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Introduction 

In today's digitally connected and cloud-focused era, 

software system security has become a critical concern 

for developers, system architects, and security experts. As 

businesses increasingly rely on web-based services and 

deploy systems at scale, the underlying architectural 

model has a direct influence on the functionality and 

vulnerability of these systems. Two of the leading 

paradigms—monolithic architectures and microservices-

based architectures—each offer alternative design 

philosophies with differing security implications. While 

monolithic systems are traditionally implemented as a 

single, tight-coupling unit, microservices divide functions 

among independently deployable and loosely coupled 

services. Both architectures possess unique security 

challenges and opportunities that must be well 

understood within the settings of real-world operational 

environments [1,2]. 

Monolithic architectures, although with an easier 

deployment and operation, are typically vulnerable due 

to their centralized setup. A successful attack on a single 

building block can reveal the entire structure. 

Microservices, however, enhance modularity, scalability, 

and maintainability but introduce a much-increased 

attack surface in that they depend on distributed services 

and inter-service communications [3,4]. Security controls 

in microservice environments must contend with 

network-level attacks, service authentication and 

authorization, and secure communication protocols 

between services—problems often less acute in 

monolithic setups [5,6]. 

The trend towards containerized microservices, cloud-

native platforms, and serverless architectures 

complicates the security picture even further. Attackers 

can attack insecure APIs, misconfigured service meshes, 

or privilege-escalation vectors in orchestrated 

environments like Kubernetes or Docker [7,8]. 

Furthermore, the dynamic and decentralized nature of 

microservices makes perimeter-based security models 

ineffective, and thus, there is a move toward zero-trust 
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frameworks [9]. In turn, monolithic systems remain 

susceptible to side-channel attacks, memory data leaks, 

and legacy bugs, especially if not refactored or actively 

maintained [10,11]. 

The main research issue of this study comes from the 

need to find out how architectural choices influence 

system vulnerabilities and threat spreading. Despite more 

recent work on microservices security[12,13], little 

attention has been directed toward comparing monolithic 

and microservice threat patterns in identical operation 

environments. Still fewer studies have looked into the use 

that attackers make of architectural knowledge, in terms 

of, for example, system decomposition topology, service 

entrance points, or communication graphs—to execute 

and plot attacks[14,15]. 

This paper discusses the following research questions: 

•Is the targeted system based on a monolithic or 

microservice architecture? 

By way of a detailed case study of operational software 

systems, this research aims to uncover how the structure 

of an application affects its vulnerability to security 

threats. The case study approach allows us to observe 

threats in action and investigate the real-world 

implications of theoretically outlined vulnerabilities 

reported in the literature[16,17]. 

This paper aims to critically evaluate the nature and 

extent of security threats in monolithic and 

microservices-based systems. Empirically, through 

reported incidents, we plan to establish a taxonomy of 

threats, evaluate the sufficiency of currently available 

mitigation controls, and provide practical 

recommendations to system architects, particularly for 

cloud-native and edge-deployed systems[18,19]. 

With the fast-paced evolution of web technology, 

software systems have experienced radical changes in 

architectures, modes of deployment, and security 

paradigms over the last few decades. As monolithic 

architecture models, as well as emerging microservice 

paradigms, are increasingly used worldwide, worries 

regarding novel problems of vulnerabilities, attack 

methods, and security solutions unique to architectural 

designs have emerged. While there is significant literature 

that explores conceptual threats, mitigation strategies, or 

threat defenses, relatively more work grounded on 

analyzing contrasts and similarities between threat 

scenarios between different architectures is still lacking. 

The traditional work gives a complete picture of software 

architecture evolution from monolithic, tightly coupled 

systems to microservice-based, loosely coupled 

applications[1]. Microservices are undoubtedly beneficial 

in terms of modularity, scalability, and maintainability, 

but come with complex security challenges, especially in 

distributed systems. Above all, the increase in service-to-

service communication increases the attack surface, 

offering more entry points for potential attackers. 

Another study, in its empirical study of microservice 

security, found an array of common vulnerabilities like 

insecure APIs, inconsistent authentication mechanisms, 

and lack of centralized access control[4]. Through a 

systematic mapping study, it emphasized the importance 

of encryption, safe configuration management, and 

internal network segmentation—qualities that are not 

necessarily rigidly enforced in microservices 

architectures[12]. 

One of the most comprehensive multivocal security 

literature reviews for microservice-based systems, a 

breakdown of threats into three types—intra-service 

threats, inter-service communication risks, and external 

interface threats—is a multi-layered analysis of 

security[3]. Also, their research in 2019 graphically 

depicted the commonly used security mechanisms 

employed in microservices, such as token-based 

authentication (e.g., JWT), role-based access control 

(RBAC), and application-level firewalls[3]. 

