
 F. G. Communication & IOT 3(4): 19-35, 2025

Doi:

Future Generation of Communication and Internet of Things (FGCIOT)

Journal homepage: http://fgciot.semnaniau.ac.ir/

PAPER TYPE (Research paper)

Analysis of Monolithic and Microservice Architectures Using Client-
Side Inference and Statistical Modeling: A Case Study Approach

Hamidreza.Naseri*1, Hoda Avazzadeh1, Mehdi Ghasemi2

1Department of Computer Engineering, BA.C., Islamic Azad University, Bandar Abbas, Iran.
2Department of Information Technology, Ministry of Educational System, Bandar Abbas, Iran

Introduction

In today's digitally connected and cloud-focused era,

software system security has become a critical concern

for developers, system architects, and security experts. As

businesses increasingly rely on web-based services and

deploy systems at scale, the underlying architectural

model has a direct influence on the functionality and

vulnerability of these systems. Two of the leading

paradigms—monolithic architectures and microservices-

based architectures—each offer alternative design

philosophies with differing security implications. While

monolithic systems are traditionally implemented as a

single, tight-coupling unit, microservices divide functions

among independently deployable and loosely coupled

services. Both architectures possess unique security

challenges and opportunities that must be well

understood within the settings of real-world operational

environments [1,2].

Monolithic architectures, although with an easier

deployment and operation, are typically vulnerable due

to their centralized setup. A successful attack on a single

building block can reveal the entire structure.

Microservices, however, enhance modularity, scalability,

and maintainability but introduce a much-increased

attack surface in that they depend on distributed services

and inter-service communications [3,4]. Security controls

in microservice environments must contend with

network-level attacks, service authentication and

authorization, and secure communication protocols

between services—problems often less acute in

monolithic setups [5,6].

The trend towards containerized microservices, cloud-

native platforms, and serverless architectures

complicates the security picture even further. Attackers

can attack insecure APIs, misconfigured service meshes,

or privilege-escalation vectors in orchestrated

environments like Kubernetes or Docker [7,8].

Furthermore, the dynamic and decentralized nature of

microservices makes perimeter-based security models

ineffective, and thus, there is a move toward zero-trust

Article Info Extended Abstract

Article History:
Received 20 February 2025
Revised 22 March 2025
Accepted 25 May 2025

 In the evolving context of web-based system deployment, software

architectural design—monolithic or microservice—is the deciding factor for

its security posture. This paper presents a novel client-side solution for

system architecture inference and evaluation of performance-related threats

through browser-level resource monitoring and Gaussian Mixture Model

(GMM) clustering of response times. By analyzing actual systems such as

Digikala and Jonoob Iran, the work discovers unequivocal signs of

architecture: high domain heterogeneity and modular latency clusters in

microservices, and centralized domain usage with persistent latency in

monolithic systems. The work not only confirms theoretical differences but

also presents a lightweight, non-intrusive diagnostics infrastructure for

architecturally classifying systems and detecting anomalies, with broad red

teaming, DevOps monitoring, and security auditing implications. The

approach enhances theoretical as well as practical solutions to architecture-

sensitive threat analysis in access-controlled environments.

Keywords:
Client-Side Threat Analysis ,
Microservices Security, System
Architecture Inference

*Corresponding Author’s Email
Address:
Dr.Hamidreza.Naseri@gmail.com

H.Naser et al

frameworks [9]. In turn, monolithic systems remain

susceptible to side-channel attacks, memory data leaks,

and legacy bugs, especially if not refactored or actively

maintained [10,11].

The main research issue of this study comes from the

need to find out how architectural choices influence

system vulnerabilities and threat spreading. Despite more

recent work on microservices security[12,13], little

attention has been directed toward comparing monolithic

and microservice threat patterns in identical operation

environments. Still fewer studies have looked into the use

that attackers make of architectural knowledge, in terms

of, for example, system decomposition topology, service

entrance points, or communication graphs—to execute

and plot attacks[14,15].

This paper discusses the following research questions:

•Is the targeted system based on a monolithic or

microservice architecture?

By way of a detailed case study of operational software

systems, this research aims to uncover how the structure

of an application affects its vulnerability to security

threats. The case study approach allows us to observe

threats in action and investigate the real-world

implications of theoretically outlined vulnerabilities

reported in the literature[16,17].

This paper aims to critically evaluate the nature and

extent of security threats in monolithic and

microservices-based systems. Empirically, through

reported incidents, we plan to establish a taxonomy of

threats, evaluate the sufficiency of currently available

mitigation controls, and provide practical

recommendations to system architects, particularly for

cloud-native and edge-deployed systems[18,19].

With the fast-paced evolution of web technology,

software systems have experienced radical changes in

architectures, modes of deployment, and security

paradigms over the last few decades. As monolithic

architecture models, as well as emerging microservice

paradigms, are increasingly used worldwide, worries

regarding novel problems of vulnerabilities, attack

methods, and security solutions unique to architectural

designs have emerged. While there is significant literature

that explores conceptual threats, mitigation strategies, or

threat defenses, relatively more work grounded on

analyzing contrasts and similarities between threat

scenarios between different architectures is still lacking.

The traditional work gives a complete picture of software

architecture evolution from monolithic, tightly coupled

systems to microservice-based, loosely coupled

applications[1]. Microservices are undoubtedly beneficial

in terms of modularity, scalability, and maintainability,

but come with complex security challenges, especially in

distributed systems. Above all, the increase in service-to-

service communication increases the attack surface,

offering more entry points for potential attackers.

