure 1) reveals that there are no strong and 

direct linear relationships among most of the variables; in 

other words, the majority of Pearson correlation values fall 

near zero. The absence of high correlations (e.g., above 0.7 

or below -0.7) among most features suggests that they 

provide non-redundant and distinct information. This 

indicates a low risk of multicollinearity within the dataset 

and implies that the relationships between variables are 

primarily non-linear or complex. Consequently, the 

structure of the features is statistically sound, and the 

dataset demonstrates a high level of quality for machine 

learning modeling. This characteristic is especially 

advantageous for tree-based algorithms such as CatBoost. 

After performing statistical analysis and evaluating feature 

correlations, it was determined that the dataset used in this 

study possesses a high level of quality. The balanced 

distribution of features, absence of strong multicollinearity 

among variables, and diversity in recorded values indicate 

that the data is well-suited for training machine learning 

models. Accordingly, the CatBoostClassifier algorithm 

was selected as the primary classification model. CatBoost 

is a gradient boosting algorithm specifically designed for 

mixed-type datasets (numerical and categorical), and it 

performs exceptionally well when handling complex 

feature interactions and relatively imbalanced data. 

To optimize model performance, hyperparameter tuning 

was carefully conducted. Key parameters examined and 

tested included the number of trees (iterations), learning 

rate, tree depth, and the sampling strategy. Techniques such 

as Grid Search and Cross-Validation were employed to 

identify the optimal parameter combinations. Additionally, 

regularization mechanisms were activated in the model to 

mitigate overfitting. Ultimately, the trained model was able 

to classify projects into the three categories—Selected, 

Reserved, and Rejected—with a high degree of accuracy, 

demonstrating that CatBoost is a highly suitable choice for 

multi-criteria classification tasks in infrastructure project 

analysis. 

Figure 2 illustrates a portion of the structure of one of the 

decision trees within the Random Forest model. This 

graphical representation shows how the model classifies 

projects into one of the three categories ("Rejected," 

"Reserved," or "Selected") based on different feature 

values. Each node (rectangle) represents a decision made 
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using a specific feature. For example, at the root of the tree, 

the first decision is based on the value of 

Resource\_Efficiency. If the value is less than or equal to 

6.5, the left branch is followed; otherwise, the path moves 

to the right. Subsequent branches use features such as 

Recyclability\_Score, Sustainable\_Employment, 

Time\_to\_Operation, and Economic\_NPV, which play 

critical roles in determining the classification path. 

Each node displays information such as the Gini impurity, 

the number of samples, and the distribution of class labels 

(value) within that node. For instance, a node with the value 

"value = \[64, 7, 25]" indicates that out of 96 samples 

reaching that node, 64 belong to the "Rejected" class, 7 to 

"Reserved," and 25 to "Selected." The majority class—

here, "Rejected"—is the predicted class for that node. This 

figure clearly demonstrates how the model makes 

classification decisions through a hierarchical structure and 

highlights which features had the greatest influence along 

the decision paths. 

 

 

 
Fig. 1. Heatmap diagram of correlation coefficient between features 

 

 
Fig. 2. Part of the tree structure of the CatBoost algorithm 

 
 

Subsequently, to assess the accuracy and performance of 

the model, a validation process was carried out, and the 

model was analyzed using a set of standard classification 

evaluation metrics. These metrics included Overall 

Accuracy, F1-Score, Precision, Recall, and the Confusion 

Matrix. Initial results indicated that the model performed 

well in classifying "Rejected" projects but required 

improvement in distinguishing between the "Selected" and 

"Reserved" categories. This multi-metric analysis provided 

valuable insights into the strengths and weaknesses of the 

model and served as a foundation for refining its 

hyperparameters and developing more advanced versions. 

Table 1 presents a comparative analysis between the 

CatBoost algorithm and two other models: the Support 

Vector Machine (SVM) and the Artificial Neural Network 

(ANN). 
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Table 1.  
Comparing algorithms with different metrics 

Algorithm Accuracy F1-Score Precision Recall 

CatBoost 91.21 90.32 90.89 91.11 

SVM 78.81 79.81 80.11 79.06 

ANN 86.11 86.78 87.16 87.98 

The results of the algorithm performance comparison 

indicate that the CatBoost model, with an accuracy of 

91.21% and an F1-score of 90.32%, demonstrated the best 

overall performance among the evaluated methods. It also 

outperformed the other algorithms in terms of Precision 

and Recall, achieving a well-balanced performance 

between correct predictions and minimizing classification 

errors. In contrast, the Artificial Neural Network (ANN) 

achieved an accuracy of 86.11% and an F1-score of 

86.78%, which, although acceptable, was slightly lower 

than that of CatBoost. The Support Vector Machine (SVM) 

showed the lowest performance, with an accuracy of 

78.81%. These results suggest that tree-based gradient 

boosting models like CatBoost offer a significant 

advantage, especially when dealing with complex 

problems involving mixed-type features. 

Additionally, a confusion matrix was used to evaluate the 

model’s classification accuracy. Figure 3 illustrates the 

confusion matrix resulting from the final CatBoost model. 