One of the studies introduced a security orchestrator that 

orchestrates authentication, logging, and threat response 

in service-oriented systems[13]. Their work puts focus on 

how complex security orchestration is when services are 

extremely dynamic and independently deployable. 

Another study introduced a fine-grained access control 

model, with coarse-grained or static policies being 

insufficient for current service ecosystems[6]. 

The next paper studied a microservices-specific zero-trust 

parameterization model that departed from legacy 

perimeter security and focused instead on ongoing 

authentication of all service interactions and requests[9]. 

These are increasingly important techniques as the classic 

security perimeters get abstracted within cloud-native 

and container environments. 

Despite their diminishing fame in cloud-native systems, 

monolithic architecture continues to pervade, most 

commonly in business and legacy systems. Another paper 

suggests, their centralized structure makes it convenient 

for access management[20]. However, it amplifies the 

impact of an attack—a vulnerability in any component of 

it may leave the system vulnerable in totality. 

One of the papers discussed the problem of deep 

dependency chains in monolithic applications with 

cascading vulnerabilities and patch management 

issues[2]. Monolithic applications are particularly 

vulnerable to side-channel attacks such as Meltdown and 

Spectre, in which shared memory and speculative 

execution are targeted at the hardware level[10,11]. Such 

attacks are prone to monoliths due to tight integration 

and shared memory space. 

The next paper also investigated the bitter reality of side-

channel vulnerabilities in conventional architectures 

through their work on acoustic attacks against printers, 
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demonstrating how physical attributes of equipment can 

even offer sensitive information leakage[21]. 

One of the most important shortcomings of existing 

literature is that there is not much comparative and 

empirical analysis of threat patterns in monolithic and 

microservice architectures. While many works focus on 

security in one or the other paradigm, few address how 

architectural design itself affects threat surfaces, threat 

propagation, and attacker behavior [22]. 

In addition, most of the current body of research is either 

simulation-based or conceptual-based. Additionally, 

there is a scarcity of case study–based work that studies 

security vulnerabilities in operating environments where 

deployment constraints, configuration issues, and real-

world attacker profiles are present. Such an empirical 

study is needed to bridge the gap between theoretical 

knowledge and real-world security practice. 

The application of architectural knowledge to attacker 

strategies—how attackers may apply knowledge about 

service graphs, ingress points, or inter-process 

communication in system mapping and attacking—lacks 

enough research. Identification of these dynamics is 

critical for planning ahead of time. 

A three-layered conceptual threat analysis framework for 

security threats in software architecture is suggested 

based on the literature reviewed: 

1. Structural Layer: Captures the top-level architectural 

model (microservices or monolithic) and internal 

dependencies, service decomposition, and the number of 

microservices. 

This layered architecture provides a basis for structured 

threat analysis in production-quality software systems. It 

also acts as a reference model to classify, compare, and 

neutralize threats under both architecture paradigms. 

 

METHODS 

This chapter outlines the procedure for designing, 

implementing, and evaluating a novel client-side 

approach to infer the architectural style of web-based 

systems indirectly. The primary objective of this approach 

is to estimate the classification of systems as Monolithic 

or Microservice-Based architectures based on the analysis 

of resources downloaded by the browser and system 

response patterns. The following sections describe in 

detail the data acquisition methods, preprocessing and 

refinement stages, and statistical computation based on 

cluster modeling through the application of programming 

and statistical software. 

A.  2.2 Research Design 

The research in this thesis is applied-analytic and 

conducted with an empirical case study. There are two 

levels of data analysis: 

1. Inference of system structure through the analysis of 

external resources and the number of domains loaded to 

the client-side 

2. Investigating server response behavior using statistical 

modeling to identify underlying patterns in the data. 

These complementary techniques enable a multi-layered 

examination of system design and performance under 

real operating conditions. 

B.  2.3 Tools and Data Collection Methods 

Data were pulled using an open-source tool named 

Zbrowse, which is Node.js and a Headless Chromium 

engine-based. The tool simulates a browser without a 

user interface, captures all network requests and 

responses of the target page, and stores them as JSON 

files. 

Here, each target site was monitored at every three-
minute interval for 24 hours, and a total of 500 tracking 
sessions were created. Each session's outcome was 
stored as a JSON file with details such as the resource URL, 
request type, headers, request time, and origin server. 
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Fig 1- Console Output of Client-Side Inference and JSON File Generation in VyOS Architecture Detection Framework 

 

C.  2.4 Data Preprocessing and Refinement 

At the preprocessing stage, the JSON files obtained were 

worked on in Python with appropriate libraries. Python 

scripts were utilized to parse and get vital information 

such as resource domain, Server header, file type 

(JavaScript or CSS), and response origin. 

