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Abstract 

In the present study, an efficient nonlocal finite element model is used to investigate the buckling and 

bending behavior of functionally graded (FG) nanobeams. A two-node element with eight degrees of 

freedom is formulated according to the sinusoidal higher-order shear deformation theory. This theory 

assumes an accurate sinusoidal distribution of transverse shear stress in the thickness direction to 

provide stress-free boundary conditions without requiring shear correction factors on the top and 

bottom surfaces of the nanobeams. To apply size effects, the nonlocal Eringen elasticity theory is used. 

The material properties of FG nanobeams vary in the thickness direction as a continuous power 

function. Numerical results indicate the acceptable accuracy of the nonlocal finite element model. 

Additionally, the effects of various parameters, such as FG material power law index, length-to-

thickness aspect ratio, and nonlocal parameter, on the critical buckling load and deflection of FG 

nanobeams are investigated. 

Keywords: FG nanobeam, Nonlocal finite element, Sinusoidal Shear Deformation Theory, Static 

analysis. 

1- Introduction 

Nowadays, nanostructures such as 

nanorods, nanobeams, and nanoshells have 

diverse applications due to their 

outstanding electrical, chemical, thermal, 

and mechanical properties.  

Micro/nano electromechanical systems 

(MEMS/NEMS) and nanoactuators are 

among these applications in which size 

effects are very important. Therefore, 

considering size effects in analyzing the 

mechanical behavior of these 

nanostructures is essential for better 

understanding their behavior and achieving 

appropriate designs. 

It should be noted that since the classical 

continuum mechanics theory ignores size 

effects, it is not suitable for nanostructures. 

To overcome this issue, non-classical 

continuum theories, such as nonlocal 

elasticity theory [1, 2], strain gradient 

theory (SGT) [3, 4], modified coupled 

stress theory (MCST) [5], and nonlocal 

strain gradient theory (NSGT) [6], have 

been developed based on material size-

dependent parameters.  



6 
M. Dehghan & M. Esmaielian / Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering 17 (2025) 0005~0014 

 

However, investigating the effects of size 

dependence on the mechanical behavior of 

functionally graded (FG) materials with 

micro/nano structures should include the 

internal and external dimensions, which are 

always of fundamental importance. Unlike 

the classical elasticity theory, in nonlocal 

elasticity theory, stress at the reference 

point depends not only on the strain at the 

reference point but also on the strain at the 

points of the entire domain [2]. 

Many studies have been conducted so far 

based on the Eringen nonlocal elasticity 

theory to accurately predict the static 

behavior, free vibration, and buckling of 

homogeneous FG nanobeams. Ghayesh 

and Farajpour [7] reviewed studies on 

micro- and nano-scale structures made of 

FG materials. Thai and Vo [8] investigated 

the vibrations, buckling, and bending of 

nanobeams using an analytical solution 

based on the nonlocal sinusoidal shear 

deformation theory (SSDT). Thai [9] 

proposed a new nonlocal third-order shear 

deformation theory (TSDT) for the 

analysis of vibrations, buckling and 

bending of simply supported nanobeams 

using Eringen’s nonlocal differential 

constitutive relations. 

Analytical solutions are generally limited 

to simple geometries, specific properties of 

FG material, boundary conditions, and 

loadings. Therefore, numerical methods 

such as finite element, isogeometric 

analysis (IGA), and meshless method 

(MM) have been used to analyze the 

complex behavior of size-dependent FG 

nanostructures. The capacity and 

effectiveness of these methods have been 

investigated in a wide range of complex 

applications [10-12]. 

In existing literature, studies on nanobeams 

utilizing the finite element method (FEM) 

remain limited, despite the method's 

advantages in utilizing complex geometry, 

loading, and boundary conditions as well 

as arbitrary grading properties. To the best 

of the authors’ knowledge, no publication 

currently provides a detailed examination 

of the static bending and buckling 

responses of functionally graded (FG) 

nanobeams with arbitrary FG material 

distributions using a finite element model 

based on sinusoidal higher-order nonlocal 

beam theories. Consequently, the primary 

objective and novelty of this paper is to 

propose an efficient finite element model 

to explore the bending and buckling 

behavior of FG nanobeams. 