Another study, in its empirical study of microservice

security, found an array of common vulnerabilities like

insecure APIs, inconsistent authentication mechanisms,

and lack of centralized access control[4]. Through a

systematic mapping study, it emphasized the importance

of encryption, safe configuration management, and

internal network segmentation—qualities that are not

necessarily rigidly enforced in microservices

architectures[12].

One of the most comprehensive multivocal security

literature reviews for microservice-based systems, a

breakdown of threats into three types—intra-service

threats, inter-service communication risks, and external

interface threats—is a multi-layered analysis of

security[3]. Also, their research in 2019 graphically

depicted the commonly used security mechanisms

employed in microservices, such as token-based

authentication (e.g., JWT), role-based access control

(RBAC), and application-level firewalls[3].

One of the studies introduced a security orchestrator that

orchestrates authentication, logging, and threat response

in service-oriented systems[13]. Their work puts focus on

how complex security orchestration is when services are

extremely dynamic and independently deployable.

Another study introduced a fine-grained access control

model, with coarse-grained or static policies being

insufficient for current service ecosystems[6].

The next paper studied a microservices-specific zero-trust

parameterization model that departed from legacy

perimeter security and focused instead on ongoing

authentication of all service interactions and requests[9].

These are increasingly important techniques as the classic

security perimeters get abstracted within cloud-native

and container environments.

Despite their diminishing fame in cloud-native systems,

monolithic architecture continues to pervade, most

commonly in business and legacy systems. Another paper

suggests, their centralized structure makes it convenient

for access management[20]. However, it amplifies the

impact of an attack—a vulnerability in any component of

it may leave the system vulnerable in totality.

One of the papers discussed the problem of deep

dependency chains in monolithic applications with

cascading vulnerabilities and patch management

issues[2]. Monolithic applications are particularly

vulnerable to side-channel attacks such as Meltdown and

Spectre, in which shared memory and speculative

execution are targeted at the hardware level[10,11]. Such

attacks are prone to monoliths due to tight integration

and shared memory space.

The next paper also investigated the bitter reality of side-

channel vulnerabilities in conventional architectures

through their work on acoustic attacks against printers,

Analysis of Monolithic and Microservice Architectures Using Client-Side Inference and Statistical Modeling: A Case Study Approach

demonstrating how physical attributes of equipment can

even offer sensitive information leakage[21].

One of the most important shortcomings of existing

literature is that there is not much comparative and

empirical analysis of threat patterns in monolithic and

microservice architectures. While many works focus on

security in one or the other paradigm, few address how

architectural design itself affects threat surfaces, threat

propagation, and attacker behavior [22].

In addition, most of the current body of research is either

simulation-based or conceptual-based. Additionally,

there is a scarcity of case study–based work that studies

security vulnerabilities in operating environments where

deployment constraints, configuration issues, and real-

world attacker profiles are present. Such an empirical

study is needed to bridge the gap between theoretical

knowledge and real-world security practice.

The application of architectural knowledge to attacker

strategies—how attackers may apply knowledge about

service graphs, ingress points, or inter-process

communication in system mapping and attacking—lacks

enough research. Identification of these dynamics is

critical for planning ahead of time.

A three-layered conceptual threat analysis framework for

security threats in software architecture is suggested

based on the literature reviewed:

1. Structural Layer: Captures the top-level architectural

model (microservices or monolithic) and internal

dependencies, service decomposition, and the number of

microservices.

This layered architecture provides a basis for structured

threat analysis in production-quality software systems. It

also acts as a reference model to classify, compare, and

neutralize threats under both architecture paradigms.

METHODS

This chapter outlines the procedure for designing,

implementing, and evaluating a novel client-side

approach to infer the architectural style of web-based

systems indirectly. The primary objective of this approach

is to estimate the classification of systems as Monolithic

or Microservice-Based architectures based on the analysis

of resources downloaded by the browser and system

response patterns. The following sections describe in

detail the data acquisition methods, preprocessing and

refinement stages, and statistical computation based on

cluster modeling through the application of programming

and statistical software.

A. 2.2 Research Design

The research in this thesis is applied-analytic and

conducted with an empirical case study. There are two

levels of data analysis:

1. Inference of system structure through the analysis of

external resources and the number of domains loaded to

the client-side

2. Investigating server response behavior using statistical

modeling to identify underlying patterns in the data.

These complementary techniques enable a multi-layered

examination of system design and performance under

real operating conditions.

B. 2.3 Tools and Data Collection Methods

Data were pulled using an open-source tool named

Zbrowse, which is Node.js and a Headless Chromium

engine-based. The tool simulates a browser without a

user interface, captures all network requests and

responses of the target page, and stores them as JSON

files.

Here, each target site was monitored at every three-
minute interval for 24 hours, and a total of 500 tracking
sessions were created. Each session's outcome was
stored as a JSON file with details such as the resource URL,
request type, headers, request time, and origin server.

H.Naser et al

Fig 1- Console Output of Client-Side Inference and JSON File Generation in VyOS Architecture Detection Framework

C. 2.4 Data Preprocessing and Refinement

At the preprocessing stage, the JSON files obtained were

worked on in Python with appropriate libraries. Python

scripts were utilized to parse and get vital information

such as resource domain, Server header, file type

(JavaScript or CSS), and response origin.

During this stage, the external domain resources provided

through Content Delivery Networks (CDNs) were not

considered. Only resources that are directly related to the

target site's infrastructure were retained. For instance,

the Server header for a site like "Divar" was identified as

"Sotoon" and displayed a specific cloud infrastructure,

whereas "Jonoob Iran" type systems lacked a specific

header and were categorized separately.