During this stage, the external domain resources provided 

through Content Delivery Networks (CDNs) were not 

considered. Only resources that are directly related to the 

target site's infrastructure were retained. For instance, 

the Server header for a site like "Divar" was identified as 

"Sotoon" and displayed a specific cloud infrastructure, 

whereas "Jonoob Iran" type systems lacked a specific 

header and were categorized separately. 

 

D.  2.5 Inferring System Architecture from the Client-

Side Perspective Domain Count Heuristic for 

Architectural Inference 
After extracting all resource domains from client-side 

observations, the number of unique domains was used 

as an approximate indicator of system modularity: 

A high domain count may suggest a microservice-based or 

modular architecture, where services such as 

authentication, API endpoints, static resources, and third-

party integrations are hosted on distinct subdomains or 

servers. 

A low domain count, often close to one, may reflect a 

monolithic architecture, in which most or all resources are 

delivered from a single origin. 
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It is important to note that this approach is preliminary 

and heuristic. It does not replace detailed backend 

architectural analysis, but it provides a lightweight, 

scalable inference method for environments where 

server-side access is restricted or unavailable. 

 

E.  2.6 Statistical Analysis of Response Time Using 

GMM 

For the purpose of analyzing system response patterns, 

time data obtained in the aparat_output.csv file were 

utilized. The file was first read with the assistance of the 

pandas library in Python. Response time values (in 

milliseconds by default) were scaled to seconds and 

arranged as a two-dimensional array suitable for 

modeling. 

Lastly, clustering was performed under the Gaussian 

Mixture Model (GMM). The model was trained for various 

numbers of clusters (from 1 to 9), and in each 

arrangement, two information criteria were calculated: 

•Akaike Information Criterion (AIC) 

•Bayesian Information Criterion (BIC) 

The model with the smallest BIC value was selected as the 

optimal model. To visualize the results, Kernel Density 

Estimation (KDE) was used to approximate the probability 

distribution of the data. Density curves were plotted for 

the entire dataset and each identified cluster. If two or 

more clusters were found, the intersection point of the 

dominant distributions was recommended as a decision 

threshold. All statistical processing, visualization, and 

saving of outputs were done via Python scripting. 

 

  

 

 
Fig 2- Codes of Cluster 
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Fig 3- Python Script for Gaussian Mixture Model (GMM)-Based Clustering and Threshold Estimation of Response Times from Client-
Side Log Data 

 

 

F.  2.7 Advantages of the Proposed Approach 

•Utilization of client-side observations to conclude 
system structure without source code or server access; 
•Accurate response behavior modeling using GMM with 
the ability to uncover hidden properties; 
•Application of AIC and BIC criteria for the optimal choice 
of clusters, minimizing human intervention; 
•Capacity to visualize outcomes and determine  
behavioral thresholds for identifying delays or anomalies; 
•A fully automated, code-based implementation on the 
Python platform. 
 
This chapter introduced a new research methodology for 
indirectly investigating system architectures from the 
client-side perspective and statistically evaluating server 
response behaviors. Through the integration of data 
collection tools, Python coding, GMM modeling, and 
loaded domain analysis, an approximate classification of 
system architectures was achieved. The proposed 
methodology provides a light, fast, and non-intrusive 
means of evaluating web-based systems in real-world 

settings. The detailed results obtained through this 
methodology will be presented in part three. 

G.  2.8.Comparison of Clustering Algorithms: GMM, K-

means, and DBSCAN 

To validate the decision to use the Gaussian Mixture 
Model (GMM) as the main clustering approach in this 
study, a comparison with two other well-known 
algorithms, specifically K-means and DBSCAN, was 
conducted. Each of these algorithms possesses some 
advantages and disadvantages depending on the 
characteristics of the data and the aims of clustering. 

GMM provides soft clustering, which assigns a probability 
distribution over clusters to each data point. It is 
particularly useful when the clusters overlap or are of 
varying shapes and densities. GMM also supports 
elliptical-shaped clusters and can represent complex data 
patterns, making it a competitive choice to model 
heterogeneous server response behaviors. However, it 
has the assumption that the data are Gaussian distributed 
and is computationally more costly than less complex 
algorithms like K-means. 
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K-means, however, is a fast and efficient algorithm 
suitable for large datasets. It performs well when 
clusters are spherical, equal in size, and well separated. 
However, it makes hard assignments (each data point 

belongs to one cluster) and is very sensitive to the initial 
placement of centroids and to outliers. 