In the present study, an efficient finite 

element model is used to investigate the 

buckling and bending behavior of an FG 

nanobeam. The analysis is performed using 

a two-node beam element (with four 

degrees of freedom at each node) and 

sinusoidal shear deformation theory. The 

proposed model provides an accurate 

sinusoidal distribution of shear stress at 

each section of the beam without requiring 

a shear correction factor. The material 

properties of the nanobeam are considered 

to be functionally graded along the 

thickness direction and their variations are 

assumed to follow power law. 

2- Governing equations 

2-1- Material properties 

A nanobeam with thickness h , length L , 

and width b  made of two distinct materials 

(metal and ceramic) is considered. The 

coordinate system for the FG nanobeam is 

shown in Fig. 1. 

 
Fig. 1 Geometry and coordinate system of the FG 

nanobeam 
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The material properties of the FG 

nanobeam vary along the thickness 

direction according to a power function as 

follows (Fig. 2): 

1
( ) ( )

2

p

t b b

z
P z P P P

h

 
= − + + 

 
 (1) 

Where bP  and tP  are the material 

properties corresponding respectively to 

the bottom and top surfaces of the FG 

nanobeam; p  is the material distribution 

parameter, which is greater than or equal to 

zero. For the sake of simplicity, the 

Poisson's ratio of the beam is assumed to 

be constant in this study. 

2-2- Nonlocal elasticity theory 

Nonlocal theories are based on size-

dependent continuum mechanics that 

accounts for small-scale effects in the 

constitutive equations. Unlike the classical 

elasticity theory, in nonlocal elasticity 

theory, stress at a reference point depends 

not only on the strain at that point but also 

on the strain at all points of the body [2].  

 
Fig. 2 Functionally graded distribution of the 

material properties along the thickness 

The nonlocal stress tensor, 
ijS , at a point 

can be written as: 

2(1 ) L

ij ijS S−  =  (2) 

where 2   is the Laplacian operator in the 

two-dimensional Cartesian coordinate 

system, L

ijS   is the classical stress tensor at 

some point related to the strain tensor by 

Hooke's law, and 2

0
( )e a =   is the 

nonlocal parameter that includes small-

scale effects (
0

e   is the characteristic 

constant for each material and a  is the 

internal characteristic length). The value of 

the nonlocal parameter (  ) is important 

when the nonlocal elasticity theory is used. 

For an isotropic FG nanobeam, the 

nonlocal constitutive relation in Eq. (2) can 

be rewritten as follows [13]: 

112

55

0

0
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xz xz xz
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CS S






      
−  =      

        
(3) 

where xxS  and xzS  are the axial stress and 

the transverse shear stress, and 
ijC  is the 

stiffness coefficient(s) that is correlated 

with geometric constants. Moreover, by 

setting 
0

0e a = , the constitutive relation for 

the classical (local) theory is obtained. 

11 55

( )
( ),   C

2(1 )

E z
C E z


= =

+  
(4) 

2-3- Sinusoidal Beam Theory Based on 

Nonlocal Elasticity 

In this study, a quasi-two-dimensional 

sinusoidal shear deformation theory is 

considered for FG nanobeams considering 

transverse shear deformation. The 

displacement field in this theory can be 

derived as follows: 

0

0

0

( )
w

u u z f z
x

w w




= − +


=
 

(5) 

where 0u  and 0w  are the axial and 

transverse displacement of the neutral axis 

of the beam web, and   is the rotation of 

the cross section perpendicular to the 

neutral axis as a result of transverse shear 
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deformation. The following points can be 

derived from the above equation: 

- The axial displacement consists of 

extension, bending and shear components; 

- The bending component of axial 

displacement is similar to that given by the 

Euler–Bernoulli beam theory;  

A sinusoidal shear deformation function 

that does not require a shear correction 

factor is used as follows [8]: 

( ) sin
h z

f z
h





   
=    
     

(6) 