D. 2.5 Inferring System Architecture from the Client-

Side Perspective Domain Count Heuristic for

Architectural Inference
After extracting all resource domains from client-side

observations, the number of unique domains was used

as an approximate indicator of system modularity:

A high domain count may suggest a microservice-based or

modular architecture, where services such as

authentication, API endpoints, static resources, and third-

party integrations are hosted on distinct subdomains or

servers.

A low domain count, often close to one, may reflect a

monolithic architecture, in which most or all resources are

delivered from a single origin.

Analysis of Monolithic and Microservice Architectures Using Client-Side Inference and Statistical Modeling: A Case Study Approach

It is important to note that this approach is preliminary

and heuristic. It does not replace detailed backend

architectural analysis, but it provides a lightweight,

scalable inference method for environments where

server-side access is restricted or unavailable.

E. 2.6 Statistical Analysis of Response Time Using

GMM

For the purpose of analyzing system response patterns,

time data obtained in the aparat_output.csv file were

utilized. The file was first read with the assistance of the

pandas library in Python. Response time values (in

milliseconds by default) were scaled to seconds and

arranged as a two-dimensional array suitable for

modeling.

Lastly, clustering was performed under the Gaussian

Mixture Model (GMM). The model was trained for various

numbers of clusters (from 1 to 9), and in each

arrangement, two information criteria were calculated:

•Akaike Information Criterion (AIC)

•Bayesian Information Criterion (BIC)

The model with the smallest BIC value was selected as the

optimal model. To visualize the results, Kernel Density

Estimation (KDE) was used to approximate the probability

distribution of the data. Density curves were plotted for

the entire dataset and each identified cluster. If two or

more clusters were found, the intersection point of the

dominant distributions was recommended as a decision

threshold. All statistical processing, visualization, and

saving of outputs were done via Python scripting.

Fig 2- Codes of Cluster

H.Naser et al

Fig 3- Python Script for Gaussian Mixture Model (GMM)-Based Clustering and Threshold Estimation of Response Times from Client-
Side Log Data

F. 2.7 Advantages of the Proposed Approach

•Utilization of client-side observations to conclude
system structure without source code or server access;
•Accurate response behavior modeling using GMM with
the ability to uncover hidden properties;
•Application of AIC and BIC criteria for the optimal choice
of clusters, minimizing human intervention;
•Capacity to visualize outcomes and determine
behavioral thresholds for identifying delays or anomalies;
•A fully automated, code-based implementation on the
Python platform.

This chapter introduced a new research methodology for
indirectly investigating system architectures from the
client-side perspective and statistically evaluating server
response behaviors. Through the integration of data
collection tools, Python coding, GMM modeling, and
loaded domain analysis, an approximate classification of
system architectures was achieved. The proposed
methodology provides a light, fast, and non-intrusive
means of evaluating web-based systems in real-world

settings. The detailed results obtained through this
methodology will be presented in part three.

G. 2.8.Comparison of Clustering Algorithms: GMM, K-

means, and DBSCAN

To validate the decision to use the Gaussian Mixture
Model (GMM) as the main clustering approach in this
study, a comparison with two other well-known
algorithms, specifically K-means and DBSCAN, was
conducted. Each of these algorithms possesses some
advantages and disadvantages depending on the
characteristics of the data and the aims of clustering.

GMM provides soft clustering, which assigns a probability
distribution over clusters to each data point. It is
particularly useful when the clusters overlap or are of
varying shapes and densities. GMM also supports
elliptical-shaped clusters and can represent complex data
patterns, making it a competitive choice to model
heterogeneous server response behaviors. However, it
has the assumption that the data are Gaussian distributed
and is computationally more costly than less complex
algorithms like K-means.

Analysis of Monolithic and Microservice Architectures Using Client-Side Inference and Statistical Modeling: A Case Study Approach

K-means, however, is a fast and efficient algorithm
suitable for large datasets. It performs well when
clusters are spherical, equal in size, and well separated.
However, it makes hard assignments (each data point

belongs to one cluster) and is very sensitive to the initial
placement of centroids and to outliers.

DBSCAN handles it differently by using a density-based
approach to discover clusters of any shape without
requiring the number of clusters as input. It is extremely
robust to noise and can identify outliers explicitly.
Nevertheless, the success of DBSCAN depends heavily on
the selection of its parameters (ε and min_samples), and
it does not perform well on datasets with differing
densities or high dimensions.

Briefly, based on the properties of this study's dataset,
namely the presence of overlapping response patterns
and the aspiration for probabilistic interpretation, GMM
was selected as the most appropriate algorithm. Its ability
to model uncertainty and relaxed cluster forms is well
adapted to the analytical goal of extracting faint
behavioral trends in server performance.

Results and Discussion

A. 3.1.Clustering of Response Times and Statistical
Model Selection

To analyze latent patterns and behavioral trends in the
response times of the Tabnak server, a Gaussian Mixture
Model (GMM) was applied to the observed server
response time data (measured in seconds). The analysis
provided insights into the distribution of response times,
identification of underlying clusters, and the definition of
a threshold for distinguishing between different system
performance zones.

The second graph shows the evaluation of GMMs with
varying numbers of components, ranging from 1 to 9
clusters. Two standard statistical metrics—Bayesian
Information Criterion (BIC) and Akaike Information
Criterion (AIC)—were employed to determine the optimal
number of clusters. As expected, both BIC and AIC values
generally decreased with the addition of more clusters,
indicating an improved model fit. However, a distinct
elbow point was observed at five clusters, beyond which
the reduction in BIC and AIC values became marginal. This
suggests diminishing returns in model performance and
increased complexity. Therefore, the five-cluster model
was selected as the optimal trade-off between model
accuracy and simplicity.

