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Abstract 

 This paper presents a comprehensive exploration of Multi-Criteria Decision-Making (MCDM) 

methodologies utilizing Interval Valued Fuzzy Numbers (IVFNs) to address the complexities of 

decision-making under uncertainty. We introduce a structured approach that integrates 

traditional IVF-MCDM with a novel combined methodology incorporating artificial intelligence 

(AI) through neural networks. The traditional method systematically evaluates alternatives based 

on predefined criteria, allowing decision-makers to express preferences as ranges, thereby 

accommodating uncertainty. However, it may lack adaptability to dynamic changes in supplier 

performance. (In contrast, the combined method enhances the decision-making process by 

dynamically adjusting criterion weights based on historical performance data, thus providing a 

more responsive framework. A case study on supplier selection for Saipa Group illustrates the 

application of both methods, revealing that the combined approach yields superior rankings and 

more accurate evaluations compared to the traditional method. The results demonstrate that the 

integration of AI not only improves the robustness of decision-making but also facilitates 

continuous learning from new data, ultimately leading to more informed and effective choices. 

This research underscores the potential of IVFNs and AI in optimizing MCDM processes, paving 

the way for advancements in decision-making frameworks across various fields. The findings 

advocate for the adoption of combined methodologies in real-world applications, highlighting 

their effectiveness in navigating the uncertainties inherent in complex decision-making 

scenarios. 

Keywords: Multi-Criteria Decision-Making (MCDM); Interval Valued Fuzzy Numbers 

(IVFNs); Artificial intelligence (AI); Neural networks. 
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1. Introduction 

 

 

Decision-making in complex environments often involves 

multiple criteria that can conflict with one another, making 

the need for effective Multi-Criteria Decision-Making 

(MCDM) approaches essential [1]. Traditional MCDM 

methods often rely on precise data and assumptions, which 

can be impractical when dealing with real-world 

uncertainties and subjective judgments [2]. Fuzzy logic has 

emerged as a robust alternative, providing a framework that 

accommodates the vagueness inherent in human reasoning 

[3][4]. 

Among the various fuzzy representations, interval fuzzy 

numbers allow decision-makers to express their 

preferences in terms of ranges rather than specific values, 

thereby enhancing the modeling of uncertainty [5]. This 
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flexibility is particularly beneficial in contexts where the 

availability of precise data is limited or when subjective 

estimates are necessary [4]. Interval fuzzy sets have been 

effectively applied in various fields, including risk 

assessment, performance evaluation, and project selection, 

illustrating their versatility and practicality [6][7]. 

Recent studies have demonstrated the advantages of 

incorporating interval fuzzy numbers into MCDM 

frameworks. For example,  Wang [8] proposed a novel 

MCDM method based on interval fuzzy hybrid aggregation 

operators, which improved the robustness of decision-

making under uncertainty. Similarly, Perçin [9] applied 

interval fuzzy models to optimize supplier selection in a 

supply chain context, highlighting their effectiveness in 

handling conflicting criteria and preferences. 

This paper aims to explore the potential of interval fuzzy 

numbers within MCDM models, emphasizing their 

theoretical foundations and practical applications. By 

harnessing the capabilities of interval fuzzy logic, we can 

develop more effective decision-making tools that 

facilitate enlightened choices in uncertain environments. 

 

2. Literature Review 

 

Multi-Criteria Decision-Making (MCDM) offers 

structured methodologies for evaluating and selecting the 

optimal alternative from a set of possibilities, considering 

multiple, often conflicting, criteria. However, real-world 

decision problems frequently exhibit inherent uncertainty 

and vagueness, rendering traditional MCDM approaches 

insufficient. To address these limitations, Zadeh's fuzzy set 

theory provided a powerful framework for handling 

imprecise information. A significant advancement in this 

domain involved the development and application of 

Interval Fuzzy Numbers (IFNs) within MCDM. 

The initial groundwork centered on defining and exploring 

the properties of interval-valued fuzzy sets. Kohout and 

Bandler [10] explored fuzzy interval inference as an early 

methodological step. Guijun et al. [11] demonstrated a 

foundational application of interval-valued fuzzy numbers. 

Karnik and Mendel [12] introduced type-2 fuzzy sets, 

which offered enhanced capabilities for handling 

uncertainty. Hong and Lee [13] focused on establishing the 

fundamental algebraic properties and distance measures 

for IFNs. This was complemented by Grzegorzewski [14], 

who extended the concept of distance measures to 

intuitionistic fuzzy sets and interval-valued fuzzy sets. 

Cornelis et al. [15] provided a comprehensive overview of 

the state-of-the-art, highlighting advances and open 

challenges in interval-valued fuzzy logic. This period 

established the necessary theoretical foundation for the 

subsequent integration of IFNs into MCDM 

methodologies. 

