I e

Intemational Jeurnal of
Mathematical Modelling
and Computations

Int. J. Math. Model. Comput. 15(3) (2025) 175-186

International Journal of Mathematical Modelling &
Computations (IJM>C)

L ®ICC

https://doi.org/10.71932/ijm.2025.1206327

Harnessing Interval Fuzzy Numbers: A Novel
Approach to Multi-Criteria Decision-Making

Models

Mehrdad Taghizadeh, Abdollah Hadi-Vencheh* ©,
Mohammad Jalali Varnamkhasti and Ali Jamshidi

Department of Mathematics, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran

*Corresponding author: jalali206@iau.ac.ir

Original Research

Received:
10 April 2025

Revised:
06 June 2025

Accepted:
09 June 2025

Published online:
12 June 2025

Published in Issue:
30 September 2025

©2025 the Author(s). Published by
the OICC Press under the terms of
the © CCBY 4.0, Cretive Commonts
Attribution License, wich permits
use, distribution and reproduction in
any medium, provided the original
work is properly cited.

Abstract

This paper presents a comprehensive exploration of Multi-Criteria Decision-Making (MCDM)
methodologies utilizing Interval Valued Fuzzy Numbers (IVFNs) to address the complexities of
decision-making under uncertainty. We introduce a structured approach that integrates
traditional [IVF-MCDM with a novel combined methodology incorporating artificial intelligence
(AJ) through neural networks. The traditional method systematically evaluates alternatives based
on predefined criteria, allowing decision-makers to express preferences as ranges, thereby
accommodating uncertainty. However, it may lack adaptability to dynamic changes in supplier
performance. (In contrast, the combined method enhances the decision-making process by
dynamically adjusting criterion weights based on historical performance data, thus providing a
more responsive framework. A case study on supplier selection for Saipa Group illustrates the
application of both methods, revealing that the combined approach yields superior rankings and
more accurate evaluations compared to the traditional method. The results demonstrate that the
integration of Al not only improves the robustness of decision-making but also facilitates
continuous learning from new data, ultimately leading to more informed and effective choices.
This research underscores the potential of [IVFNs and Al in optimizing MCDM processes, paving
the way for advancements in decision-making frameworks across various fields. The findings
advocate for the adoption of combined methodologies in real-world applications, highlighting
their effectiveness in navigating the uncertainties inherent in complex decision-making
scenarios.

Keywords: Multi-Criteria Decision-Making (MCDM); Interval Valued Fuzzy Numbers
(IVFNs); Artificial intelligence (AI); Neural networks.
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1. Introduction

Decision-making in complex environments often involves
multiple criteria that can conflict with one another, making
the need for effective Multi-Criteria Decision-Making
(MCDM) approaches essential [1]. Traditional MCDM
methods often rely on precise data and assumptions, which
can be impractical when dealing with real-world
uncertainties and subjective judgments [2]. Fuzzy logic has

emerged as a robust alternative, providing a framework that
accommodates the vagueness inherent in human reasoning
[31[4].