DBSCAN handles it differently by using a density-based 
approach to discover clusters of any shape without 
requiring the number of clusters as input. It is extremely 
robust to noise and can identify outliers explicitly. 
Nevertheless, the success of DBSCAN depends heavily on 
the selection of its parameters (ε and min_samples), and 
it does not perform well on datasets with differing 
densities or high dimensions. 

Briefly, based on the properties of this study's dataset, 
namely the presence of overlapping response patterns 
and the aspiration for probabilistic interpretation, GMM 
was selected as the most appropriate algorithm. Its ability 
to model uncertainty and relaxed cluster forms is well 
adapted to the analytical goal of extracting faint 
behavioral trends in server performance. 

 

Results and Discussion 

A.  3.1.Clustering of Response Times and Statistical 
Model Selection 

To analyze latent patterns and behavioral trends in the 
response times of the Tabnak server, a Gaussian Mixture 
Model (GMM) was applied to the observed server 
response time data (measured in seconds). The analysis 
provided insights into the distribution of response times, 
identification of underlying clusters, and the definition of 
a threshold for distinguishing between different system 
performance zones. 

The second graph shows the evaluation of GMMs with 
varying numbers of components, ranging from 1 to 9 
clusters. Two standard statistical metrics—Bayesian 
Information Criterion (BIC) and Akaike Information 
Criterion (AIC)—were employed to determine the optimal 
number of clusters. As expected, both BIC and AIC values 
generally decreased with the addition of more clusters, 
indicating an improved model fit. However, a distinct 
elbow point was observed at five clusters, beyond which 
the reduction in BIC and AIC values became marginal. This 
suggests diminishing returns in model performance and 
increased complexity. Therefore, the five-cluster model 
was selected as the optimal trade-off between model 
accuracy and simplicity. 

 

Fig. 4.BIC and AIC for GMM 

 
 

B.  3.1.2. Distribution of Response Times 

The first graph illustrates the Kernel Density Estimation 
(KDE) of response time distributions across the five 
clusters identified by the GMM for the Tabnak server. 
Each cluster is represented by a distinct color, signifying 
different server performance behaviors: 

Clusters 1 and 2 (blue and orange) show the highest 
density in response times below one second, indicating 
the fastest and most efficient server behavior. 

Cluster 3 (green) represents moderate latency, reflecting 
standard server response times under typical conditions. 



H.Naser et al 

 

Clusters 4 and 5 (purple and brown) correspond to slower 
response times with greater variance, signaling degraded 
performance or potential system issues. 

A red vertical line in the plot indicates the optimal 
threshold, derived from the intersection of the two most 

dominant Gaussian components. This threshold serves as 
a practical boundary to differentiate between normal and 
abnormal server response behavior 

 

 
Fig. 5.Clustering of Response Times and Statistical Model Selection of Tabnak 

 
 

C.  3.1.3. Interpretation and Application of Results 

The results highlight significant variability in Tabnak’s 
server response performance, validating the assumption 
that server behavior patterns can be inferred from client-
side response data. The heterogeneity in response times 
may point to underlying architectural features—such as a 
modular (e.g., microservices-based) infrastructure—or 
differences in server load, configuration, or hosting 
environments. Moreover, the use of GMM, along with BIC 
and AIC for cluster validation, enabled a data-driven 
approach to determining optimal performance 
segmentation and establishing a statistically robust 
performance threshold. 

D.  3.2. Response Time Analysis by GMM Clustering 

This section presents the results of the statistical analysis 
of server response times for the Divar platform, using the 
Gaussian Mixture Model (GMM). The primary aim was to 
uncover latent behavioral trends in server responsiveness 
and determine the appropriate number of clusters that 
best represent these patterns. Two key visualizations 
were generated for this purpose: 

A density plot displaying the clustered distribution of 
response times; 

A model selection plot showing BIC and AIC values across 
different GMM configurations. 

E.  3.2.1. Determining the Optimal Number of Clusters 

The model selection plot compares the Bayesian 
Information Criterion (BIC) and the Akaike Information 
Criterion (AIC) for GMMs with cluster counts ranging 
from 1 to 9. Both metrics initially decrease sharply, 
reflecting a significant improvement in model fit as more 
clusters are introduced. However, after the sixth cluster, 
the rate of decline in both BIC and AIC becomes minimal, 
signaling that adding further clusters yields negligible 
gains while increasing model complexity. Based on this 
inflection point, the six-cluster model was selected as 
the optimal balance between accuracy and parsimony 
for analyzing Divar's server response times. 
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Fig. 6.BIC and AIC for GMM 

 

F.3.2.2. Clustering Distribution of Response Times 
The first plot displays the estimated Probability Density 
Function (PDF) of Divar’s server response times using 
Kernel Density Estimation (KDE), overlaid with the six 
clusters identified by the GMM. Each cluster is color-
coded to reflect distinct behavioral patterns: 

Clusters 1 and 2 (e.g., orange and purple) represent 
extremely short response times (under one second), 
which signify optimal server performance. 