Fig. 4.BIC and AIC for GMM

B. 3.1.2. Distribution of Response Times

The first graph illustrates the Kernel Density Estimation
(KDE) of response time distributions across the five
clusters identified by the GMM for the Tabnak server.
Each cluster is represented by a distinct color, signifying
different server performance behaviors:

Clusters 1 and 2 (blue and orange) show the highest
density in response times below one second, indicating
the fastest and most efficient server behavior.

Cluster 3 (green) represents moderate latency, reflecting
standard server response times under typical conditions.

H.Naser et al

Clusters 4 and 5 (purple and brown) correspond to slower
response times with greater variance, signaling degraded
performance or potential system issues.

A red vertical line in the plot indicates the optimal
threshold, derived from the intersection of the two most

dominant Gaussian components. This threshold serves as
a practical boundary to differentiate between normal and
abnormal server response behavior

Fig. 5.Clustering of Response Times and Statistical Model Selection of Tabnak

C. 3.1.3. Interpretation and Application of Results

The results highlight significant variability in Tabnak’s
server response performance, validating the assumption
that server behavior patterns can be inferred from client-
side response data. The heterogeneity in response times
may point to underlying architectural features—such as a
modular (e.g., microservices-based) infrastructure—or
differences in server load, configuration, or hosting
environments. Moreover, the use of GMM, along with BIC
and AIC for cluster validation, enabled a data-driven
approach to determining optimal performance
segmentation and establishing a statistically robust
performance threshold.

D. 3.2. Response Time Analysis by GMM Clustering

This section presents the results of the statistical analysis
of server response times for the Divar platform, using the
Gaussian Mixture Model (GMM). The primary aim was to
uncover latent behavioral trends in server responsiveness
and determine the appropriate number of clusters that
best represent these patterns. Two key visualizations
were generated for this purpose:

A density plot displaying the clustered distribution of
response times;

A model selection plot showing BIC and AIC values across
different GMM configurations.

E. 3.2.1. Determining the Optimal Number of Clusters

The model selection plot compares the Bayesian
Information Criterion (BIC) and the Akaike Information
Criterion (AIC) for GMMs with cluster counts ranging
from 1 to 9. Both metrics initially decrease sharply,
reflecting a significant improvement in model fit as more
clusters are introduced. However, after the sixth cluster,
the rate of decline in both BIC and AIC becomes minimal,
signaling that adding further clusters yields negligible
gains while increasing model complexity. Based on this
inflection point, the six-cluster model was selected as
the optimal balance between accuracy and parsimony
for analyzing Divar's server response times.

Analysis of Monolithic and Microservice Architectures Using Client-Side Inference and Statistical Modeling: A Case Study Approach

Fig. 6.BIC and AIC for GMM

F.3.2.2. Clustering Distribution of Response Times
The first plot displays the estimated Probability Density
Function (PDF) of Divar’s server response times using
Kernel Density Estimation (KDE), overlaid with the six
clusters identified by the GMM. Each cluster is color-
coded to reflect distinct behavioral patterns:

Clusters 1 and 2 (e.g., orange and purple) represent
extremely short response times (under one second),
which signify optimal server performance.

Clusters 3 and 4 (e.g., blue and green) fall within
moderate response ranges and likely correspond to
standard system behavior with slight latency.

Clusters 5 and 6 (e.g., black and brown) exhibit extended
response times, often exceeding 10 seconds, which may
point to server overload, bottlenecks in modular services,
or repeated request handling.

A red vertical line on the graph indicates the threshold
derived from the intersection of the two most influential
Gaussian components. This threshold can be used to
distinguish between normal and abnormal response

patterns for Divar’s system performance.

G.3.2.3. Interpretation of Behavioral Patterns and
PracticalApplications
The clear emergence of six distinct response time
clusters suggests a high degree of heterogeneity in
Divar's server performance. This variability may stem
from factors such as a microservices-based
infrastructure, asynchronous service calls, or the
distribution of load across independent service
modules. Notably, the presence of long-tail
distributions in clusters 5 and 6 may signal issues
related to scalability, inefficient resource allocation, or
request retries under

high load conditions.

Moreover, the GMM’s ability to identify optimal clusters
and define behavioral thresholds makes it a valuable tool
for performance monitoring and anomaly detection. Its
reliance on client-side response data and unsupervised
learning enables a lightweight, scalable approach for real-
time diagnostics and architectural insights, particularly
relevant for complex platforms like Divar.

H.Naser et al

Fig. 7.Clustering of Response Times and Statistical Model Selection of Divar

H.3.3. Response Time Analysis Using the GMM Model

This section presents the statistical analysis of server
response time data for the Aparat platform. The primary
objective was to identify underlying behavioral patterns
in response latency and determine the optimal number of
clusters through the use of the Gaussian Mixture Model
(GMM). Two key visualizations formed the basis of this
analysis:

An estimated response time density plot with clearly
separated clusters;

A model selection plot using standard statistical criteria.

