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Abstract

Acrtificial  intelligence-powered  metabolomics has
emerged as a transformative approach, providing
unprecedented insights into plant metabolic responses to
biotic and abiotic stresses. This review examines current
trends and future directions of Al-based metabolomics
techniques, analyzing their role in deciphering metabolic
networks, identifying stress-responsive biomarkers, and
uncovering hidden patterns within omics datasets.
Compared to traditional methods that face challenges in
data integration and result interpretation, machine learning
and deep learning algorithms enable rapid and accurate
analysis of complex datasets. These advanced
technologies not only facilitate the discovery of key
metabolites involved in plant defense mechanisms but also
enhance stress tolerance prediction and the development
of resistant crop varieties. The integration of multi-omics
data (genomics, transcriptomics, and proteomics) with
metabolomics through Al-driven platforms offers a more
comprehensive understanding of plant stress responses.
However, challenges such as data standardization, model
interpretability, and the need for high-performance
computational resources remain unresolved. This paper
also explores the potential of Al in optimizing agricultural
practices, improving crop resilience, and ensuring food
security under climate change conditions. By addressing
current limitations and leveraging emerging technologies,
this field holds revolutionary promise for plant sciences
and global food security challenges.
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Abstract

Introduction: Plant defense against biotic stresses (living factors such as pathogens and pests) and abiotic stresses
(environmental factors such as drought, salinity, and extreme temperatures) is of great importance in ensuring
global food security. With the continuous growth of the world's population, the demand for agricultural products
is increasing, highlighting the urgent need to develop efficient strategies for plant protection. The ability to protect
crops from diseases, pests, and adverse environmental conditions is essential for maintaining agricultural
productivity and securing global food supply. Artificial intelligence-powered metabolomics has emerged as a
transformative approach, providing unprecedented insights into plant metabolic responses to biotic and abiotic
stresses. This review examines current trends and future directions of Al-based metabolomics techniques,
analyzing their role in deciphering metabolic networks, identifying stress-responsive biomarkers, and uncovering
hidden patterns within omics datasets. Compared to traditional methods that face challenges in data integration
and result interpretation, machine learning and deep learning algorithms enable rapid and accurate analysis of
complex datasets. These advanced technologies not only facilitate the discovery of key metabolites involved in
plant defense mechanisms but also enhance stress tolerance prediction and the development of resistant crop
varieties. The integration of multi-omics data (genomics, transcriptomics, and proteomics) with metabolomics
through Al-driven platforms offers a more comprehensive understanding of plant stress responses. However,
challenges such as data standardization, model interpretability, and the need for high-performance computational
resources remain unresolved. This paper also explores the potential of Al in optimizing agricultural practices,
improving crop resilience and ensuring food security under climate change conditions.

Conclusion: By addressing current limitations and leveraging emerging technologies, this field holds
revolutionary promise for plant sciences and global food security challenges.
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