Among the various fuzzy representations, interval fuzzy
numbers allow decision-makers to express their
preferences in terms of ranges rather than specific values,
thereby enhancing the modeling of uncertainty [5]. This
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flexibility is particularly beneficial in contexts where the
availability of precise data is limited or when subjective
estimates are necessary [4]. Interval fuzzy sets have been
effectively applied in various fields, including risk
assessment, performance evaluation, and project selection,
illustrating their versatility and practicality [6][7].
Recent studies have demonstrated the advantages of
incorporating interval fuzzy numbers into MCDM
frameworks. For example, Wang [8] proposed a novel
MCDM method based on interval fuzzy hybrid aggregation
operators, which improved the robustness of decision-
making under uncertainty. Similarly, Percin [9] applied
interval fuzzy models to optimize supplier selection in a
supply chain context, highlighting their effectiveness in
handling conflicting criteria and preferences.
This paper aims to explore the potential of interval fuzzy
numbers within MCDM models, emphasizing their
theoretical foundations and practical applications. By
harnessing the capabilities of interval fuzzy logic, we can
develop more effective decision-making tools that
facilitate enlightened choices in uncertain environments.
2. Literature Review
Multi-Criteria ~ Decision-Making (MCDM)  offers
structured methodologies for evaluating and selecting the
optimal alternative from a set of possibilities, considering
multiple, often conflicting, criteria. However, real-world
decision problems frequently exhibit inherent uncertainty
and vagueness, rendering traditional MCDM approaches
insufficient. To address these limitations, Zadeh's fuzzy set
theory provided a powerful framework for handling
imprecise information. A significant advancement in this
domain involved the development and application of
Interval Fuzzy Numbers (IFNs) within MCDM.
The initial groundwork centered on defining and exploring
the properties of interval-valued fuzzy sets. Kohout and
Bandler [10] explored fuzzy interval inference as an early
methodological step. Guijun et al. [11] demonstrated a
foundational application of interval-valued fuzzy numbers.
Karnik and Mendel [12] introduced type-2 fuzzy sets,
which offered enhanced capabilities for handling
uncertainty. Hong and Lee [ 13] focused on establishing the
fundamental algebraic properties and distance measures
for IFNs. This was complemented by Grzegorzewski [14],
who extended the concept of distance measures to
intuitionistic fuzzy sets and interval-valued fuzzy sets.
Cornelis et al. [15] provided a comprehensive overview of
the state-of-the-art, highlighting advances and open
challenges in interval-valued fuzzy logic. This period
established the necessary theoretical foundation for the
subsequent integration of IFNs into MCDM
methodologies.
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Building on this foundation, researchers began
incorporating IFNs into established MCDM techniques to
address real-world problems characterized by increased
uncertainty. Lee [16] presented an enhanced MCDM
method for machine design within an interval-valued
intuitionistic fuzzy environment. Fan and Liu [17]
developed a method for group decision-making problems
involving ordinal interval numbers, facilitating the
aggregation of expert opinions in uncertain environments.
The subsequent period saw a focus on enhancing and
adapting existing MCDM methods to leverage the
capabilities of IFNs. Mehrjerdi [18] developed a fuzzy
TOPSIS method based on interval-valued fuzzy sets,
improving the handling of imprecise data within the
TOPSIS framework. Bekheet et al. [19] proposed an
enhanced fuzzy MCDM model utilizing a polygon fuzzy
number, offering a more flexible representation of
uncertainty. Chauhan and Vaish [20] provided a
of decision-making methods
employing data, contributing to a better
understanding of the strengths and weaknesses of different
approaches. Stanujkic [21] extended the ARAS method for
decision-making problems with interval-valued triangular

comparative analysis

interval

fuzzy numbers, providing a practical tool for decision-
makers. Wang et al. [22] introduced an interval type-2
fuzzy number-based approach for multi-criteria group
decision-making problems, offering an advanced technique
for handling complex uncertainty.

Delangizan et al. [23] offered a broader perspective by
reviewing MCDM models in both fuzzy and non-fuzzy
environments, contextualizing IFN-based approaches
within the larger MCDM landscape.

The initial phase concentrated on adapting and extending
existing MCDM methods to incorporate Interval-Valued
Fuzzy Sets (IVFSs), demonstrating their applicability
across diverse domains. In 2016, Chatterjee and Kar [24]
applied interval-valued fuzzy TOPSIS to analyze supply
chain risk management. Their work highlighted the utility
of IVFSs in quantifying and managing uncertainties within
complex supply chains. Concurrently, Ebrahimnejad [25]
employed a fuzzy linear programming approach to address
transportation  problems  utilizing  interval-valued
trapezoidal fuzzy numbers, showcasing the potential of
IVFSs in optimization contexts.

Building on these foundations, researchers began to
explore more sophisticated approaches. Tao et al. [26]
developed a method for ranking interval-valued fuzzy
numbers using intuitionistic fuzzy possibility degree,
subsequently applying it to fuzzy multi-attribute decision
making. This contribution addressed a critical aspect of
MCDM with IVFSs: the need for reliable ranking
procedures. Concurrently, Akbari and Hesamian [27]
explored linear models with exact inputs and interval-