I.3.3.1. Determining the Optimal Number of Clusters
Using BIC and AIC

The second plot illustrates the values of the Bayesian
Information Criterion (BIC) and the Akaike Information
Criterion (AIC) for GMMs with components ranging from
1 to 9. As observed, both criteria drop sharply at the
beginning, suggesting a better model fit with more
clusters. However, this decline starts to level off around
five clusters, indicating an "elbow point." This plateau

suggests that increasing the number of clusters beyond
five results in marginal gains but greater model
complexity. Therefore, the five-component GMM was
selected as the most balanced model, offering sufficient
accuracy without unnecessary complexity in analyzing
Aparat’s server response data.

J.3.3.2. Temporal Distribution Analysis Based on
Clusters

The first plot shows the Probability Density Function (PDF)
of Aparat’s response times, estimated through Kernel
Density Estimation (KDE), overlaid with the five clusters
identified by the GMM. Each cluster is represented in a
distinct color to highlight different response behaviors:

A red vertical line in the plot signifies the threshold
between normal and abnormal behavior, determined by
the intersection of the two most prominent Gaussian
components. This threshold may serve as a practical
reference point in monitoring Aparat’s system
performance.

Analysis of Monolithic and Microservice Architectures Using Client-Side Inference and Statistical Modeling: A Case Study Approach

Fig. 8:.BIC and AIC for GMM

Fig. 9:.Clustering of Response Times and Statistical Model Selection of Apart

K.3.3.3. Ultimate Interpretation and Practical
Applications

The identification of multiple clusters in Aparat's
response time data confirms the presence of
heterogeneous behavioral patterns. This variation may
result from underlying architectural factors, such as the
use of microservices, load balancing mechanisms, or
differences across content delivery modules.

By leveraging the GMM along with BIC and AIC for
statistical validation, this analysis enabled a data-driven
approach to uncovering and categorizing system
behaviors. The resulting model can be applied in real-
world settings for performance monitoring, early
anomaly detection, and client-side inference of system
architecture. Overall, this methodology offers a scalable,

lightweight analytical framework suitable for ongoing
assessment of complex web platforms like Aparat.

L.3.4. Response Time Analysis of the "Jonoob Iran"
System with the GMM Model

Here, the outcome of the response time analysis of the
Jonoob Iran system using the Gaussian Mixture Model
(GMM) and model selection criteria, i.e., Bayesian
Information Criterion (BIC) and Akaike Information
Criterion (AIC), is given. The purpose was to discover
hidden patterns in the responsiveness of the system and
also the optimal number of clusters in the data.

M.3.4.1. Optimal Cluster Number Based on BIC and AIC

The second figure illustrates the values of the Bayesian
Information Criterion (BIC) and Akaike Information

H.Naser et al

Criterion (AIC) for Gaussian Mixture Models (GMMs) with
1 to 9 components. As the number of clusters increases,
both metrics initially decrease sharply, indicating
improved model fit. However, after the second cluster,
the rate of decline becomes more gradual, eventually
stabilizing around the fifth cluster. This trend suggests
that further increasing the number of clusters beyond five
results in marginal improvement while adding
unnecessary complexity. Therefore, the five-cluster
configuration was chosen as optimal, representing the
best trade-off between model accuracy and simplicity in
analyzing the response behavior of the Jonob Iran server.

N. 3.4.2. Response Behavior and Clustered Distribution
Analysis

The first figure presents the Kernel Density Estimation
(KDE) of the response time distribution, overlaid with the
five clusters identified by the GMM:

Clusters 1 and 2 (blue and orange) represent very short
response times (under 2 seconds), corresponding to
efficient and stable system performance for the majority
of requests.

Cluster 3 (purple) falls within a medium response time
range, approximately between 4 and 6 seconds, reflecting
moderate system delays likely due to transient load or
routine processing overhead.

Cluster 4 (brown) contains high-latency responses
exceeding 6 seconds, which may be indicative of system
congestion, processing bottlenecks, or inefficiencies
within specific modules.

Cluster 5 (green) extends into a long-tail distribution, with
response times reaching up to 25 seconds. This cluster
most likely captures outliers, anomalies, or failures such
as request queuing, server overload, or internal system
errors.

A red vertical line is drawn on the KDE plot to indicate the
analytical threshold derived from the intersection of the
two most dominant Gaussian components. This threshold
serves as a practical boundary to distinguish between
normal and abnormal system behavior in Jonob Iran's
web infrastructure.

Fig. 10:.BIC and AIC for GMM

Analysis of Monolithic and Microservice Architectures Using Client-Side Inference and Statistical Modeling: A Case Study Approach

Fig. 11:.Clustering of Response Times and Statistical Model Selection of Apart

O. 3.4.3. Final Interpretation and Implications

The clustering analysis confirms the existence of multiple
distinct behavioral patterns in Jonob Iran's server
response times. In particular, the presence of a long-
tailed fifth cluster suggests underlying issues such as
scalability limitations, lack of asynchronous request
handling, or architectural inefficiencies. The observed
cluster structure points to considerable systemic
complexity, which may be consistent with a monolithic or
tightly coupled architecture, as opposed to modular or
microservice-based designs.

In summary, applying the GMM model allowed for a
nuanced and data-driven segmentation of response time
behaviors. Supported by BIC and AIC metrics, the model
facilitated accurate cluster selection and helped establish
performance thresholds. These findings have practical
applications in system performance monitoring, anomaly
detection, and architectural diagnostics based on client-
side web analytics, particularly for systems like Jonob
Iran.

P. 3.5. Statistical Analysis of the Response Times of the
"Digikala" System Based on the GMM Model

The current section gives the statistical analysis of the
response times of the Digikala system based on the
Gaussian Mixture Model (GMM). The main purpose of
this analysis was to uncover latent behavioral clusters in
the data and to set the boundaries separating normal
from anomalous system behavior based on statistical
measures.