Building on this foundation, researchers began 

incorporating IFNs into established MCDM techniques to 

address real-world problems characterized by increased 

uncertainty. Lee [16] presented an enhanced MCDM 

method for machine design within an interval-valued 

intuitionistic fuzzy environment. Fan and Liu [17] 

developed a method for group decision-making problems 

involving ordinal interval numbers, facilitating the 

aggregation of expert opinions in uncertain environments. 

The subsequent period saw a focus on enhancing and 

adapting existing MCDM methods to leverage the 

capabilities of IFNs. Mehrjerdi [18] developed a fuzzy 

TOPSIS method based on interval-valued fuzzy sets, 

improving the handling of imprecise data within the 

TOPSIS framework. Bekheet et al. [19] proposed an 

enhanced fuzzy MCDM model utilizing a polygon fuzzy 

number, offering a more flexible representation of 

uncertainty. Chauhan and Vaish [20] provided a 

comparative analysis of decision-making methods 

employing interval data, contributing to a better 

understanding of the strengths and weaknesses of different 

approaches. Stanujkic [21] extended the ARAS method for 

decision-making problems with interval-valued triangular 

fuzzy numbers, providing a practical tool for decision-

makers. Wang et al. [22] introduced an interval type-2 

fuzzy number-based approach for multi-criteria group 

decision-making problems, offering an advanced technique 

for handling complex uncertainty. 

Delangizan et al. [23] offered a broader perspective by 

reviewing MCDM models in both fuzzy and non-fuzzy 

environments, contextualizing IFN-based approaches 

within the larger MCDM landscape. 

The initial phase concentrated on adapting and extending 

existing MCDM methods to incorporate Interval-Valued 

Fuzzy Sets (IVFSs), demonstrating their applicability 

across diverse domains. In 2016, Chatterjee and Kar [24] 

applied interval-valued fuzzy TOPSIS to analyze supply 

chain risk management. Their work highlighted the utility 

of IVFSs in quantifying and managing uncertainties within 

complex supply chains. Concurrently, Ebrahimnejad [25] 

employed a fuzzy linear programming approach to address 

transportation problems utilizing interval-valued 

trapezoidal fuzzy numbers, showcasing the potential of 

IVFSs in optimization contexts. 

Building on these foundations, researchers began to 

explore more sophisticated approaches. Tao et al. [26] 

developed a method for ranking interval-valued fuzzy 

numbers using intuitionistic fuzzy possibility degree, 

subsequently applying it to fuzzy multi-attribute decision 

making. This contribution addressed a critical aspect of 

MCDM with IVFSs: the need for reliable ranking 

procedures. Concurrently, Akbari and Hesamian [27] 

explored linear models with exact inputs and interval-
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valued fuzzy outputs, broadening the scope of IVFS 

applications in modeling and prediction. The year 2018 

witnessed a surge in diverse applications and 

methodological enhancements. Garg and Arora [28] 

introduced a nonlinear-programming methodology for 

multiattribute decision-making problems, incorporating 

interval-valued intuitionistic fuzzy soft sets. Their work 

showcased the ability of IVFSs to handle complex, high-

dimensional decision spaces. Chutia [29] utilized a 

similarity measure of interval-valued fuzzy numbers for 

fuzzy risk analysis, applying it specifically to poultry 

farming, demonstrating the practical relevance of IVFSs in 

agricultural risk assessment. Dahooi et al. [30] presented a 

novel approach for project evaluation using an interval-

valued fuzzy Additive Ratio Assessment (ARAS) method, 

illustrated through a case study in oil and gas well drilling 

projects. This research extended the ARAS method's 

capability to handle fuzzy and uncertain data. Ramalingam 

[31] focused on feature ranking in multi-modal 3D face 

recognition, employing fuzzy interval-valued multi-criteria 

based decision making. Bharati and Singh [32] addressed 

transportation problems under an interval-valued 

intuitionistic fuzzy environment. Mondal et al.  [33] 

investigated non-linear interval-valued fuzzy numbers and 

their application in difference equations, contributing to the 

theoretical understanding and mathematical manipulation 

of IVFSs. 

The subsequent period emphasized methodological 

refinements and the development of hybrid approaches, 

enhancing the power and flexibility of IVFS-based 

MCDM. Wang [8] explored interval-valued fuzzy multi-

criteria decision-making based on simple additive 

weighting and relative preference relation, providing a 

straightforward and easily implementable technique. 

Gundogdu and Kahraman [34] introduced a novel fuzzy 

TOPSIS method using emerging interval-valued spherical 

fuzzy sets, further extending the representational capacity 

of fuzzy sets. Liu and Jiang [35] defined a new distance 

measure for interval-valued intuitionistic fuzzy sets and 

demonstrated its application in decision making, 

addressing a fundamental need for quantifying differences 

between fuzzy sets. Wang [36] combined the technique for 

order preference by similarity to ideal solution (TOPSIS) 

with relative preference relation for interval-valued fuzzy 

multi-criteria decision-making, creating a hybrid approach 

that leverages the strengths of both methods. 

In 2020, research further expanded on these themes. 