Clusters 3 and 4 (e.g., blue and green) fall within 
moderate response ranges and likely correspond to 
standard system behavior with slight latency. 

Clusters 5 and 6 (e.g., black and brown) exhibit extended 
response times, often exceeding 10 seconds, which may 
point to server overload, bottlenecks in modular services, 
or repeated request handling. 

A red vertical line on the graph indicates the threshold 
derived from the intersection of the two most influential 
Gaussian components. This threshold can be used to 
distinguish between normal and abnormal response 

patterns for Divar’s system performance. 

G.3.2.3. Interpretation of Behavioral Patterns and 
PracticalApplications 
The clear emergence of six distinct response time 
clusters suggests a high degree of heterogeneity in 
Divar's server performance. This variability may stem 
from factors such as a microservices-based 
infrastructure, asynchronous service calls, or the 
distribution of load across independent service 
modules. Notably, the presence of long-tail 
distributions in clusters 5 and 6 may signal issues 
related to scalability, inefficient resource allocation, or 
request retries under 

high load conditions. 

Moreover, the GMM’s ability to identify optimal clusters 
and define behavioral thresholds makes it a valuable tool 
for performance monitoring and anomaly detection. Its 
reliance on client-side response data and unsupervised 
learning enables a lightweight, scalable approach for real-
time diagnostics and architectural insights, particularly 
relevant for complex platforms like Divar. 
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Fig. 7.Clustering of Response Times and Statistical Model Selection of Divar 

 

H.3.3. Response Time Analysis Using the GMM Model 

This section presents the statistical analysis of server 
response time data for the Aparat platform. The primary 
objective was to identify underlying behavioral patterns 
in response latency and determine the optimal number of 
clusters through the use of the Gaussian Mixture Model 
(GMM). Two key visualizations formed the basis of this 
analysis: 

An estimated response time density plot with clearly 
separated clusters; 

A model selection plot using standard statistical criteria. 

I.3.3.1. Determining the Optimal Number of Clusters 
Using BIC and AIC 

The second plot illustrates the values of the Bayesian 
Information Criterion (BIC) and the Akaike Information 
Criterion (AIC) for GMMs with components ranging from 
1 to 9. As observed, both criteria drop sharply at the 
beginning, suggesting a better model fit with more 
clusters. However, this decline starts to level off around 
five clusters, indicating an "elbow point." This plateau 

suggests that increasing the number of clusters beyond 
five results in marginal gains but greater model 
complexity. Therefore, the five-component GMM was 
selected as the most balanced model, offering sufficient 
accuracy without unnecessary complexity in analyzing 
Aparat’s server response data. 

J.3.3.2. Temporal Distribution Analysis Based on 
Clusters 

The first plot shows the Probability Density Function (PDF) 
of Aparat’s response times, estimated through Kernel 
Density Estimation (KDE), overlaid with the five clusters 
identified by the GMM. Each cluster is represented in a 
distinct color to highlight different response behaviors: 

A red vertical line in the plot signifies the threshold 
between normal and abnormal behavior, determined by 
the intersection of the two most prominent Gaussian 
components. This threshold may serve as a practical 
reference point in monitoring Aparat’s system 
performance. 
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Fig. 8:.BIC and AIC for GMM 

 

 
Fig. 9:.Clustering of Response Times and Statistical Model Selection of Apart 

 

K.3.3.3. Ultimate Interpretation and Practical 
Applications 

The identification of multiple clusters in Aparat's 
response time data confirms the presence of 
heterogeneous behavioral patterns. This variation may 
result from underlying architectural factors, such as the 
use of microservices, load balancing mechanisms, or 
differences across content delivery modules. 

By leveraging the GMM along with BIC and AIC for 
statistical validation, this analysis enabled a data-driven 
approach to uncovering and categorizing system 
behaviors. The resulting model can be applied in real-
world settings for performance monitoring, early 
anomaly detection, and client-side inference of system 
architecture. Overall, this methodology offers a scalable, 

lightweight analytical framework suitable for ongoing 
assessment of complex web platforms like Aparat. 

L.3.4. Response Time Analysis of the "Jonoob Iran" 
System with the GMM Model 

Here, the outcome of the response time analysis of the 
Jonoob Iran system using the Gaussian Mixture Model 
(GMM) and model selection criteria, i.e., Bayesian 
Information Criterion (BIC) and Akaike Information 
Criterion (AIC), is given. The purpose was to discover 
hidden patterns in the responsiveness of the system and 
also the optimal number of clusters in the data. 