Q. 3.5.1. Finding the Best Number of Clusters

The second plot shows the values of two key statistical
estimates—Bayesian Information Criterion (BIC) and
Akaike Information Criterion (AIC)—for GMM
specifications from 1 to 9 clusters. As the number of
clusters increases, both estimates shrink significantly, and
the decreasing rate diminishes and stabilizes after the
sixth cluster. This suggests that a model with five or six
clusters has the best trade-off between accuracy and
parsimony. Here, the five-cluster model was used as it
resulted in a major reduction of the information criteria
without increasing complexity too much.

.5.2. Response Time Density Distribution Analysis

The initial figure displays the Kernel Density Estimation
(KDE) of the distribution of response times, superimposed
on the clusters identified by the GMM:

Clusters 1 and 2 (blue and green) are concentrated in a
very low response time range (below 1.5 seconds),
showing fast and good performance for the majority of
the requests.

Cluster 3 (purple) spans the range of 2 to 5 seconds,
illustrating responses with median latencies.

Cluster 4 (orange) is spread out more widely and includes
higher response times, going up to about 15 seconds.

Cluster 5 (red) has a low-density configuration with an
elongated tail over 20 seconds, possibly due to
anomalous activity or high degrees of usage.

The figure's vertical red line defines the juncture point
between two distributions of prevalence, serving as a
boundary for discriminating between normal and
potentially abnormal system operational behavior.

H.Naser et al

Fig. 12.BIC and AIC for GMM

Fig. 13.Clustering of Response Times and Statistical Model Selection of Apart

DISCUSSION

The initial research question sought to identify whether
the noted systems were running under monolithic or
microservices-based architectural patterns using client-
side behavioral data. Such a categorization was facilitated
by two indirect indicators, namely the number of distinct
domains loaded during runtime and the temporal
breakdown of response times, represented using
Gaussian Mixture Models (GMM). While domain count
offers a useful first-pass approximation, exceptions may
exist, for instance, monolithic systems using multiple
CDNs or microservice systems behind a unified reverse
proxy.

Empirical observations revealed different architectural
structures. Digikala-type systems exhibited characteristic
features of microservice architectures, i.e., numerous
unique domains, modular and asynchronous request

behavior, and a few low-latency response clusters.
Systems such as Jonoob Iran, however, revealed
characteristic features of a monolithic structure, i.e., a
single central domain usage, less component interaction,
and higher latency clusters typical of linear processing or
bottlenecks.

These results are very congruent with a study[1], which
has characterized microservice-based structures as
assemblies of loosely coupled, autonomously deployable
services that naturally increase scalability and modularity.
Similarly, another study[4] empirically demonstrated that
microservices would have more domain fragmentation
and dynamic composition of services, which effects were
observed in Digikala's domain footprint and grouped
response profiles.

From a performance point of view, the low-latency
clusters seen in Digikala confirm a study[12] finding that

Analysis of Monolithic and Microservice Architectures Using Client-Side Inference and Statistical Modeling: A Case Study Approach

microservices, if properly designed, can react quickly to
localized requests due to service isolation and stateless
processing. However, the presence of long-tail latency
clusters in the same system is a sign of problems
highlighted in a study[3], including inter-service
communication overhead and complex dependency
chains. These nuances further support the need for
robust orchestration mechanisms, as proposed by a
study[13], which advocated for dynamic authentication
and access control between microservice boundaries.

Conversely, Jonoob Iran's architecture aligns with a
study[2], which noted that monolithic systems tend to
confine all services into a single deployable unit with
fewer external dependencies. This provides simpler
routing logic but greater exposure to internal bottlenecks.
The system's extended, uniform latency clusters reflect
the issues of some studies[10,11], which linked
centralized architectures with degraded performance
under speculative execution attacks (e.g., Spectre and
Meltdown). Such systems usually employ shared memory
spaces and lack microservice isolation benefits, making
them vulnerable to a broader category of systemic
threats.

Interestingly, the absence of server header signatures in
Jonoob Iran, in contrast to infrastructure-named systems
like Divar (e.g., "Sotoon"), provides evidence for a
study[21] argument that architectural opacity, which is
prevalent in legacy monolithic systems, both impedes
defensive analysis and serves as a basis for side-channel

reconnaissance by adversaries.

Aside from confirming existing theoretical frameworks,
this work adds to the literature by introducing a client-
side, non-intrusive inference method without source
code or internal log access. This is distinct compared to
existing simulation-heavy or backend-centric
research[22], and it offers practical application to red
teams, security auditors, and researchers operating in

restricted-access environments.

In summary, the classification results reaffirm historical
system behavior and threat exposure differences
between microservice-based and monolithic systems.
Using the integration of architectural heuristics and
statistical analysis, this work introduces a new,
lightweight architecture-aware vulnerability analysis

framework for real-world environments.

A. 4.1 Comparative Analysis of System Architecture,
Response Behavior, and Security Attributes

For a better understanding of the architectural and
security differences among the test platforms, this
section provides a comparative explanation of five sites:
Tabnak, Digikala, CafeBazaar, Torob, and Jonoob Iran.
Comparison is made based on key indicators such as

inferred type of architecture, average response time,
loaded domains, number of response clusters identified
through GMM, HTTP server headers, and external

resources percentage.

The results indicate that pages such as Digikala, Torob,
and CafeBazaar, which exhibit architectural
characteristics of microservices, should have more
variability in response times and more variance in domain
requests. These are characteristic of the distributed,
loosely coupled nature of microservice architecture.
Tabnak, as a sample, exhibits more regular response
behavior and little domain variability, the signature of a
monolithic system. However, its centralized character
places it at risk of more comprehensive security

vulnerabilities in the event of an organized attack.