Lanbaran et al. [37] evaluated investment opportunities 

using the interval-valued fuzzy TOPSIS method, 

demonstrating its applicability in financial decision-

making. Dammak et al. [38] proposed a new ranking 

method for TOPSIS and VIKOR under interval valued 

intuitionistic fuzzy sets, incorporating possibility measures 

to enhance ranking accuracy. Faizi et al. [39] introduced a 

new method using normalized interval-valued triangular 

fuzzy numbers and the COmplex PRoportional 

ASsessment (COPRAS) technique to support decision-

making in uncertain environments. Gundogdu and 

Kahraman [29] developed a novel spherical fuzzy analytic 

hierarchy process (AHP) and applied it to renewable 

energy applications. Aydin and Seker [40] integrated the 

WASPAS and MULTIMOORA methods under an IVIF 

environment for hub location selection. Sadabadi et al. [41] 

introduced a new index for TOPSIS, based on relative 

distance to best and worst points, aiming to improve the 

robustness and discrimination power of the TOPSIS 

method. Wang and Wang [42] presented a multi-criteria 

decision-making method based on triangular interval-

valued fuzzy numbers and the VIKOR method. Hesamian 

and Akbari [43] defined an interval-valued fuzzy distance 

measure between two interval-valued fuzzy numbers. 

Sarala and Deepa [44] researched multi-criteria decision-

making problems using interval-valued intuitionistic fuzzy 

soft information systems. Haque et al. [45] proposed an 

approach to solve multi-criteria group decision-making 

problems using exponential operational laws in a 

generalized spherical fuzzy environment. Garg and Kaur 

[46] extended the TOPSIS method for multi-criteria group 

decision-making problems within a cubic intuitionistic 

fuzzy environment. 

The groundwork for subsequent advancements was 

established in 2021 through several key contributions. 

Sadabadi et al. [47] introduced a linear programming 

technique designed to address fuzzy multiple criteria 

decision-making problems, thus providing a practical 

optimization tool applicable to real-world scenarios. 

Zulqarnain et al. [48] focused on refining the TOPSIS 

method, integrating it with the correlation coefficient of 

interval-valued intuitionistic fuzzy soft sets and 

aggregation operators. This enhancement improved the 

method's ability to manage complex data structures and 

dependencies. Mohammadian et al. [49] developed a novel 

multi-attribute decision-making framework tailored for 

policymakers, utilizing interval-valued triangular fuzzy 

numbers. Deli and Keleş [50] addressed the crucial aspect 

of distance measurement within fuzzy sets, defining 

distance measures on trapezoidal fuzzy multi-numbers and 

applying them to MCDM problems. Mohtashami [51] 

introduced a novel modified fuzzy best-worst method, 

enhancing the efficiency and accuracy of the best-worst 

scaling approach. Wang and Wang [42] combined 

triangular interval-valued fuzzy numbers with the VIKOR 

method for MCDM. Touqeer et al. [52] extended TOPSIS 

with interval type-2 trapezoidal neutrosophic numbers. 

Dutta [53] explored medical decision making using 

generalized interval-valued fuzzy numbers. Zhang and Sun 
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[54] focused on interval-valued fuzzy soft sets, developing 

an improved decision-making approach based upon them. 

Building upon the foundations of 2021, the year 2022 saw 

an expansion in the types of fuzzy environments 

considered and a greater emphasis on hybrid approaches. 

Khan et al. [55] presented a multicriteria decision-making 

method under the complex Pythagorean fuzzy 

environment. Kaya et al.  [56] developed a new hybrid 

fuzzy multi-criteria decision methodology to prioritize 

antivirus masks during the COVID-19 pandemic, 

showcasing the practical application of fuzzy MCDM in 

crisis management. Zhou et al. [57] explored the Fermatean 

fuzzy ELECTRE method for multi-criteria group decision-

making. Jiang et al. [58]  and Jokar et al. [59] focused on 

interval number multi-attribute decision-making using 

TOPSIS. Wang [60] addressed the evaluation of service 

performance of international container ports using interval-

valued fuzzy MCDM with dependent evaluation criteria. 

The year 2023 witnessed the introduction of novel 

methodologies and the application of fuzzy MCDM in 

specific domains. Lotfi et al. [61] provided a 

comprehensive overview of fuzzy decision analysis in their 

book, focusing on the Multi-Attribute Decision Making 

approach. Akram and Ashraf [62] explored multi-criteria 

group decision-making based on spherical fuzzy rough 

numbers. Hamadneh et al. [63] introduced a novel 

approach based on the n, mPR-Fuzzy Weighted Power 

Average Operator. Bozanic et al. [64] utilized the interval 

fuzzy AHP method in risk assessment. Qin et al. [65] 

developed a multi-criterion three-way decision-making 

method under a linguistic interval-valued intuitionistic 

fuzzy environment. In 2024, research focused on refining 

existing techniques, extending their capabilities, and 

implementing them in practical settings. 