As shown, the model correctly classified the majority of the 

samples into their respective classes. For instance, 37 out 

of all "Rejected" projects were accurately identified, with 

only 4 misclassified into other categories. Furthermore, all 

samples from the "Reserved" and "Selected" classes were 

predicted with perfect accuracy. This distribution reflects 

the model's strong performance in distinguishing between 

decision categories and its high level of prediction 

precision. Based on these results, the final model accuracy 

was calculated at 91%, confirming the remarkable 

effectiveness of CatBoost in screening urban infrastructure 

projects based on sustainability and agility indicators. 

 
Fig. 3. Cat Boost algorithm confusion matrix 

Therefore, it can be observed that a model with over 91% 

accuracy has been developed, which can serve as a reliable 

basis for the evaluation and development of urban 

infrastructure projects. 

6. Managerial Insights 

The findings of this study offer several valuable insights 

for urban policymakers, project managers, and decision-

makers involved in infrastructure planning and investment. 

First, the proposed CatBoost-based classification model 

provides a practical and reliable tool for prioritizing 

infrastructure projects based on a comprehensive set of 

sustainability and agility indicators. By integrating 

economic, environmental, social, and adaptive 

performance criteria, the model allows managers to move 

beyond traditional cost-based evaluations and adopt a 

multidimensional view of project value. 

Second, the model’s high classification accuracy and 

ability to process real-world data make it suitable for use in 

dynamic urban environments where timely and informed 

decisions are essential. Managers can use the model not 

only for screening existing project proposals but also as a 

diagnostic tool to identify weaknesses in early-stage 

designs or policy misalignments. 

Third, the framework supports evidence-based planning by 

reducing subjectivity in the decision-making process. This 

is particularly useful in multi-stakeholder settings where 

transparency and consistency are critical for building trust 

and securing project approvals. 

Finally, the adaptability of the model allows it to be 

extended to different urban sectors or geographical 

contexts, making it a scalable decision-support tool. With 

proper integration into urban management systems, the 

model can significantly improve resource allocation, 

reduce risk of investment failure, and contribute to 

sustainable urban development in the long term. 

7. Conclusion 

The complex transformations in the urban environment 

have increasingly highlighted the need for innovative and 

precise approaches in the evaluation and screening of 

infrastructure projects. In response to this need and to 

address existing gaps in the literature, this study designed 

and implemented a data-driven model based on the 

CatBoost algorithm to evaluate urban infrastructure 

projects. By incorporating 13 key indicators across the 

dimensions of sustainability (social, economic, 

environmental) and agility, the model aimed to facilitate 

accurate, systematic, and reliable decision-making 

regarding the selection, reservation, or rejection of 

projects. 

The results of the statistical analysis showed that the 

extracted features exhibited appropriate variability, lacked 

strong multicollinearity, and contained meaningful 

diversity—making them suitable for use in advanced 

machine learning models. Accordingly, the CatBoost 

algorithm was selected for its strong capabilities in 

handling mixed and non-linear data, as well as its resilience 

to overfitting. The model was trained on a dataset of 380 

projects, and through fine-tuned hyperparameter 

optimization and cross-validation, it achieved a final 

accuracy of over 91%. This high level of accuracy in 

classifying projects into three categories (Selected, 

Reserved, Rejected) demonstrates the model’s ability to 

correctly identify hidden patterns in real-world data. 

A comparison of CatBoost with Support Vector Machines 

(SVM) and Artificial Neural Networks (ANN) showed that 
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CatBoost outperformed both models across all key metrics, 

including accuracy, F1-score, precision, and recall. These 

findings confirm that tree-based gradient boosting models 

offer greater precision and consistency than other 

approaches, particularly in multi-criteria and complex 

datasets. The confusion matrix further validated that 

CatBoost provided a balanced and accurate performance in 

predicting rejected, reserved, and selected projects, with 

the majority of samples correctly classified. 

From a practical perspective, the results of this study can 

support urban decision-makers, policymakers, and project 

managers in making more effective decisions amidst 

complexity, high data volumes, and competing priorities. 

The proposed model, due to its reliance on real data and 

non-linear learning structure, is highly adaptable to various 

types of urban projects and can be implemented within 

intelligent project planning and management systems. 

From a theoretical standpoint, this research represents a 

step toward integrating sustainability and agility paradigms 

with advanced data-driven tools, thereby bridging the gap 

between theory and practice. Unlike many traditional 

models that focus solely on economic indicators or 

technical aspects, this model introduces a 

multidimensional, integrated, and data-based approach that 

can serve as a foundational framework for other 

infrastructure and public decision-making contexts. 

Finally, it is recommended that future research test this 

model across various urban scales, geographic regions, and 

real-world project datasets at different time points. Further 

development could include continual learning capabilities, 

integration with Geographic Information Systems (GIS), 

and enhancement toward real-time decision support, 

paving the way for the future evolution of this approach. 

This study demonstrates that the use of machine learning 

algorithms is not merely a technical tool but a 

transformative paradigm for redefining decision-making 

processes in urban development. 
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