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Abstract– This research presents a hybrid algorithm designed to address the challenging Q-coverage 
problem in under-provisioned directional sensor networks (DSNs). In such networks, the number of available sensors is 
insufficient to meet all predefined coverage requirements, and different targets may need varying numbers of sensors for 
adequate monitoring—referred to as Q-coverage. The primary objective is to achieve balanced coverage across all 
targets despite resource constraints, ensuring that no single target is disproportionately neglected. The proposed solution 
combines a Genetic Algorithm (GA) with Tabu Search (TS) to form an efficient hybrid optimization method. The GA 
first explores the solution space to identify promising regions, after which TS acts as a local search optimizer to refine 
the solutions and avoid local optima. This synergy leverages GA’s global search capabilities and TS’s ability to escape 
local traps, enhancing both convergence speed and solution quality. A novel chromosome encoding scheme is 
introduced, where each chromosome represents a coverage set in the form of a two-dimensional matrix. Rows 
correspond to coverage levels, and columns represent targets. Genes store sensor-sector identifiers, enabling the model 
to accommodate diverse and non-uniform coverage requirements per target. The fitness of chromosomes is evaluated 
using the Q-Balancing Index (QBI), a metric that quantifies how evenly coverage is distributed relative to each target’s 
needs. Extensive experiments are conducted in a simulated 500m × 500m environment with randomly deployed sensors 
and targets. Performance is compared against a pure genetic algorithm using several key metrics: Distance Index 
(DI), Q-Balancing Index (QBI), and Coverage Quality (CQ). Results demonstrate that the hybrid GA-TS algorithm 
consistently outperforms the baseline GA, particularly in scenarios with reduced sensor counts or increased target 
numbers. It maintains higher QBI and DI values, indicating more balanced and effective coverage distribution. In 
conclusion, this hybrid approach offers a robust and scalable solution for Q-coverage optimization in resource-limited 
directional sensor networks. It effectively balances coverage across heterogeneous targets, making it suitable for real-
world applications such as surveillance, environmental monitoring, and secure facility management where sensor 
deployment is constrained and coverage priorities vary. 
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1. Introduction 
 

Wireless sensor networks (WSNs) consist of a series of 
sensor nodes specifically designed to collect, process, and 
transmit information from their surrounding environment. 
These networks are used in various fields, including 
environmental monitoring, security, agriculture, industry, 
and the military. In directional sensor networks, each sensor 
node has a limited field of view and can only gather 
information from a specific direction. This limitation 
presents significant challenges in the design and 
management of these networks. A critical concept in 
designing such networks is coverage, which plays an 
essential role in their overall performance and efficiency 
[1].Coverage in directional sensor networks can be 
categorized into three main types: Target Coverage, Area 

Coverage, and Barrier Coverage. Target Coverage focuses 
on covering specific targets within the environment. The 
primary goal is to achieve complete coverage of these 
targets using the fewest number of sensors. This type of 
coverage is commonly applied in security and the 
monitoring of sensitive locations, such as gates, military 
bases, and critical infrastructure. Area Coverage aims to 
ensure that an entire region is adequately covered by 
distributing sensors so that no point within the area remains 
uncovered. This type of coverage is utilized in 
environmental monitoring, smart agriculture, and urban 
surveillance. Barrier Coverage seeks to establish a sensory 
barrier that prevents objects or individuals from crossing a 
designated boundary. This coverage is particularly relevant 
in applications like border security, safeguarding critical 
infrastructure, managing vital areas, and creating sensory 
barriers around essential locations such as power plants, 
chemical storage facilities, or weapon depots [2].  