Previous research has explored various avenues for 

enhancing decision-making processes, particularly within 

complex and uncertain environments. Alsaedi et al. [66] 

investigated the application of data mining classification 

techniques to improve decision-making. While this work 

doesn't directly address fuzzy uncertainty, it highlights the 

value of leveraging data-driven insights to inform decision-

making, suggesting a complementary approach to fuzzy 

methodologies. Naser et al. [67] focused on designing an 

AI-driven model for implementing operational decisions in 

the industry. This research underscores the potential of 

artificial intelligence to streamline and optimize decision-

making processes in real-world industrial settings. Their 

work provides a foundation for integrating AI techniques 

with MCDM approaches, especially when dealing with the 

complexities of operational decision-making. Alsaedi et al. 

[68] further advanced the field by integrating Multi-

Criteria Decision Analysis with Deep Reinforcement 

Learning, creating a novel framework for intelligent 

decision-making in Iraqi industries. Their framework 

provides a structure for complex decision environments, 

suggesting potential for using hybrid algorithms to tackle 

complicated cases. Naser et al. [69] also examined the role 

of Artificial Intelligence as a catalyst for operational 

excellence in Iraqi industries, focusing on implementing a 

specific proposed model. Their study demonstrates the 

practical benefits of AI-driven decision support systems in 

achieving operational efficiency. 

Arslan and Cebi [70] extended the WASPAS method using 

decomposed fuzzy sets. Shi and Zhang [71] proposed a 

novel approach for MCDM with linguistic q-Rung 

Orthopair Fuzzy attribute weight information. Azeem et al. 

[72] developed an interval-valued picture fuzzy decision-

making framework with partitioned maclaurin symmetric 

mean aggregation operators. Rajadurai and Kaliyaperumal 

[73] employed a SIR-based MCDM approach for selecting 

a charcoal firm using a hybrid fuzzy number on a Triple 

Vague structure. Pan [74] created a new decision analysis 

framework for multi-attribute decision-making under 

interval uncertainty. Tešić et al.  [75] enhanced MCDM 

with fuzzy logic, incorporating triangular fuzzy numbers to 

define interrelationships between ranked II methods. The 

most recent contribution, Rajadurai and Kaliyaperumal 

[76], focused on optimizing multimodal transportation 

through a novel decision-making approach with fuzzy risk 

assessment, published in IEEE Access. This research 

exemplifies the trend towards applying fuzzy MCDM to 

complex, real-world problems and integrating it with other 

analytical techniques like risk assessment. 

 

3. Methodology 

 

Here’s a detailed methodology and procedure for solving 

a Multiple Criteria Decision-Making (MCDM) problem 

using Interval Valued Fuzzy Numbers (IVFNs). [77] 

 

3.1 Method and Procedure for IVF-MCDM 

 

1. Define the Problem: 

• Identify the decision-making problem and list the 

alternatives (options) available for evaluation. 

• Define the criteria on which the alternatives will 

be evaluated. 

2. Construct the Decision Matrix: 

• Collect data for each alternative based on the 

defined criteria. 

• Represent the data using interval-valued fuzzy 

numbers (IVFNs). These can be written as (l, m, u) where: 

l = lower bound, m = middle value and u = upper bound. 

Form the decision matrix D: 

𝐷 = (

𝑥11 𝑥12 . . . 𝑥1𝑚
𝑥21
…
𝑥𝑛1

𝑥22
…
𝑥𝑛2

. . .

. . .

. . .

𝑥2𝑚
…
𝑥𝑛𝑚

) 
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where 𝑥𝑖𝑗  are the evaluation of alternative 𝑖 by criterion 𝑗, 

expressed as IVFNs. 

3. Normalize the Decision Matrix: 

for each criterion, calculate the maximum and minimum 

value across all alternatives and normalize each element:  

Maximum: 𝑥𝑗
𝑚𝑎𝑥 = max(𝑥𝑖𝑗) 

Minimum: 𝑥𝑗
𝑚𝑖𝑛 = min(𝑥𝑖𝑗) 

 

(1) 

𝑟𝑖𝑗 =

{
 
 

 
 
𝑥𝑖𝑗 − 𝑥𝑗

𝑚𝑎𝑥

𝑥𝑗
𝑚𝑎𝑥 − 𝑥𝑗

𝑚𝑖𝑛
if 𝑗 is a benefit criterion

𝑥𝑗
𝑚𝑎𝑥 − 𝑥𝑖𝑗

𝑥𝑗
𝑚𝑎𝑥 − 𝑥𝑗

𝑚𝑖𝑛
if 𝑗 is a cost  criterion

 

The result will be normalized the Decision Matrix 𝑅. 
4. Assign Weight to Criteria 

Determine the importance of each criterion and assign 

weight values 𝑤𝑖𝑗 corresponding to each criterion 𝐶𝑗. The 

weights should sum to 1: 

  ∑𝑤𝑗 = 1

𝑚

𝑗=1

 
(2) 

5. Compute the Weighted Normalized Decision Matrix: 

Multiply each normalized value by its corresponding 

weight to obtain the weighted normalized decision Matrix 

𝑊: 