This equation satisfies the condition that 

the shear stress on the top and bottom 

surfaces of the beam is negligible [8]. The 

non-zero strains in the beam theory can be 

expressed as: 
2

0 0

2
( )

( )

xx

xz

u w
z f z

x xx

g z




 

  
= − +
 

=  

(7) 

By rewriting the short form of the strain 

components, one obtains 
(0) (1) (2)

(0)

( )

( )

xx xx xx xx

xz xz

z f z

g z

   

 

= + +

=  
(8) 

where 

( ) ( )g z f z=  (9) 

Now, using the principle of minimum total 

potential energy, the governing equations 

can be written as follows [14-16]: 

( ) 0U V  = − =  (10) 

where   is the total potential energy, U  

is the partial change in strain energy, and 

V   is the variation of the work done by 

external forces. The change in strain 

energy is defined in terms of stress 

resultants as follows: 

2

0
2

2

0 0

20
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  ( )
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h

L
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u w
N M M Q dx
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

−
=
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 
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(11) 

Moreover, , ,xz s bQ M M  and 
xN  are 

respectively the axial force, bending 

moment, shear moment, and shear force, 

which are given by the following 

equations: 
1

2

1
2

1
2

1
2

( , , ) (1, , ( ))

( )

x b s x

xz xz

N M M b z f z S dz

Q g z S dz

−

−

=

=




 

(12) 

The first variation of the work done by the 

compressive force is equal to 

0 0

0 0
0 0

L L w w
V q w dx N dx

x x

 
 

 
= +

    (13) 

where q  and 0N  are the transverse and 

axial loads, respectively. By substituting 

Eqs. (11)-(13) into Eq. (10) and integrating 

by parts and collecting the coefficients of 

 , 
0w  and 0u , the equations of motion 

for the sinusoidal nanobeam can be written 

as follows: 
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(14) 

where the cross-sectional coefficients are 

expressed as follows: 

11 11 11 11 11 11

2 2 2
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2

2 2
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2
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Using the total potential energy variation, 

the weak form of the governing equations 

is obtained as: 

(15) 
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3- Finite element formulation 

Recently, an efficient nonlocal finite 

element model has been used to study the 

buckling and bending behavior of FG 

nanobeams based on the modified high-

order shear deformation theory. As can be 

seen in Fig. 3, the element has two nodes 

and eight degrees of freedom. The vector 

components of nodal displacement are 

given as follows: 

( ) ( )
( )

( )0

0 0, , , ,   i=1,2

T
i

i i iw
d u w

x


   
=   

     

(17) 

The unknown components 0u   and   are 

approximated using the linear Lagrange 

interpolation function with continuity C . 

However, the cubic Hermite interpolation 

functions with continuity order 1C  are used 

to approximate the component 0w . 

The generalized displacements in each 

element can be written as: 

0 0 0 0  ,    ,  we e eu Nu N Nw = = =  (18) 

 

 
Fig. 3 Two-node element of the nanobeam with 

corresponding DOFs  

The classical interpolation functions are 

given as: 

 1 2 1 2 3 4   ,   N= N    N    N   NN N N  =    (19) 

where 
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2
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1
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2
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  
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= + = =

= + + − =

= + − =
 

(20) 

In the above functions,   is the local 

coordinate of the element, as shown in Fig. 

3. By inserting (18) into the generalized 

strain vectors of (7), one obtains: 

   
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(21) 

where  
( )i e

  is the degree-of-freedom 

vector of the nanobeam element, as defined 

in (17); [ ]iB  is an 8 × 1 matrix, 

representing the shape functions ,N N  and 

their derivatives, such that 

 

 

 

   

1 2

0
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31 2 4
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1 2
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0 0 0 0b

dN dN
B

dx dx

B

d Nd N d N d N

dx dx dx dx

dN dN
B

dx dx

B N N

N N N N N

 
=  
 

=

 −− − −
 
 

 
=  
 

=

   =   

 

Using the strain-displacement relations of 

the above equation, one can rewrite (16) as 

follows: 