Similarly, the Jonoob Iran system with low domain
diversity, consistent response behavior, and no visible
HTTP server headers has been classified as a monolithic
architecture. These findings are also in alignment with
previous results by Almeida et al. (2017) and Kocher et al.
(2019), who identified that monolithic systems involving
centralized infrastructure and memory are predominantly
vulnerable to side-channel attacks and information

leakage.

This comparative assessment not only brings out the
differences in architecture between the systems but also
provides insightful observations on their security
weakness, threat posture, and the growing imperative to
embrace multi-layered defense strategies and zero-trust
frameworks in modern web-based scenarios.

Conclusion

This study sought to evaluate security threats in
monolithic and microservice architectures with an
empirical, client-side analysis approach. The central
objective was to develop and experiment with a
lightweight technique for indirectly inferring architectural
models and detecting performance-centric behavioral
patterns based on browser-level resource monitoring and
response time clustering.

By meticulous case studies of existing systems such as
Digikala and Jonoob Iran, the research explained that
architectural variance can be coherently concluded using
non-intrusive indicators such as the number of different
domains accessed and temporal behavior explained in
terms of the Gaussian Mixture Model (GMM). The study
confirmed that systems with higher domain diversity,
modular latency profiles, and distributed behaviors were
more predictive of microservice architectures. In
contrast, centralized domain dependency and longer,
homogeneous latency patterns predicted monolithic
architectures.

H.Naser et al

Secondarily, the availability of model selection criteria
such as AIC and BIC allowed objective characterization of
behavioral clusters that, when decoded together with
architectural theory, provided strong evidence for system
modularity, scalability, and susceptibility to performance

degradation or threat propagation.

5.1 Theoretical Implications

This study contributes to the theoretical literature on
architectural security by bridging an essential gap
between abstract threat modeling and empirical data.
While previous research[1,3,12] has introduced
conceptual threats in microservices and monolithic
systems, little empirical validation of architectural
inference models in real operational environments
without backend access has existed.

By enabling the presentation of a client-side, statistical,
and architecture-aware inference model, the research
contributes to the analytical toolkit available for software
architecture analysis. It also makes the three-layered
threat analysis conceptual model stronger, as indicated
by the literature review. The ability to infer architectural
patterns from empirically visible client-side behavior
contributes to a corpus of research in "black-box" security
analysis and architecture fingerprinting.

5.2 Practical Implications

In practice, the results of this work have significant
implications for security professionals, system architects,
and auditors:

For pen testers and red teams, the approach delineated
facilitates hidden reconnaissance and architectural
fingerprinting of target systems without requiring high
privilege or server-side permission.

For DevOps operators and system designers, the work
presents quantifiable indicators—response clustering and
domain diversity—that can be monitored in order to
reason about architectural health and identify outliers in
performance.

For defenders and security operations centers (SOCs),
understanding how architecture is actualized in traffic
and response patterns can inform the development of
anomaly detection systems that are architecture-aware.

Also, the employment of open-source applications such
as Zbrowse and Python during automated
implementation makes it highly replicable and
transferable for organizations looking to enhance their

security posture using lightweight architectural diagnosis.

5.3 Additional Research Recommendations

While this research provides a compelling method, it also
inspires a number of avenues for future research:
Expanded Dataset Domain: Expanding the dataset
domain to include more domains of systems in more
industries (e.g., financial, healthcare, IoT) would increase
its generality and support sector-specific threat modeling.
Integration with Real-time Threat Intelligence: This can be
integrated with real-time threat intelligence feeds in
future research to match observed vulnerabilities or
attacks with deduced architecture.
Machine Learning-Based Classification: The application of
supervised or semi-supervised learning methods can
enhance classification accuracy, particularly by
incorporating additional client-side features such as script
origin, request frequency, and network entropy.
Server-Side Validation: Although this study employed
only client-side data, supporting evidence from backend
telemetry (where available) would validate the accuracy
of the inference method.
Zero-Trust and API-Centric Architectures: With the
growing importance of zero-trust architectures and API-
first systems, the proposed method can be further
applied to infer API distribution and trust boundaries in
cloud-native systems.
Lastly, this work not only sheds light on the apparent
dissimilarities between monolithic and microservice
architectures but also presents a new, non-intrusive
system profiling methodology of theoretical and practical

interest in the rapidly evolving realm of software security.

Conflict of Interest

“All authors declared that there are no conflicts of

interest”.

References

[1] Dragoni, N., Giallorenzo, S., Lafuente, A. L., Mazzara, M., Montesi,
F., Mustafin, R., & Safina, L. (2017). Microservices: Yesterday,
today, and tomorrow. Present Ulterior Software Engineering, 195–
216. https://doi.org/10.1007/978-3-319-67425-4_12

[2] Almeida, W. H. C., de Aguiar Monteiro, L., Hazin, R. R., de Lima, A.
C., & Ferraz, F. S. (2017). Survey on microservice architecture -
security, privacy and standardization on cloud computing
environment. ICSEA, 302–307.