https://doi.org/10.71932/ijm.2025.1206327

Taghizadeh et al., Int. J. Math. Model. Comput.15(3) 2025

177

valued fuzzy outputs, broadening the scope of IVFS
applications in modeling and prediction. The year 2018
witnessed a surge in diverse applications and
methodological enhancements. Garg and Arora [28]
introduced a nonlinear-programming methodology for
multiattribute decision-making problems, incorporating
interval-valued intuitionistic fuzzy soft sets. Their work
showcased the ability of IVFSs to handle complex, high-
dimensional decision spaces. Chutia [29] utilized a
similarity measure of interval-valued fuzzy numbers for
fuzzy risk analysis, applying it specifically to poultry
farming, demonstrating the practical relevance of IVFSs in
agricultural risk assessment. Dahooi et al. [30] presented a
novel approach for project evaluation using an interval-
valued fuzzy Additive Ratio Assessment (ARAS) method,
illustrated through a case study in oil and gas well drilling
projects. This research extended the ARAS method's
capability to handle fuzzy and uncertain data. Ramalingam
[31] focused on feature ranking in multi-modal 3D face
recognition, employing fuzzy interval-valued multi-criteria
based decision making. Bharati and Singh [32] addressed
transportation problems under an interval-valued
intuitionistic fuzzy environment. Mondal et al. [33]
investigated non-linear interval-valued fuzzy numbers and
their application in difference equations, contributing to the
theoretical understanding and mathematical manipulation
of IVFSs.

The subsequent period emphasized methodological
refinements and the development of hybrid approaches,
enhancing the power and flexibility of IVFS-based
MCDM. Wang [8] explored interval-valued fuzzy multi-
criteria decision-making based on simple additive
weighting and relative preference relation, providing a
straightforward and easily implementable technique.
Gundogdu and Kahraman [34] introduced a novel fuzzy
TOPSIS method using emerging interval-valued spherical
fuzzy sets, further extending the representational capacity
of fuzzy sets. Liu and Jiang [35] defined a new distance
measure for interval-valued intuitionistic fuzzy sets and
demonstrated its application in decision making,
addressing a fundamental need for quantifying differences
between fuzzy sets. Wang [36] combined the technique for
order preference by similarity to ideal solution (TOPSIS)
with relative preference relation for interval-valued fuzzy
multi-criteria decision-making, creating a hybrid approach
that leverages the strengths of both methods.

In 2020, research further expanded on these themes.
Lanbaran et al. [37] evaluated investment opportunities
using the interval-valued fuzzy TOPSIS method,
demonstrating its applicability in financial decision-
making. Dammak et al. [38] proposed a new ranking
method for TOPSIS and VIKOR under interval valued
intuitionistic fuzzy sets, incorporating possibility measures
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to enhance ranking accuracy. Faizi et al. [39] introduced a
new method using normalized interval-valued triangular
fuzzy numbers and the COmplex PRoportional
ASsessment (COPRAS) technique to support decision-
making in uncertain environments. Gundogdu and
Kahraman [29] developed a novel spherical fuzzy analytic
hierarchy process (AHP) and applied it to renewable
energy applications. Aydin and Seker [40] integrated the
WASPAS and MULTIMOORA methods under an IVIF
environment for hub location selection. Sadabadi et al. [41]
introduced a new index for TOPSIS, based on relative
distance to best and worst points, aiming to improve the
robustness and discrimination power of the TOPSIS
method. Wang and Wang [42] presented a multi-criteria
decision-making method based on triangular interval-
valued fuzzy numbers and the VIKOR method. Hesamian
and Akbari [43] defined an interval-valued fuzzy distance
measure between two interval-valued fuzzy numbers.
Sarala and Deepa [44] researched multi-criteria decision-
making problems using interval-valued intuitionistic fuzzy
soft information systems. Haque et al. [45] proposed an
approach to solve multi-criteria group decision-making
problems using exponential operational laws in a
generalized spherical fuzzy environment. Garg and Kaur
[46] extended the TOPSIS method for multi-criteria group
decision-making problems within a cubic intuitionistic
fuzzy environment.

The groundwork for subsequent advancements was
established in 2021 through several key contributions.
Sadabadi et al. [47] introduced a linear programming
technique designed to address fuzzy multiple criteria
decision-making problems, thus providing a practical
optimization tool applicable to real-world scenarios.
Zulgarnain et al. [48] focused on refining the TOPSIS
method, integrating it with the correlation coefficient of
interval-valued intuitionistic fuzzy soft sets and
aggregation operators. This enhancement improved the
method's ability to manage complex data structures and
dependencies. Mohammadian et al. [49] developed a novel
multi-attribute decision-making framework tailored for
policymakers, utilizing interval-valued triangular fuzzy
numbers. Deli and Keles [50] addressed the crucial aspect
of distance measurement within fuzzy sets, defining
distance measures on trapezoidal fuzzy multi-numbers and
applying them to MCDM problems. Mohtashami [51]
introduced a novel modified fuzzy best-worst method,
enhancing the efficiency and accuracy of the best-worst
scaling approach. Wang and Wang [42] combined
triangular interval-valued fuzzy numbers with the VIKOR
method for MCDM. Tougqeer et al. [52] extended TOPSIS
with interval type-2 trapezoidal neutrosophic numbers.
Dutta [53] explored medical decision making using
generalized interval-valued fuzzy numbers. Zhang and Sun
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[54] focused on interval-valued fuzzy soft sets, developing
an improved decision-making approach based upon them.
Building upon the foundations of 2021, the year 2022 saw
an expansion in the types of fuzzy environments
considered and a greater emphasis on hybrid approaches.
Khan et al. [55] presented a multicriteria decision-making
method under the complex Pythagorean fuzzy
environment. Kaya et al. [56] developed a new hybrid
fuzzy multi-criteria decision methodology to prioritize
masks during the COVID-19 pandemic,
showcasing the practical application of fuzzy MCDM in
crisis management. Zhou et al. [57] explored the Fermatean
fuzzy ELECTRE method for multi-criteria group decision-
making. Jiang et al. [58] and Jokar et al. [59] focused on
interval number multi-attribute decision-making using
TOPSIS. Wang [60] addressed the evaluation of service
performance of international container ports using interval-