11 11 11

11 55

2

0 11 0 0 11 1 0 11 1 11 0
0

1 11 1 1 2 2 0 2 1

2 2
0

0 (

)  -  

L
T T T T s T

T T s T s T s

L
T s T s

s s

d B A B B B B B B B B B B

B D B B D B B B B B D B

B H B B A B dx d q w dx



 

= + + + +

+ + + +

+





 

The final governing equation system is 

expressed in the matrix form for static and 

buckling analyses of the nanobeam as: 

Static analysis: assuming the application of 

a transverse load, q , on the beam top 

surface, the following equation is obtained: 

(16) 

(22) 

(23) 



10 
M. Dehghan & M. Esmaielian / Journal of Simulation and Analysis of Novel Technologies in Mechanical Engineering 17 (2025) 0005~0014 

 

[ ]{ } { }k d F=  (24) 

Buckling analysis: an axial load, 
0N , is 

applied to the beam centerline and the 

following equation is obtained: 

0([ ] [ ]){ } {0}gk N k d− =
 (25) 

where [ ]k  is the reference stiffness matrix, 

[ ]gk  is the reference geometric stiffness 

matrix, { }F  is the force vector, and { }d  is 

the degrees-of-freedom vector in the 

reference system of the FG nanobeam. 

They can be obtained through the assembly 

of element-related matrices, which are 

defined as follows 

 

11 11 11

11 55

2

0 11 0 0 11 1 0 11 1 11 0
0

1 11 1 1 2 2 0 2 1

2 2

2 2

0 02 2
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       )
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T s T s

s s

TT

b b b b
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K B A B B B B B B B B B B

B D B B D B B B B B D B

B H B B A B dx

dN dN d N d N
K N N d

dx dx dx dx


= + + +

+ + + +

+ +

        
    = +                    
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0

2

20

L

T
L T

b
e b

x

d N
F q N dx
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

  
 = −  
   





 

 (26) 

 Simply supported (SS) boundary 

conditions are considered at the two ends 

of the nanobeam as presented in Table 1. 

Table 1: Boundary conditions of the FG nanobeam 

Left boundary ( 0x = ) Right boundary ( x L= ) 

0 0 0,0,  0,  0,

 0

xu w w



 = 


 

0 0 0,0,  0,  0,

 0

xu w w



 = 


 

 

4- Numerical results 

Two general steps are presented in this 

section. In the first step, the proposed 

nonlocal finite element model is validated 

in comparison with previously published 

results, and in the second step, the effect of 

nonlocal parameter, FG material strength, 

and different aspect ratios on the bending 

and buckling behavior of the FG nanobeam 

are investigated. 

In this study, an FG nanobeam is 

considered with 0.25  TPatE = , 1  TPabE = , 

and 0.3t b = = . For simplicity, the 

following dimensionless parameters are 

used for the nanobeam displacement and 

critical buckling load: 

4

2

100 t

cr

t

E I
w w

qL

L
N N

E I

=

=

 

(27) 

To confirm the accuracy of the proposed 

nonlocal finite element method, the present 

results are compared with those in the 

literature. Table 2 gives the maximum 

dimensionless displacement ( w ) for the FG 

nanobeam under uniform transverse load. 

A wide range of values of nonlocal 

parameter ( 0e a ), FG material strength ( p ), 

and aspect ratios ( L h ) are compared with 

the results of the Timoshenko beam theory 

(TBT) and sinusoidal beam theory (SBT).

 

 

 

 

Table 2: Non-dimensional transverse deflection ( w ) of the nanobeam under uniform load ( 32elN = ) 
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L h  p  

Nonlocal parameter, 
0e a  (nm) 

0 0.5 1 1.5 

TBT 

[13] 

SBT 

[13] 

Present 

(FE-

HSDT) 

TBT 

[13] 

SBT 

[13] 

Present 

(FE-

HSDT) 

TBT 

[13] 

SBT 

[13] 

Present 

(FE-

HSDT) 

TBT 

[13] 

SBT 

[13] 

Present 

(FE-

HSDT) 