M.3.4.1. Optimal Cluster Number Based on BIC and AIC 

The second figure illustrates the values of the Bayesian 
Information Criterion (BIC) and Akaike Information 
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Criterion (AIC) for Gaussian Mixture Models (GMMs) with 
1 to 9 components. As the number of clusters increases, 
both metrics initially decrease sharply, indicating 
improved model fit. However, after the second cluster, 
the rate of decline becomes more gradual, eventually 
stabilizing around the fifth cluster. This trend suggests 
that further increasing the number of clusters beyond five 
results in marginal improvement while adding 
unnecessary complexity. Therefore, the five-cluster 
configuration was chosen as optimal, representing the 
best trade-off between model accuracy and simplicity in 
analyzing the response behavior of the Jonob Iran server. 

N.  3.4.2. Response Behavior and Clustered Distribution 
Analysis 

The first figure presents the Kernel Density Estimation 
(KDE) of the response time distribution, overlaid with the 
five clusters identified by the GMM: 

Clusters 1 and 2 (blue and orange) represent very short 
response times (under 2 seconds), corresponding to 
efficient and stable system performance for the majority 
of requests. 

Cluster 3 (purple) falls within a medium response time 
range, approximately between 4 and 6 seconds, reflecting 
moderate system delays likely due to transient load or 
routine processing overhead. 

Cluster 4 (brown) contains high-latency responses 
exceeding 6 seconds, which may be indicative of system 
congestion, processing bottlenecks, or inefficiencies 
within specific modules. 

Cluster 5 (green) extends into a long-tail distribution, with 
response times reaching up to 25 seconds. This cluster 
most likely captures outliers, anomalies, or failures such 
as request queuing, server overload, or internal system 
errors. 

A red vertical line is drawn on the KDE plot to indicate the 
analytical threshold derived from the intersection of the 
two most dominant Gaussian components. This threshold 
serves as a practical boundary to distinguish between 
normal and abnormal system behavior in Jonob Iran's 
web infrastructure. 

 

 

Fig. 10:.BIC and AIC for GMM 
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Fig. 11:.Clustering of Response Times and Statistical Model Selection of Apart 

 

O.  3.4.3. Final Interpretation and Implications 

The clustering analysis confirms the existence of multiple 
distinct behavioral patterns in Jonob Iran's server 
response times. In particular, the presence of a long-
tailed fifth cluster suggests underlying issues such as 
scalability limitations, lack of asynchronous request 
handling, or architectural inefficiencies. The observed 
cluster structure points to considerable systemic 
complexity, which may be consistent with a monolithic or 
tightly coupled architecture, as opposed to modular or 
microservice-based designs. 

In summary, applying the GMM model allowed for a 
nuanced and data-driven segmentation of response time 
behaviors. Supported by BIC and AIC metrics, the model 
facilitated accurate cluster selection and helped establish 
performance thresholds. These findings have practical 
applications in system performance monitoring, anomaly 
detection, and architectural diagnostics based on client-
side web analytics, particularly for systems like Jonob 
Iran. 

P.  3.5. Statistical Analysis of the Response Times of the 
"Digikala" System Based on the GMM Model 

The current section gives the statistical analysis of the 
response times of the Digikala system based on the 
Gaussian Mixture Model (GMM). The main purpose of 
this analysis was to uncover latent behavioral clusters in 
the data and to set the boundaries separating normal 
from anomalous system behavior based on statistical 
measures. 

Q.  3.5.1. Finding the Best Number of Clusters 

The second plot shows the values of two key statistical 
estimates—Bayesian Information Criterion (BIC) and 
Akaike Information Criterion (AIC)—for GMM 
specifications from 1 to 9 clusters. As the number of 
clusters increases, both estimates shrink significantly, and 
the decreasing rate diminishes and stabilizes after the 
sixth cluster. This suggests that a model with five or six 
clusters has the best trade-off between accuracy and 
parsimony. Here, the five-cluster model was used as it 
resulted in a major reduction of the information criteria 
without increasing complexity too much. 

.5.2. Response Time Density Distribution Analysis 

The initial figure displays the Kernel Density Estimation 
(KDE) of the distribution of response times, superimposed 
on the clusters identified by the GMM: 

Clusters 1 and 2 (blue and green) are concentrated in a 
very low response time range (below 1.5 seconds), 
showing fast and good performance for the majority of 
the requests. 

Cluster 3 (purple) spans the range of 2 to 5 seconds, 
illustrating responses with median latencies. 

Cluster 4 (orange) is spread out more widely and includes 
higher response times, going up to about 15 seconds. 