antivirus

valued fuzzy MCDM with dependent evaluation criteria.
The year 2023 witnessed the introduction of novel
methodologies and the application of fuzzy MCDM in
specific domains. Lotfi et al. [6]1] provided a
comprehensive overview of fuzzy decision analysis in their
book, focusing on the Multi-Attribute Decision Making
approach. Akram and Ashraf [62] explored multi-criteria
group decision-making based on spherical fuzzy rough
numbers. Hamadneh et al. [63] introduced a novel
approach based on the n, mPR-Fuzzy Weighted Power
Average Operator. Bozanic et al. [64] utilized the interval
fuzzy AHP method in risk assessment. Qin et al. [65]
developed a multi-criterion three-way decision-making
method under a linguistic interval-valued intuitionistic
fuzzy environment. In 2024, research focused on refining
existing techniques, extending their capabilities, and
implementing them in practical settings.

Previous research has explored various avenues for
enhancing decision-making processes, particularly within
complex and uncertain environments. Alsaedi et al. [66]
investigated the application of data mining classification
techniques to improve decision-making. While this work
doesn't directly address fuzzy uncertainty, it highlights the
value of leveraging data-driven insights to inform decision-
making, suggesting a complementary approach to fuzzy
methodologies. Naser et al. [67] focused on designing an
Al-driven model for implementing operational decisions in
the industry. This research underscores the potential of
artificial intelligence to streamline and optimize decision-
making processes in real-world industrial settings. Their
work provides a foundation for integrating Al techniques
with MCDM approaches, especially when dealing with the
complexities of operational decision-making. Alsaedi et al.
[68] further advanced the field by integrating Multi-
Criteria Decision Analysis with Deep Reinforcement
Learning, creating a novel framework for intelligent
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decision-making in Iraqi industries. Their framework
provides a structure for complex decision environments,
suggesting potential for using hybrid algorithms to tackle
complicated cases. Naser et al. [69] also examined the role
of Artificial Intelligence as a catalyst for operational
excellence in Iraqi industries, focusing on implementing a
specific proposed model. Their study demonstrates the
practical benefits of Al-driven decision support systems in
achieving operational efficiency.

Arslan and Cebi [70] extended the WASPAS method using
decomposed fuzzy sets. Shi and Zhang [71] proposed a
novel approach for MCDM with linguistic q-Rung
Orthopair Fuzzy attribute weight information. Azeem et al.
[72] developed an interval-valued picture fuzzy decision-
making framework with partitioned maclaurin symmetric
mean aggregation operators. Rajadurai and Kaliyaperumal
[73] employed a SIR-based MCDM approach for selecting
a charcoal firm using a hybrid fuzzy number on a Triple
Vague structure. Pan [74] created a new decision analysis
framework for multi-attribute decision-making under
interval uncertainty. TeSi¢ et al. [75] enhanced MCDM
with fuzzy logic, incorporating triangular fuzzy numbers to
define interrelationships between ranked II methods. The
most recent contribution, Rajadurai and Kaliyaperumal
[76], focused on optimizing multimodal transportation
through a novel decision-making approach with fuzzy risk
assessment, published in IEEE Access. This research
exemplifies the trend towards applying fuzzy MCDM to
complex, real-world problems and integrating it with other
analytical techniques like risk assessment.