 0 
5.3383 5.3381 

5.3382 5.4659 5.4659 5.4658 5.8487 5.8487 5.8486 6.4867 6.4867 6.4866 

 0.3 
3.2169 3.2178 

3.2196 3.2938 3.2951 3.2967 3.5245 3.5258 3.5275 3.9090 3.9104 3.9123 

10 1 
2.4194 2.4193 

2.4192 2.4772 2.4773 2.4772 2.6508 2.6509 2.6506 2.9401 2.9401 2.9399 

 3 
1.9249 1.9234 

1.9233 1.9710 1.9694 1.9693 2.1091 2.1074 2.1070 2.3393 2.3375 2.3373 

 10 
1.5799 1.5790 

1.5790 1.6176 1.6168 1.6168 1.7310 1.7301 1.7300 1.9190 1.9189 1.9189 

 0 5.2227 5.2228 5.2228 5.2366 5.2367 5.2367 5.2784 5.2785 5.2785 5.3480 5.3481 5.3481 

 0.3 3.1486 3.1475 3.1490 3.1570 3.1559 3.1574 3.1822 3.1811 3.1826 3.2241 3.2230 3.2247 

30 1 2.3732 2.3732 2.3730 2.3795 2.3795 2.3793 2.3985 2.3985 2.3983 2.4301 2.4302 2.4301 

 3 1.8894 1.8892 1.8889 1.8944 1.8943 1.8940 1.9095 1.9094 1.9090 1.9347 1.9346 1.9343 

 10 1.5489 1.5488 1.5488 1.5530 1.5529 1.5529 1.5654 1.5653 1.5653 1.5860 1.5860 1.5859 

 

Table 3: Non-dimensional critical buckling load ( N ) of the nanobeam ( 32elN = ) 

L h  p  

Nonlocal parameter, 0e a  (nm) 

0 0.5 1 1.5 

TBT 

[13] 

SBT 

[13] 

Present 

(FE-

HSDT) 

TBT 

[13] 

SBT 

[13] 

Present 

(FE-

HSDT) 

TBT 

[13] 

SBT 

[13] 

Present 

(FE-

HSDT) 

TBT 

[13] 

SBT 

[13] 

Present 

(FE-

HSDT) 

 0 
2.4056 2.4052 2.4057 2.3477 2.3473 2.3477 2.1895 2.1892 2.1896 1.9685 1.9682 1.9686 

 0.3 
3.9921 3.9906 3.9904 3.8959 3.8945 3.8931 3.6335 3.6322 3.6308 3.2667 3.2655 3.2643 

10 1 
5.3084 5.3086 5.3120 5.1805 5.1808 5.1820 4.8315 4.8317 4.8329 4.3437 4.3440 4.3450 

 3 
6.6720 6.6780 6.6784 6.5113 6.5172 6.5179 6.0727 6.0781 6.0787 5.4596 5.4645 5.4651 

 10 
8.1289 8.1338 8.1338 7.9332 7.9379 7.9380 7.3987 7.4031 7.4032 6.6518 6.6558 6.6559 

 0 
2.4603 2.4604 2.4603 2.4536 2.4537 2.4536 2.4336 2.4337 2.4337 2.4011 2.4011 2.4011 

 0.3 
4.0811 4.0826 4.0808 4.0699 4.0714 4.0702 4.0368 4.0383 4.0369 3.9828 3.9843 3.9829 

30 1 
5.4146 5.4147 5.4155 5.3998 5.3999 5.4017 5.3559 5.3560 5.3574 5.2843 5.2843 5.2858 

 3 
6.8011 6.8018 6.8023 6.7825 6.7832 6.7841 6.7273 6.7280 6.7290 6.6373 6.6380 6.6390 
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 10 
8.2962 8.2968 8.2971 8.2735 8.2741 8.2743 8.2062 8.2068 8.2070 8.0964 8.0970 8.0972 

 0 
2.4667 2.4668 2.4667 2.4661 2.4662 2.4661 2.4643 2.4643 2.4643 2.4613 2.4613 2.4613 

 0.3 
4.0915 4.0933 4.0924 4.0905 4.0923 4.0911 4.0874 4.0893 4.0879 4.0824 4.0842 4.0828 