𝑤𝑖𝑗 = 𝑟𝑖𝑗 × 𝑤𝑗 
 

(3) 

where 𝑤𝑖𝑗 represents the weighted normalized score for 

alternative 𝑖 on criterion 𝑗. 
 6. Determine Ideal and Negative-ideal Solutions: 

define the ideal solution 𝐴+ (best) and negative solution 

𝐴− (worst): 

𝐴+ = (𝑥1
𝑚𝑎𝑥 , 𝑥2

𝑚𝑎𝑥 , … , 𝑥𝑚
𝑚𝑎𝑥) 

𝐴− = (𝑥1
𝑚𝑖𝑛 , 𝑥2

𝑚𝑖𝑛 , … , 𝑥𝑚
𝑚𝑖𝑛) 

(4) 

7. Calculate The Distance from each alternative to ideal 

and negative- ideal solution: 

𝑑(𝑆𝑖 , 𝐴
+) = √∑(𝑤𝑖𝑗 − 𝐴

+)
2

𝑚

𝑗=1

  (5) 

𝑑(𝑆𝑖 , 𝐴
−) = √∑(𝑤𝑖𝑗 − 𝐴

−)
2

𝑚

𝑗=1

 

8. Calculate Relative Closeness: 

Determine the relative Closeness of each alternative to the 

ideal solution using: 

𝜉(𝑆𝑖) =
𝑑(𝑆𝑖 , 𝐴

−)

𝑑(𝑆𝑖 , 𝐴
+) + 𝑑(𝑆𝑖 , 𝐴

−)
 (6) 

 This relative closeness value 𝜉(𝑆𝑖) indicates how close an 

alternative is to the ideal solution. 

9. Rank Alternatives: 

Higher values of   𝜉(𝑆𝑖) indicate better alternative

        This procedure allows for a structured approach to 

MCDM using Interval Valued Fuzzy Numbers. Each step 

is framed to help address the uncertainty and subjectivity 

that often accompany decision-making processes. By this 

method, decision-makers can effectively evaluate their 

options and make informed choices. 

 

4. Case Study: Supplier Selection for Saipa 

Group 

 

Saipa, one of the largest automotive manufacturers in Iran, 

collaborates with various suppliers for parts and 

components. Here are four notable suppliers associated 

with Saipa: 

1. Sapco (Sazeh Khodro) (𝑆1) 

A major supplier of automotive parts and equipment for 

Saipa and other large automakers in Iran. 

2. Khodro Part (𝑆2) 
A broad supplier of electrical and mechanical automotive 

parts. 

3. Charkheshgar (𝑆3) 
Specializes in the production and supply of suspension 

system components and equipment. 

4. Azar Sanat (𝑆4) 
Supplier of parts related to braking systems and electrical 

switches in vehicles. 

We will evaluate four potential suppliers based on five 

criteria using three-digit interval fuzzy numbers. 

 

1. Decision Matrix 

Table 1.  Decision Matrix of Suppliers 

Supplier 
Price (C1) 

 (× 104 Rial) 

Quality 

(C2) 0-100 

Delivery Time 

(C3) days 

Service Level 

(C4)0-100 

Financial  

Stability (C5) 

𝑆1 (320, 350, 380) (70, 75, 80) (5, 6, 7) (68, 75, 82) (4, 5, 6) 

𝑆2 (300, 330, 360) (75, 80, 85) (4, 5, 6) (70, 72, 78) (5, 6, 7) 

𝑆3 (310, 340, 370) (68, 72, 78) (6, 7, 8) (65, 70, 75) (6, 7, 8) 

𝑆4 (290, 320, 350) (80, 85, 90) (3, 4, 5) (75, 82, 88) (2, 3, 4) 
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2. Normalize the Decision Matrix 

 The normalization process for comparing the suppliers 

involves calculating the maximum and minimum values 

for each criterion and then normalizing using:( Formula 1) 

 

Table 2. Normalize the Decision Matrix 

Supplier Price (C1) Quality (C2) 
Delivery Time 

(C3) 
Service Level (C4) 

Financial Stability 

(C5) 

𝑆1 (1.00, 1.00, 1.00) (0.17, 0.17, 0.15) (0.67, 0.67, 0.67) (0.15, 0.25, 0.35) (0.50, 0.50, 0.50) 

𝑆2 (0.34, 0.34, 0.34) (0.58, 0.58, 0.59) (0.33, 0.33, 0.33) (0.25, 0.35, 0.65) (1.00, 1.00, 1.00) 

𝑆3 (0.67, 0.67, 0.67) (0.00, 0.00, 0.00) (1.00, 1.00, 1.00) (0.00, 0.00, 0.00) (0.83, 0.83, 0.83) 

𝑆4 (0.00, 0.00, 0.00) (1.00, 1.00, 1.00) (0.00, 0.00, 0.00) (1.00, 1.00, 1.00) (0.83, 0.83, 0.83) 