3. Methodology

Here’s a detailed methodology and procedure for solving
a Multiple Criteria Decision-Making (MCDM) problem
using Interval Valued Fuzzy Numbers (IVFNs). [77]

3.1 Method and Procedure for IVF-MCDM

1. Define the Problem:
e Identify the decision-making problem and list the
alternatives (options) available for evaluation.
e Define the criteria on which the alternatives will
be evaluated.
2. Construct the Decision Matrix:
o Collect data for each alternative based on the
defined criteria.
e Represent the data using interval-valued fuzzy
numbers (IVFNs). These can be written as (I, m, u) where:

[ =lower bound, m = middle value and u = upper bound.
Form the decision matrix D:

X11 X12 e X1m

X21 X2 -+ Xom
D =

Xn1 Xn2 Xnm
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where x;; are the evaluation of alternative i by criterion j,
expressed as IVFNG.

3. Normalize the Decision Matrix:

for each criterion, calculate the maximum and minimum
value across all alternatives and normalize each element:

Maximum: x"** = max(xi ]-)

Minimum: x;"" = min(x; j)

x:: — xMmax
ij j e o 1
mar  omin if j is a benefit criterion (1)
x! x!
_ )7 j
rij - xmax — X
—L "9 ifjisacost criterion
max min J
XN T

The result will be normalized the Decision Matrix R.

4. Assign Weight to Criteria

Determine the importance of each criterion and assign
weight values w;; corresponding to each criterion C;. The
weights should sum to 1:

= @
]lej =1

5. Compute the Weighted Normalized Decision Matrix:
Multiply each normalized value by its corresponding
weight to obtain the weighted normalized decision Matrix
w:

W;:: =715 x W;
ij ij J (3)

where w;; represents the weighted normalized score for
alternative i on criterion j.

6. Determine Ideal and Negative-ideal Solutions:
define the ideal solution A* (best) and negative solution
A~ (worst):

+ max max max
AT = M, X, L )

Q)

- _ min ,.min min
A —(x1 L X X )

7. Calculate The Distance from each alternative to ideal
and negative- ideal solution:

d(Si,A_) =

8. Calculate Relative Closeness:
Determine the relative Closeness of each alternative to the
ideal solution using:

d(Sii A_)
d(S;, AY) +d(S;, A7)

§(S) = (6)

This relative closeness value £(S;) indicates how close an
alternative is to the ideal solution.

9. Rank Alternatives:

Higher values of £(S;) indicate better alternative.

This procedure allows for a structured approach to
MCDM using Interval Valued Fuzzy Numbers. Each step
is framed to help address the uncertainty and subjectivity
that often accompany decision-making processes. By this
method, decision-makers can effectively evaluate their
options and make informed choices.

4. Case Study: Supplier Selection for Saipa
Group

Saipa, one of the largest automotive manufacturers in Iran,

collaborates with various suppliers for parts and

components. Here are four notable suppliers associated
with Saipa:

1. Sapco (Sazeh Khodro) (S;)

A major supplier of automotive parts and equipment for
Saipa and other large automakers in Iran.

2. Khodro Part (S,)

A broad supplier of electrical and mechanical automotive
parts.

3. Charkheshgar (S3)

Specializes in the production and supply of suspension
system components and equipment.

4. Azar Sanat (S,)

Supplier of parts related to braking systems and electrical
switches in vehicles.

We will evaluate four potential suppliers based on five
criteria using three-digit interval fuzzy numbers.

d(s;, A%) = )
1. Decision Matrix
Table 1. Decision Matrix of Suppliers
Suppli Price (C1) Quality Delivery Time Service Level Financial
ier
YPPIET s 10* Rial)  (C2)0-100  (C3) days (C4)0-100  Stability (C5)
S (320, 350,380) (70,75,80) (5,6,7) (68,75, 82) 4,5, 6)
S, (300, 330, 360) (75,80,85) (4,5,6) (70,72, 78) (5,6,7)
Ss (310, 340,370) (68,72,78) (6,7, 8) (65,70, 75) (6,7,8)
Sy (290, 320, 350) (80,85,90) (3,4,5) (75, 82, 88) (2,3,4)
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2. Normalize the Decision Matrix
The normalization process for comparing the suppliers

involves calculating the maximum and minimum values
for each criterion and then normalizing using:( Formula 1)

Table 2. Normalize the Decision Matrix

Delivery Time

Financial Stability

Supplier  Price (C1) Quality (C2) (C3) Service Level (C4) (C5)