100 1 
5.4270 5.4271 5.4294 5.4257 5.4257 5.4275 5.4217 5.4217 5.4231 5.4150 5.4150 5.4165 

 3 
6.8161 6.8162 6.8174 6.8144 6.8145 6.8157 6.8094 6.8095 6.8104 6.8010 6.8011 6.8020 

 10 
8.3157 8.3158 8.3160 8.3136 8.3137 8.3140 8.3075 8.3076 8.3077 8.2972 8.2973 8.2975 

 

 

The dimensionless critical buckling load of 

the sinusoidal nanobeam is presented in 

Table 3. These results are compared with 

the findings of high-quality scientific 

publications, which indicate the 

appropriate accuracy of the proposed 

nonlocal finite element method. The details 

in this table show that the buckling load 

decreases with an increase in the nonlocal 

parameter. However, an increase in the 

strength of the FG material increases the 

critical buckling load. In general, an 

increase in the strength of the FG material 

reduces the dimensionless displacement of 

the nanobeam and increases the critical 

buckling load. The reason for these 

changes is the increase in the stiffness of 

the FG nanobeam with an increase in the 

strength of the FG material. 

To show the effects of the nonlocal 

parameter on the FG nanobeam behavior, 

the displacement component and 

dimensionless critical buckling load are 

calculated using the nonlocal finite element 

method for different aspect ratios as shown 

in Figs. 4 and 5. These figures show the 

nonlinear behavior with respect to the 

nonlocal parameter. For the strength of the 

FG material, we set p=1. The effect of 

nonlocal parameter on the displacement  

 

 

 

 

and critical buckling load of the nanobeam 

is greater and more obvious, especially at 

smaller aspect ratios. 

The effects of the FG material strength on 

the displacement and critical buckling load 

of the FG nanobeam are illustrated in Figs. 

6 and 7 for 10L h =  and different values of 

nonlocal parameter. According to these 

results, with increasing material strength, 

the dimensionless displacement of the 

nanobeam decreases, while the critical 

buckling load increases. The reason for 

these changes is the increase in the 

stiffness of the FG nanobeam due to the 

increase in the FG material strength. 

 

 
Fig. 4 Effect of nonlocal parameter on 

dimensionless deflection ( 1p = )  
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Fig. 5 Effect of nonlocal parameter on 

dimensionless buckling load ( 1p = ) 

 

 
Fig. 6 Non-dimensional deflection of the nanobeam 

in terms of power law index 

 

 
Fig. 7 Non-dimensional buckling load of the 

nanobeam in terms of power law index 

5- Conclusion 

In the present study, the size-dependent 

bending and buckling behavior of an FG 

nanobeam was investigated using the finite 

element method and nonlocal elasticity 

theory. The sinusoidal shear deformation 

theory was used such that the transverse 

shear stress at the top and bottom surfaces 

of the nanobeam was negligible. The 

mechanical properties of the FG nanobeam 

vary as a power function in the thickness 

direction. The size effects on the behavior 

of the nanobeam were investigated by 

introducing a nonlocal parameter. The 

capability and reliability of the proposed 

finite element model were evaluated by 

comparing our findings with the results of 

the existing analytical methods. The results 

indicated that the proposed finite element 

model is shear-locking-free and accurate 

with appropriate convergence speed for 

thick and thin nanobeams. Furthermore, a 

parametric investigation was carried out to 

examine the effects of various parameters 

such as aspect ratio, dimensionless 

parameter, and FG material power law 

index. 

6- Nomenclature 

Nanobeam material property 
P  

FG material power law index p  

Stiffness coeficients ijC  

Young’s modulus (N/m2) E  

Axial displacement of nanobeam u  

Transverse displacement of nanobeam w  

Greek symbols  

Non-local parameter ( )
2

nm    

Rotation of the cross section 

perpendicular to the neutral axis  
  

Poisson’s ratio   

Element local coordinate    

Stress components ijS
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Strain components ij  

Subscripts  

Bottom surface of nanobeam b  

Top surface of nanobeam t  

Superscripts  

Index of nonlocal finite element i 
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