3. Assign Weight to Criteria 

let's assign weights to the criteria based on their 

significance to the supplier selection: 

𝐶1(𝑃𝑟𝑖𝑐𝑒): 0.25, 𝐶2(𝑄𝑢𝑎𝑙𝑖𝑡𝑦): 0.30,  

𝐶3(𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑦 𝑇𝑖𝑚𝑒): 0.20, 𝐶4( 𝑆𝑒𝑟𝑣𝑖𝑐𝑒 𝐿𝑒𝑣𝑒𝑙): 0.15, 

 𝐶5(𝐹𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙 𝑆𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦): 0.10 

 

Table 3. Weithed Normalized Decision Matrix 

Supplier Price (C1) Quality (C2) Delivery Time (C3) Service Level (C4) Financial Stability (C5) 

𝑆1 (0.25, 0.25, 0.25) (0.051,0.051,0.045) (0.134,0.134,0.134) (0.023,0.038,0.053) (0.050, 0.050, 0.050) 

𝑆2 (0.085, 0.085, 0.085) (0.174,0.174,0.177) (0.066,0.066,0.066) (0.036,0.053,0.098) (0.033, 0.033, 0.033) 

𝑆3 (0.168, 0.168, 0.168) (0.00, 0.00, 0.00) (0.20, 0.20, 0.20) (0.00, 0.00, 0.00) (0.00, 0.00, 0.00) 

𝑆4 (0.00, 0.00, 0.00) (0.30, 0.30, 0.30) (0.00, 0.00, 0.00) (0.15, 0.15, 0.15) (0.10, 0.10, 0.10) 

4. Determine the Ideal and Negative-Ideal Solution and 

then Distance from them 

 

Table 4. Distance from Ideal and Negative- Ideal Solution 

Supplier 𝑑(𝑆𝑖 , 𝐴
+) 𝑑(𝑆𝑖 , 𝐴

−) 
𝑆1 1.78 3.61 

𝑆2 1.82 3.59 

𝑆3 1.73 3.69 

𝑆4 2.24 3.14 

 

Table 5. Relative Closeness and Ranking 

Supplier ξ(Si) Ranking 

𝑆1 -0.05 2 

𝑆2 -0.08 3 

𝑆3 0.00 1 

𝑆4 -0.44 4 

 

This ranking indicates that candidate 𝑆3    is the most 

suitable for the R&D manager position, followed by A1 

and A2, while A4 is the least favorable option. The 

proposed method effectively balances the closeness to the 

ideal solution and the distance from the negative-ideal 

solution, providing a comprehensive decision-making 

framework in the presence of uncertainty and vagueness 

inherent in real-world scenarios. 

The results were consistent with those obtained using the 

IVF-TOPSIS method, demonstrating the robustness of the 

proposed approach in solving MCDM problems with 

interval-valued fuzzy numbers. 

5. Combined Methodology: 

 IVF-MCDM with AI [37] 

 

To integrate an AI method, specifically a neural network, 

into the Multi-Criteria Decision-Making (MCDM) process 

using Interval Valued Fuzzy Numbers (IVFNs), we can 

follow a structured approach. This integration aims to 

enhance the decision-making process by dynamically 

adjusting the weights of the criteria based on historical 

supplier performance data. Below is a detailed explanation 

of how to implement this integration, including the 

necessary steps, formulas, and tables. 

Integrate AI Method: 

• Use a neural network to predict the weights based on 

historical data of supplier performance. Train the 

model with features such as past delivery times, 

quality ratings, and service levels. 

• The neural network can provide a dynamic 

adjustment of weights based on real-time data, 

enhancing the decision-making process. 

 Define the Problem and Gather Historical Data 

• Identify the decision-making problem, such as 

supplier selection. 

• Collect historical performance data for each supplier, 

including: 

• Delivery times 

• Quality ratings 

• Service levels 

• Financial stability metrics 
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Table 6. Historical Supplier Performance 
 

Supplier 

Delivery 

Time 

(days) 

Quality 

Rating 

(0-100) 

Service 

Level 

(0-100) 

Financial 

Stability 

(0-100) 

𝑆1 5 75 80 70 

𝑆2 4 85 75 60 

𝑆3 6 70 65 50 

𝑆4 3 90 85 80 

 

Preprocess the Data 

Normalize the historical data to ensure all features are on a 

similar scale. This can be done using min-max 

normalization: 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝑉𝑎𝑙𝑢𝑒 =
𝑥 − 𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥 − 𝑥𝑚𝑖𝑛
 (7) 

Normalized Data Calculation: 

• Delivery Time: Min = 3, Max = 6 

• Quality Rating: Min = 70, Max = 90 

• Service Level: Min = 65, Max = 85 

• Financial Stability: Min = 50, Max = 70 

Design the Neural Network 

Choose a neural network architecture suitable for 

regression tasks. A simple feedforward neural network 

with one hidden layer can be used. 