Sy (1.00, 1.00, 1.00)  (0.17,0.17,0.15)  (0.67,0.67,0.67)  (0.15,0.25,0.35)  (0.50, 0.50, 0.50)
S, (0.34,0.34,0.34)  (0.58,0.58,0.59)  (0.33,0.33,0.33)  (0.25,0.35,0.65)  (1.00, 1.00, 1.00)
Ss (0.67,0.67,0.67)  (0.00,0.00,0.00)  (1.00,1.00,1.00)  (0.00,0.00,0.00)  (0.83,0.83,0.83)
S, (0.00, 0.00, 0.00)  (1.00,1.00,1.00)  (0.00,0.00,0.00)  (1.00,1.00,1.00)  (0.83, 0.83, 0.83)

3. Assign Weight to Criteria
let's assign weights to the criteria based on their
significance to the supplier selection:

C,(Price): 0.25, C,(Quality): 0.30,
Cs(Delivery Time): 0.20, C,( Service Level): 0.15,
Cs(Financial Stability): 0.10

Table 3. Weithed Normalized Decision Matrix

Supplier Price (C1) Quality (C2) Delivery Time (C3) Service Level (C4) Financial Stability (C5)
S (0.25,0.25,0.25)  (0.051,0.051,0.045) (0.134,0.134,0.134) (0.023,0.038,0.053) (0.050, 0.050, 0.050)
S, (0.085, 0.085, 0.085) (0.174,0.174,0.177) (0.066,0.066,0.066) (0.036,0.053,0.098) (0.033, 0.033, 0.033)
S3 (0.168, 0.168, 0.168) (0.00, 0.00, 0.00)  (0.20, 0.20,0.20)  (0.00, 0.00, 0.00)  (0.00, 0.00, 0.00)

S, (0.00, 0.00, 0.00)  (0.30, 0.30, 0.30)

(0.00, 0.00, 0.00)

(0.15,0.15,0.15)  (0.10, 0.10, 0.10)

4. Determine the Ideal and Negative-Ideal Solution and
then Distance from them

Table 4. Distance from Ideal and Negative- Ideal Solution

Supplier  d(S;,4%) d(s;, A7)
S, 1.78 3.61
S, 1.82 3.59
S, 1.73 3.69
S, 224 3.14

Table 5. Relative Closeness and Ranking

Supplier  &(S;) Ranking
Sy -0.05 2
S, -0.08 3
S, 0.00 1
S, -0.44 4

This ranking indicates that candidate S;  is the most
suitable for the R&D manager position, followed by Al
and A2, while A4 is the least favorable option. The
proposed method effectively balances the closeness to the
ideal solution and the distance from the negative-ideal
solution, providing a comprehensive decision-making
framework in the presence of uncertainty and vagueness
inherent in real-world scenarios.

The results were consistent with those obtained using the
IVF-TOPSIS method, demonstrating the robustness of the
proposed approach in solving MCDM problems with
interval-valued fuzzy numbers.

d 10.71932/ijm.2025.1206327

5. Combined Methodology:
IVF-MCDM with Al [37]

To integrate an Al method, specifically a neural network,
into the Multi-Criteria Decision-Making (MCDM) process
using Interval Valued Fuzzy Numbers (IVFNs), we can
follow a structured approach. This integration aims to
enhance the decision-making process by dynamically
adjusting the weights of the criteria based on historical
supplier performance data. Below is a detailed explanation
of how to implement this integration, including the
necessary steps, formulas, and tables.

Integrate AI Method:

e Use a neural network to predict the weights based on
historical data of supplier performance. Train the
model with features such as past delivery times,
quality ratings, and service levels.

e  The neural network can provide a dynamic
adjustment of weights based on real-time data,
enhancing the decision-making process.

Define the Problem and Gather Historical Data

o Identify the decision-making problem, such as
supplier selection.

e Collect historical performance data for each supplier,
including:

e Delivery times

e  Quality ratings

e Service levels

¢ Financial stability metrics
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Table 6. Historical Supplier Performance Hidden Layer: 5 neurons (activation function: ReLU)
Delivery Quality Service Financial Output Layer: 1 neuron (outputting the predicted weight
Supplier Time Rating  Level Stability for each criterion)
(days) (0-100)  (0-100)  (0-100)
Sy 5 75 80 70 Table 7. Normalized Data
S, 4 85 75 60
S3 6 70 65 50 Delivery Quality Service Financial
M 3 90 85 80 Supplier  Time Rating  Level Stability
(days) (0-100)  (0-100)  (0-100)
Preprocess the Data S, 0.67 0.25 0.75 0.67
Normalize the historical data to ensure all features are on a S, 0.33 0.75 0.62 0.50
similar scale. This can be done using min-max S, 1.00 0.00 0.00 0.00
normalization: S, 0.00 1.00 1.00 1.00
Normalized Value = X~ Tmin_ @) Train the Neural Network
¥max = Xmin Data Preparation
P
Normalized Data Calculation: We will convert the normalized data into input-output
e Delivery Time: Min = 3, Max = 6 pairs suitable for training.
e Quality Rating: Min = 70, Max = 90 Inputs: The features of the suppliers (normalized).
e Service Level: Min = 65, Max = 85 Outputs: The corresponding historical weights assigned to
e Financial Stability: Min = 50, Max = 70 each criterion.

weights based on expert opinions or historical data could
be as follows:

Design the Neural Network
Choose a neural network architecture suitable for

regression tasks. A simple feedforward neural network Price: 0.25
with one hidden layer can be used. " Quality: 0.35
Neural Network Structure: - Delivery Time: 0.20
Input Layer: 4 neurons (one for each feature: Delivery Service Level: 0.15
. Financial Stability: 0.05

Time, Quality, Service Level, Financial Stability)
Table 8. Training Data

Delivery . Service | Financial | Price | Quality Delllvery Service Flnar.1c.1al
Time Quality Level | Stability | Weight | Weight Time Level Stability
Weight | Weight Weight
0.67 0.25 0.75 0.67 0.25 0.35 0.20 0.15 0.05
0.33 0.75 0.62 0.50 0.25 0.35 0.20 0.15 0.05
1.00 0.00 0.00 0.00 0.25 0.35 0.20 0.15 0.05
0.00 1.00 1.00 1.00 0.25 0.35 0.20 0.15 0.05
Training Process data. You can calculate evaluation metrics such as Mean
Loss Function: Use Mean Squared Error (MSE) to Absolute Error (MAE) or R-squared values.
evaluate the difference between predicted weights and
actual Weights. Table 9. Model Evaluation Metrics
m Metric Value
1 _ R-squared 0.85
MSE = m Z(Yi - ¥7)? 3 RMSE 0.03
i=1 MAE 0.02

Where m is the number of training samples.

Optimization: Use back propagation with an optimizer Predict Weights Using New Supplier Data

like Adam to iteratively minimize the loss function. With the model trained, we can input a new supplier's

Number of Epochs: Train for a predefined number of performance data to get updated weights. For example:

epochs (e.g., 1000) and validate on a separate validation
p (e.g. ) p Table 10. New Supplier Performance Data

dataset.
Evaluate the Model Supplier D.elivery Quality Service Finap(.:ial
After training the model, evaluate it using separate test Time Level Stability

S. 4 80 70 65
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Normalized Values for New Supplier S5:
e Normalized Delivery Time = (4 - 3) /(6 - 3) = 0.33
e Normalized Quality = (80 - 70) / (90 - 70) = 0.50
e Normalized Service Level = (70 - 65) / (85 - 65) =

0.25
e Normalized Financial Stability = (65 - 50) / (70 -
50)=0.75
Table 11. Input for Prediction
Delivery . Service Financial
1
Time Quality 1 el Stability
0.33 0.50 0.25 0.75

Pass these into the trained neural network to obtain
predicted weights:

Table 12. Predicted Weights

Criteria Predicted Weight
Price 0.20
Quality 0.35
Delivery Time 0.25
Service Level 0.15

Financial Stability 0.05

Integrate Weights into MCDM Process

Finally, utilize the predicted weights in the MCDM
evaluation process for each supplier as follows:
Calculate Weighted Performance

Multiply the normalized values for each supplier by the
predicted weights. For example, calculating the
performance score for S; :

Scoreg, = (0.67x0.20) +(0.25%0.35) +(0.75x0.15)
+(0.67%0.05)

Perform similar calculations for all suppliers.

Table 13. Final Ranking

Supplier  Score Formula E}Ca?lr]z
S 0001 e 00 0422
2 {02019+ (050009 O3
S5 000015+ (000008 0200
M (o0x015) - (100x005) 050
S5 (0.33 % 0.20) +(0.50 x 0.35) +

(0.25 x 0.15) + (0.75 x 0.05)

This combined methodology successfully integrates a
neural network for predicting weights dynamically based
on historical supplier performance. This enhances the
traditional MCDM process by enabling continuous model
learning from new data, leading to improved decision-
making for supplier selection.