[3] Pereira-Vale, A., Fernandez, E. B., Monge, R., Astudillo, H., &
Marquez, G. (2021). Security in microservice-based systems: A
multivocal literature review. Computer Science Review, 40,
100400. https://doi.org/10.1016/j.cosrev.2021.100400

[4] Alshuqayran, N., Ali, N., & Evans, R. (2018). Towards microservice
architecture recovery: An empirical study. In 2018 IEEE
International Conference on Software Architecture (ICSA) (pp. 47–
56). https://doi.org/10.1109/ICSA.2018.00013

[5] Pereira-Vale, A., Marquez, G., Astudillo, H., & Fernandez, E. B.
(2019). Security mechanisms used in microservices-based systems:
A systematic mapping. In 2019 Latin American Computing
Conference (CLEI) (pp. 1–10).
https://doi.org/10.1109/CLEI47609.2019.235088

Analysis of Monolithic and Microservice Architectures Using Client-Side Inference and Statistical Modeling: A Case Study Approach

[6] Nehme, A., Jesus, V., Mahbub, K., & Abdallah, A. (2019). Fine-
grained access control for microservices. In Foundations and
Practice of Security (pp. 193–208). https://doi.org/10.1007/978-3-
030-29959-0_10

[7] Yu, D., Jin, Y., Zhang, Y., & Zheng, X. (2018). A survey on security
issues in services communication of microservices-enabled fog
applications. Concurrency and Computation: Practice and
Experience.

[8] Li, X., Chen, Y., & Lin, Z. (2019). Towards automated inter-service
authorization for microservice applications. In Proceedings of the
ACM SIGCOMM 2019 Conference Posters and Demos.

[9] Zaheer, Z., Chang, H., Mukherjee, S., & Van der Merwe, J. (2019).
EzTrust: Network-independent zero-trust perimeterization for
microservices. In Proceedings of the ACM Symposium on SDN
Research (pp. 25–36). https://doi.org/10.1145/3314148.3314357

[10] Kocher, P., Horn, J., Fogh, A., Genkin, D., Gruss, D., Haas, W.,
Hamburg, M., Lipp, M., Mangard, S., Prescher, T., Schwarz, M., &
Yarom, Y. (2019). Spectre attacks: Exploiting speculative execution.
In 2019 IEEE Symposium on Security and Privacy (SP) (pp. 1–19).
https://doi.org/10.1109/SP.2019.00002

[11] Lipp, M., Schwarz, M., Gruss, D., Prescher, T., Haas, W., Fogh, A.,
Horn, J., Mangard, S., Kocher, P., Genkin, D., Yarom, Y., & Hamburg,
M. (2018). Meltdown: Reading kernel memory from user space. In
USENIX Security Symposium (pp. 973–990).
https://www.usenix.org/conference/usenixsecurity18/presentati
on/lipp

[12] Hannousse, A., & Yahiouche, S. (2020). Securing microservices and
microservice architectures: A systematic mapping study.
Computer Science Review, 38, 100303.
https://doi.org/10.1016/j.cosrev.2020.100303

[13] Banati, A., Kail, E., Karoczkai, K., & Kozlovszky, M. (2018).
Authentication and authorization orchestrator for microservice-
based software architectures. In 2018 41st International
Convention on Information and Communication Technology,
Electronics and Microelectronics (MIPRO) (pp. 1204–1209).
https://doi.org/10.23919/MIPRO.2018.8400160

[14] Granchelli, G., Cardarelli, M., Di Francesco, P., Malavolta, I., Iovino,
L., & Salle, D. (2017). Microart: A software architecture recovery

tool for maintaining microservice-based systems. In 2017 IEEE
International Conference on Software Architecture Workshops
(ICSAW).

[15] Ahmadvand, M., & Ibrahim, A. (2016). Requirements reconciliation
for scalable and secure microservice (de)composition. In 2016 IEEE
24th International Requirements Engineering Conference
Workshops (REW).

[16] Ravichandiran, R., Bannazadeh, H., & Leon-Garcia, A. (2018).
Anomaly detection using resource behaviour analysis for
autoscaling systems. In Proceedings of the 4th IEEE Conference on
Network Softwarization and Workshops (NetSoft).

[17] Sun, Y., Nanda, S., & Jaeger, T. (2015). Security-as-a-service for
microservices-based cloud applications. In 2015 IEEE 7th
International Conference on Cloud Computing Technology and
Science (CloudCom).

[18] Pahl, M.-O., & Donini, L. (2018). Securing IoT microservices with
certificates. In NOMS 2018 - 2018 IEEE/IFIP Network Operations
and Management Symposium.

[19] Pahl, M.-O., & Aubet, F.-X. (2018). All eyes on you: Distributed
multi-dimensional IoT microservice anomaly detection. In 2018
14th International Conference on Network and Service
Management (CNSM).

[20] Sheridan, E. (2019). Microservices security: It gets worse before it
gets better. WhiteHat Security.
https://www.whitehatsec.com/blog/microservices-security/

[21] Backes, M., Dürmuth, M., Gerling, S., Pinkal, M., & Sporleder, C.
(2010). Acoustic side-channel attacks on printers. In USENIX
Security Symposium (pp. 307–322).
https://www.usenix.org/legacy/events/sec10/tech/full_papers/B
ackes.pdf

[22] Ahmadvand, M., & Pretschner, A. (2018). Integrity protection
against insiders in microservice-based infrastructures: From
threats to a security framework. In Software Technologies:
Applications and Foundations (pp. 19–34).
https://doi.org/10.1007/978-3-030-04771-9_2

https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.usenix.org/conference/usenixsecurity18/presentation/lipp
https://www.whitehatsec.com/blog/microservices-security/
https://www.usenix.org/legacy/events/sec10/tech/full_papers/Backes.pdf
https://www.usenix.org/legacy/events/sec10/tech/full_papers/Backes.pdf