Cluster 5 (red) has a low-density configuration with an 
elongated tail over 20 seconds, possibly due to 
anomalous activity or high degrees of usage. 

The figure's vertical red line defines the juncture point 
between two distributions of prevalence, serving as a 
boundary for discriminating between normal and 
potentially abnormal system operational behavior. 
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Fig. 12.BIC and AIC for GMM 

 
Fig. 13.Clustering of Response Times and Statistical Model Selection of Apart 

 

DISCUSSION 

The initial research question sought to identify whether 
the noted systems were running under monolithic or 
microservices-based architectural patterns using client-
side behavioral data. Such a categorization was facilitated 
by two indirect indicators, namely the number of distinct 
domains loaded during runtime and the temporal 
breakdown of response times, represented using 
Gaussian Mixture Models (GMM). While domain count 
offers a useful first-pass approximation, exceptions may 
exist, for instance, monolithic systems using multiple 
CDNs or microservice systems behind a unified reverse 
proxy. 

Empirical observations revealed different architectural 
structures. Digikala-type systems exhibited characteristic 
features of microservice architectures, i.e., numerous 
unique domains, modular and asynchronous request 

behavior, and a few low-latency response clusters. 
Systems such as Jonoob Iran, however, revealed 
characteristic features of a monolithic structure, i.e., a 
single central domain usage, less component interaction, 
and higher latency clusters typical of linear processing or 
bottlenecks. 

These results are very congruent with a study[1], which 
has characterized microservice-based structures as 
assemblies of loosely coupled, autonomously deployable 
services that naturally increase scalability and modularity. 
Similarly, another study[4] empirically demonstrated that 
microservices would have more domain fragmentation 
and dynamic composition of services, which effects were 
observed in Digikala's domain footprint and grouped 
response profiles. 

From a performance point of view, the low-latency 
clusters seen in Digikala confirm a study[12] finding that 
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microservices, if properly designed, can react quickly to 
localized requests due to service isolation and stateless 
processing. However, the presence of long-tail latency 
clusters in the same system is a sign of problems 
highlighted in a study[3], including inter-service 
communication overhead and complex dependency 
chains. These nuances further support the need for 
robust orchestration mechanisms, as proposed by a 
study[13], which advocated for dynamic authentication 
and access control between microservice boundaries. 

Conversely, Jonoob Iran's architecture aligns with a 
study[2], which noted that monolithic systems tend to 
confine all services into a single deployable unit with 
fewer external dependencies. This provides simpler 
routing logic but greater exposure to internal bottlenecks. 
The system's extended, uniform latency clusters reflect 
the issues of some studies[10,11], which linked 
centralized architectures with degraded performance 
under speculative execution attacks (e.g., Spectre and 
Meltdown). Such systems usually employ shared memory 
spaces and lack microservice isolation benefits, making 
them vulnerable to a broader category of systemic 
threats. 

Interestingly, the absence of server header signatures in 
Jonoob Iran, in contrast to infrastructure-named systems 
like Divar (e.g., "Sotoon"), provides evidence for a 
study[21] argument that architectural opacity, which is 
prevalent in legacy monolithic systems, both impedes 
defensive analysis and serves as a basis for side-channel 

reconnaissance by adversaries. 

Aside from confirming existing theoretical frameworks, 
this work adds to the literature by introducing a client-
side, non-intrusive inference method without source 
code or internal log access. This is distinct compared to 
existing simulation-heavy or backend-centric 
research[22], and it offers practical application to red 
teams, security auditors, and researchers operating in 

restricted-access environments. 

In summary, the classification results reaffirm historical 
system behavior and threat exposure differences 
between microservice-based and monolithic systems. 
Using the integration of architectural heuristics and 
statistical analysis, this work introduces a new, 
lightweight architecture-aware vulnerability analysis 

framework for real-world environments. 

A.  4.1 Comparative Analysis of System Architecture, 
Response Behavior, and Security Attributes 

For a better understanding of the architectural and 
security differences among the test platforms, this 
section provides a comparative explanation of five sites: 
Tabnak, Digikala, CafeBazaar, Torob, and Jonoob Iran. 
Comparison is made based on key indicators such as 

inferred type of architecture, average response time, 
loaded domains, number of response clusters identified 
through GMM, HTTP server headers, and external 

resources percentage. 

The results indicate that pages such as Digikala, Torob, 
and CafeBazaar, which exhibit architectural 
characteristics of microservices, should have more 
variability in response times and more variance in domain 
requests. These are characteristic of the distributed, 
loosely coupled nature of microservice architecture. 
Tabnak, as a sample, exhibits more regular response 
behavior and little domain variability, the signature of a 
monolithic system. However, its centralized character 
places it at risk of more comprehensive security 

vulnerabilities in the event of an organized attack. 