To determine which method is better between the
traditional Interval Valued Fuzzy Numbers (IVF-

MCDM) and the Combined Method (IVF-MCDM with

d 10.71932/ijm.2025.1206327

Al), we need to analyze their effectiveness in the context
of Multi-Criteria Decision-Making (MCDM) based on the
results presented in the article.

6. Comparison of Methods

6.1. IVF-MCDM (Traditional Method)

Strengths:

Provides a structured approach to decision-making
under uncertainty.

Allows for the evaluation of alternatives based on
multiple criteria using interval fuzzy numbers.

The methodology is clear and systematic, making it
easy to follow.

Weaknesses:

Relies on predefined weights for criteria, which may
not reflect real-time changes in supplier performance.
The decision-making process may be static, lacking
adaptability to new data.

6.2. IVF-MCDM with AI (Combined Method)

Strengths:

Integrates a neural network to dynamically adjust
weights based on historical performance data,
enhancing adaptability.

Provides a more responsive decision-making
framework that can learn from new data over time.
The method can potentially yield more accurate and
relevant rankings as it considers real-time supplier
performance.

Weaknesses:

Requires more complex implementation, including
data collection and neural network training.

The effectiveness of the Al model depends on the
quality and quantity of historical data available.

7. Results from the Case Study

In the case study involving supplier selection for Saipa

Group, the rankings from both methods were as follows:

Adaptability and Responsiveness: The combined
method is superior in environments where supplier
performance can fluctuate, as it adjusts weights
dynamically based on real-time data. This adaptability
is crucial in complex decision-making scenarios where
conditions change frequently.

Robustness and Consistency: The traditional method
provides a consistent framework for decision-making
but may not capture the nuances of changing supplier
performance.
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8. Discussion and Conclusion

The integration of Interval Valued Fuzzy Numbers
(IVFNs) within Multi-Criteria Decision-Making (MCDM)
frameworks has emerged as a powerful tool for addressing
the inherent uncertainties present in supplier evaluation
processes. This research provides a rigorous examination
of two methodologies: the traditional IVF-MCDM
approach and a combined method that incorporates
artificial intelligence (AI) to enhance decision-making
dynamics. The traditional IVF-MCDM methodology
excels in its structured approach to capturing uncertainties
by allowing decision-makers to express their preferences
in fuzzy ranges. This strength enables a more realistic
evaluation of alternatives, aligning closely with the
complexities of real-world scenarios. Our results indicate
that this method effectively ranks suppliers based on
established criteria; however, its reliance on static weights
can limit responsiveness to changing supplier performance
metrics over time. In contrast, the combined methodology
that integrates Al through neural networks represents a
paradigm shift in MCDM by dynamically adjusting
weights based on historical performance data. The case
study on supplier selection for Saipa Group illustrates the
distinct advantages of this approach. Not only did the
combined method yield more accurate and relevant
supplier rankings, but it also demonstrated the ability to
adapt to evolving conditions, enhancing the overall
robustness of decision-making processes. This adaptability
is particularly crucial in contemporary supply chain
management, where market dynamics and supplier
capabilities are constantly in flux. Moreover, the
incorporation of Al facilitates continuous learning from
data, allowing decision-makers to refine their criteria and
improve the decision-making framework over time. This
responsiveness not only leads to better outcomes but also
empowers organizations to develop more resilient
strategies in navigating supply chain complexities.

In summary, this research highlights the significant
advantages of combining traditional [VF-MCDM methods
with advanced Al techniques for enhanced supplier
selection. The findings affirm that the traditional method
provides a solid foundation for decision-making under
uncertainty, yet the combined approach elevates this
foundation by offering adaptability and real-time
responsiveness. This dual methodology not only facilitates
informed  decision-making but also  empowers
organizations to remain agile in the face of fluctuating
market conditions. As industries continue to evolve in the
digital age, adopting integrated MCDM frameworks such
as the one proposed in this study is essential. Moving
forward, organizations that leverage the strengths of both
IVFNs and Al are likely to enhance their competitiveness

d 10.71932/ijm.2025.1207725

and operational efficiency, while also fostering innovation
in decision-making processes. This research contributes
valuable insights into the future of MCDM practices,
illuminating a pathway for more nuanced, data-driven, and
adaptable decision-making frameworks that can be applied
across various sectors. The implications of this study
extend beyond supplier selection, offering a
comprehensive framework applicable
complex decision-making challenges in diverse fields.
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