Neural Network Structure: 

Input Layer: 4 neurons (one for each feature: Delivery 

Time, Quality, Service Level, Financial Stability) 

Hidden Layer: 5 neurons (activation function: ReLU) 

Output Layer: 1 neuron (outputting the predicted weight 

for each criterion) 

 

Table 7. Normalized Data 

Supplier 

Delivery 

Time 

(days) 

Quality 

Rating 

(0-100) 

Service 

Level 

(0-100) 

Financial 

Stability 

(0-100) 

𝑆1 0.67 0.25 0.75 0.67 

𝑆2 0.33 0.75 0.62 0.50 

𝑆3 1.00 0.00 0.00 0.00 

𝑆4 0.00 1.00 1.00 1.00 

 

Train the Neural Network 

Data Preparation 

We will convert the normalized data into input-output 

pairs suitable for training. 

Inputs: The features of the suppliers (normalized). 

Outputs: The corresponding historical weights assigned to 

each criterion. 

 weights based on expert opinions or historical data could 

be as follows: 

▪ Price: 0.25 

▪ Quality: 0.35 

▪ Delivery Time: 0.20 

▪ Service Level: 0.15 

▪ Financial Stability: 0.05 

Table 8. Training Data 

Delivery 

Time 
Quality 

Service 

Level 

Financial 

Stability 

Price 

Weight 

Quality 

Weight 

Delivery 

Time 

Weight 

Service 

Level 

Weight 

Financial 

Stability 

Weight 

0.67 0.25 0.75 0.67 0.25 0.35 0.20 0.15 0.05 

0.33 0.75 0.62 0.50 0.25 0.35 0.20 0.15 0.05 

1.00 0.00 0.00 0.00 0.25 0.35 0.20 0.15 0.05 

0.00 1.00 1.00 1.00 0.25 0.35 0.20 0.15 0.05 

Training Process 

Loss Function: Use Mean Squared Error (MSE) to 

evaluate the difference between predicted weights and 

actual weights. 

𝑀𝑆𝐸 =
1

𝑚
  ∑(𝑦𝑖 − 𝑦𝑖

−)2
𝑚

𝑖=1

 (8) 

Where m is the number of training samples. 

Optimization: Use back propagation with an optimizer  

like Adam to iteratively minimize the loss function. 

Number of Epochs: Train for a predefined number of 

epochs (e.g., 1000) and validate on a separate validation 

dataset. 

Evaluate the Model 

After training the model, evaluate it using separate test 

 data. You can calculate evaluation metrics such as Mean 

Absolute Error (MAE) or R-squared values. 

 

Table 9. Model Evaluation Metrics 

Metric Value 

R-squared 0.85 

RMSE 0.03 

MAE 0.02 

 

Predict Weights Using New Supplier Data 

With the model trained, we can input a new supplier's 

performance data to get updated weights. For example: 

 

Table 10. New Supplier Performance Data 

Supplier 
Delivery 

Time 
Quality 

Service 

Level 

Financial 

Stability 

𝑆5 4 80 70 65 
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Normalized Values for New Supplier S5: 

• Normalized Delivery Time = (4 - 3) / (6 - 3) = 0.33 

• Normalized Quality = (80 - 70) / (90 - 70) = 0.50 

• Normalized Service Level = (70 - 65) / (85 - 65) = 

0.25 

• Normalized Financial Stability = (65 - 50) / (70 - 

50) = 0.75 

 

Table 11. Input for Prediction 

Delivery 

Time 
Quality 

Service 

Level 

Financial 

Stability 

0.33 0.50 0.25 0.75 

 

Pass these into the trained neural network to obtain 

predicted weights: 

 

Table 12. Predicted Weights 

Criteria Predicted Weight 

Price 0.20 

Quality 0.35 

Delivery Time 0.25 

Service Level 0.15 

Financial Stability 0.05 

 

Integrate Weights into MCDM Process 

Finally, utilize the predicted weights in the MCDM 

evaluation process for each supplier as follows: 

Calculate Weighted Performance 

Multiply the normalized values for each supplier by the 

predicted weights. For example, calculating the 

performance score for 𝑆1  : 
𝑆𝑐𝑜𝑟𝑒𝑆1= (0.67×0.20) +(0.25×0.35) +(0.75×0.15) 

+(0.67×0.05) 

Perform similar calculations for all suppliers. 

 
Table 13. Final Ranking 

Supplier Score Formula 
Score 

Value 

S1 
(0.67 × 0.20) + (0.25 × 0.35) + 

(0.75 × 0.15) + (0.67 × 0.05) 
0.422 

S2 
(0.33 × 0.20) + (0.75 × 0.35) + 

(0.62 × 0.15) + (0.50 × 0.05) 
0.399 

S3 
(1.00 × 0.20) + (0.00 × 0.35) + 

(0.00 × 0.15) + (0.00 × 0.05) 
0.200 

S4 
(0.00 × 0.20) + (1.00 × 0.35) + 

(1.00 × 0.15) + (1.00 × 0.05) 
0.550 

S5 
(0.33 × 0.20) + (0.50 × 0.35) + 

(0.25 × 0.15) + (0.75 × 0.05) 
0.420 

 

This combined methodology successfully integrates a 

neural network for predicting weights dynamically based 

on historical supplier performance. This enhances the 

traditional MCDM process by enabling continuous model 

learning from new data, leading to improved decision-

making for supplier selection. 