Similarly, the Jonoob Iran system with low domain 
diversity, consistent response behavior, and no visible 
HTTP server headers has been classified as a monolithic 
architecture. These findings are also in alignment with 
previous results by Almeida et al. (2017) and Kocher et al. 
(2019), who identified that monolithic systems involving 
centralized infrastructure and memory are predominantly 
vulnerable to side-channel attacks and information 

leakage. 

This comparative assessment not only brings out the 
differences in architecture between the systems but also 
provides insightful observations on their security 
weakness, threat posture, and the growing imperative to 
embrace multi-layered defense strategies and zero-trust 
frameworks in modern web-based scenarios. 

Conclusion 

This study sought to evaluate security threats in 
monolithic and microservice architectures with an 
empirical, client-side analysis approach. The central 
objective was to develop and experiment with a 
lightweight technique for indirectly inferring architectural 
models and detecting performance-centric behavioral 
patterns based on browser-level resource monitoring and 
response time clustering. 

By meticulous case studies of existing systems such as 
Digikala and Jonoob Iran, the research explained that 
architectural variance can be coherently concluded using 
non-intrusive indicators such as the number of different 
domains accessed and temporal behavior explained in 
terms of the Gaussian Mixture Model (GMM). The study 
confirmed that systems with higher domain diversity, 
modular latency profiles, and distributed behaviors were 
more predictive of microservice architectures. In 
contrast, centralized domain dependency and longer, 
homogeneous latency patterns predicted monolithic 
architectures. 
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Secondarily, the availability of model selection criteria 
such as AIC and BIC allowed objective characterization of 
behavioral clusters that, when decoded together with 
architectural theory, provided strong evidence for system 
modularity, scalability, and susceptibility to performance 

degradation or threat propagation. 

5.1 Theoretical Implications 

This study contributes to the theoretical literature on 
architectural security by bridging an essential gap 
between abstract threat modeling and empirical data. 
While previous research[1,3,12] has introduced 
conceptual threats in microservices and monolithic 
systems, little empirical validation of architectural 
inference models in real operational environments 
without backend access has existed. 

By enabling the presentation of a client-side, statistical, 
and architecture-aware inference model, the research 
contributes to the analytical toolkit available for software 
architecture analysis. It also makes the three-layered 
threat analysis conceptual model stronger, as indicated 
by the literature review. The ability to infer architectural 
patterns from empirically visible client-side behavior 
contributes to a corpus of research in "black-box" security 
analysis and architecture fingerprinting. 

5.2 Practical Implications 

In practice, the results of this work have significant 
implications for security professionals, system architects, 
and auditors: 

For pen testers and red teams, the approach delineated 
facilitates hidden reconnaissance and architectural 
fingerprinting of target systems without requiring high 
privilege or server-side permission. 

For DevOps operators and system designers, the work 
presents quantifiable indicators—response clustering and 
domain diversity—that can be monitored in order to 
reason about architectural health and identify outliers in 
performance. 

For defenders and security operations centers (SOCs), 
understanding how architecture is actualized in traffic 
and response patterns can inform the development of 
anomaly detection systems that are architecture-aware. 

Also, the employment of open-source applications such 
as Zbrowse and Python during automated 
implementation makes it highly replicable and 
transferable for organizations looking to enhance their 

security posture using lightweight architectural diagnosis. 

5.3 Additional Research Recommendations 

While this research provides a compelling method, it also 
inspires a number of avenues for future research: 
Expanded Dataset Domain: Expanding the dataset 
domain to include more domains of systems in more 
industries (e.g., financial, healthcare, IoT) would increase 
its generality and support sector-specific threat modeling. 
Integration with Real-time Threat Intelligence: This can be 
integrated with real-time threat intelligence feeds in 
future research to match observed vulnerabilities or 
attacks with deduced architecture. 
Machine Learning-Based Classification: The application of 
supervised or semi-supervised learning methods can 
enhance classification accuracy, particularly by 
incorporating additional client-side features such as script 
origin, request frequency, and network entropy. 
Server-Side Validation: Although this study employed 
only client-side data, supporting evidence from backend 
telemetry (where available) would validate the accuracy 
of the inference method. 
Zero-Trust and API-Centric Architectures: With the 
growing importance of zero-trust architectures and API-
first systems, the proposed method can be further 
applied to infer API distribution and trust boundaries in 
cloud-native systems. 
Lastly, this work not only sheds light on the apparent 
dissimilarities between monolithic and microservice 
architectures but also presents a new, non-intrusive 
system profiling methodology of theoretical and practical 

interest in the rapidly evolving realm of software security. 
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