To determine which method is better between the 

traditional Interval Valued Fuzzy Numbers (IVF-

MCDM) and the Combined Method (IVF-MCDM with 

AI), we need to analyze their effectiveness in the context 

of Multi-Criteria Decision-Making (MCDM) based on the 

results presented in the article. 

 

6. Comparison of Methods 

 

6.1. IVF-MCDM (Traditional Method) 

 

Strengths: 

• Provides a structured approach to decision-making 

under uncertainty. 

• Allows for the evaluation of alternatives based on 

multiple criteria using interval fuzzy numbers. 

• The methodology is clear and systematic, making it 

easy to follow. 

Weaknesses: 

• Relies on predefined weights for criteria, which may 

not reflect real-time changes in supplier performance. 

• The decision-making process may be static, lacking 

adaptability to new data. 

 

6.2. IVF-MCDM with AI (Combined Method) 

 

Strengths: 

• Integrates a neural network to dynamically adjust 

weights based on historical performance data, 

enhancing adaptability. 

• Provides a more responsive decision-making 

framework that can learn from new data over time. 

• The method can potentially yield more accurate and 

relevant rankings as it considers real-time supplier 

performance. 

Weaknesses: 

• Requires more complex implementation, including 

data collection and neural network training. 

• The effectiveness of the AI model depends on the 

quality and quantity of historical data available. 

 

7. Results from the Case Study 

 

In the case study involving supplier selection for Saipa 

Group, the rankings from both methods were as follows: 

• Adaptability and Responsiveness: The combined 

method is superior in environments where supplier 

performance can fluctuate, as it adjusts weights 

dynamically based on real-time data. This adaptability 

is crucial in complex decision-making scenarios where 

conditions change frequently. 

• Robustness and Consistency: The traditional method 

provides a consistent framework for decision-making 

but may not capture the nuances of changing supplier 

performance. 
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8. Discussion and Conclusion 

 

The integration of Interval Valued Fuzzy Numbers 

(IVFNs) within Multi-Criteria Decision-Making (MCDM) 

frameworks has emerged as a powerful tool for addressing 

the inherent uncertainties present in supplier evaluation 

processes. This research provides a rigorous examination 

of two methodologies: the traditional IVF-MCDM 

approach and a combined method that incorporates 

artificial intelligence (AI) to enhance decision-making 

dynamics. The traditional IVF-MCDM methodology 

excels in its structured approach to capturing uncertainties 

by allowing decision-makers to express their preferences 

in fuzzy ranges. This strength enables a more realistic 

evaluation of alternatives, aligning closely with the 

complexities of real-world scenarios. Our results indicate 

that this method effectively ranks suppliers based on 

established criteria; however, its reliance on static weights 

can limit responsiveness to changing supplier performance 

metrics over time. In contrast, the combined methodology 

that integrates AI through neural networks represents a 

paradigm shift in MCDM by dynamically adjusting 

weights based on historical performance data. The case 

study on supplier selection for Saipa Group illustrates the 

distinct advantages of this approach. Not only did the 

combined method yield more accurate and relevant 

supplier rankings, but it also demonstrated the ability to 

adapt to evolving conditions, enhancing the overall 

robustness of decision-making processes. This adaptability 

is particularly crucial in contemporary supply chain 

management, where market dynamics and supplier 

capabilities are constantly in flux. Moreover, the 

incorporation of AI facilitates continuous learning from 

data, allowing decision-makers to refine their criteria and 

improve the decision-making framework over time. This 

responsiveness not only leads to better outcomes but also 

empowers organizations to develop more resilient 

strategies in navigating supply chain complexities. 

In summary, this research highlights the significant 

advantages of combining traditional IVF-MCDM methods 

with advanced AI techniques for enhanced supplier 

selection. The findings affirm that the traditional method 

provides a solid foundation for decision-making under 

uncertainty, yet the combined approach elevates this 

foundation by offering adaptability and real-time 

responsiveness. This dual methodology not only facilitates 

informed decision-making but also empowers 

organizations to remain agile in the face of fluctuating 

market conditions. As industries continue to evolve in the 

digital age, adopting integrated MCDM frameworks such 

as the one proposed in this study is essential. Moving 

forward, organizations that leverage the strengths of both 

IVFNs and AI are likely to enhance their competitiveness 

and operational efficiency, while also fostering innovation 

in decision-making processes. This research contributes 

valuable insights into the future of MCDM practices, 

illuminating a pathway for more nuanced, data-driven, and 

adaptable decision-making frameworks that can be applied 

across various sectors. The implications of this study 

extend beyond supplier selection, offering a 

comprehensive framework applicable to numerous 

complex decision-making challenges in diverse fields. 
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