Despite their wide range of applications, Wireless 
Sensor Networks (WSNs) have significant limitations. The 
sensor nodes are small and powered by tiny batteries, which 
means the lifespan of a sensor network is heavily dependent 
on how long these nodes last. A major challenge is to 
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extend the network's overall lifespan. WSNs are often 
deployed in hard-to-reach areas, such as hazardous 
chemical sites or hostile military zones. In some scenarios, 
like forest monitoring, the operational environment can be 
vast, making it difficult to search for, recharge, or replace 
batteries. There are several methods for deploying sensors 
in an environment, with two common approaches being 
predetermined placement and random deployment. In 
predetermined placement, the positions of the sensors are 
decided in advance. In random deployment, a relatively 
large number of sensors are scattered throughout the 
environment without predetermined positions. This 
randomness can lead to some sensors being placed in 
unfavorable locations, such as in water or behind obstacles, 
which renders them ineffective. Additional challenges 
include potential sensor damage, consumption by animals, 
and other factors. Because some targets may remain 
uncovered due to these issues, it is essential to deploy extra 
sensors to ensure coverage, depending on the specific type 
of network. Coverage can be divided into two categories: 
simple coverage and multi-coverage, based on the number 
of sensors required to cover each target. In simple coverage, 
each target requires coverage from at least one sensor. A 
failure or lack of coverage for some targets does not 
significantly impact the overall network performance. In 
contrast, multi-coverage requires that each target be 
covered by a greater number of sensors. When all targets 
must have coverage from a fixed number of sensors (like k), 
this is referred to as k-coverage. Since not all targets hold 
equal importance, and covering them all with the same 
number of sensors could increase network overhead, 
another coverage type is defined where the coverage 
requirements vary for different targets; this is known as Q-
coverage [4]. 

 
2. Related Works 

 
Directional sensor networks play a significant role in 

improving monitoring and data management with their 
unique capabilities. Applying these networks helps resource 
optimization, security enhancement, and service quality 
improvement in various domains. Extensive research has 
been conducted on simple and multi-coverage. In simple 
coverage, researchers have proposed several methods to 
maximize target coverage using the minimum number of 
active sensors. One of the earliest studies [6] offered a 
model for "Maximum Coverage with Minimum Sensors". 
This model was formulated using an Integer Linear 
Programming (ILP), and two greedy algorithms were 
developed to solve the problem: A centralized and a 
distributed algorithm. These algorithms were very 
optimized in terms of computational efficiency. Some 
research has been conducted to extend the network's 
lifespan in simple coverage. In research [7,8], some 
methods are proposed, including sensor scheduling and 
sensors' range adjustment. In research [7], two greedy 
algorithms were designed to make coverage sets that 

provide coverage in various steps. This study specifically 
emphasizes critical targets, which are those targets covered 
by consuming less energy. In [8], the problem of 
"Maximum Network Lifetime with Adjustable Ranges" 
(MNLAR) was investigated, and sensors were selected in 
terms of direction and range to create a coverage set. 
Research has also been conducted, focusing on multi-
objective optimization, and we can imply research [2]. This 
study [2] uses an algorithm based on NSGA-II. Focusing on 
multi-objective optimization, this algorithm tries to 
simultaneously improve parameters such as the number of 
sensors and coverage quality. 

In k-coverage, each target must be covered by a 
minimum of k sensors. Research has proposed methods to 
optimize k-coverage and extend network lifetime. Research 
[9] proposed a heuristic method focusing on reducing 
energy consumption. By preventing activation of 
unnecessary sensors, battery life and network lifespan will 
be increased. Study [10] investigated the k-coverage 
problem and two algorithms based on automated learning 
with the relevant rules. These rules prevented the selection 
of multiple directions for each sensor in a coverage set. 
Where the number of sensors is insufficient for a complete 
coverage of targets, it is called an under-provisioned 
environment, and some methods have been proposed for a 
balanced network coverage. In research [11], in addition to 
extending integer linear programming (ILP) for the simple 
coverage, a centralized greedy algorithm was designed to 
create balanced coverage in the network. Study [12] 
proposed an algorithm based on automated learning for 
selecting the minimum number of sensors for each 
coverage set and maintaining balanced coverage amongst 
targets. In sensor networks, heuristic algorithms are used to 
achieve an optimal method. In study [13], two genetics-
based algorithms were designed to be applicable in over-
provisioned and under-provisioned environments. These 
algorithms aimed to achieve balanced coverage in line with 
the Balance Index (BI). Q-coverage refers to a state where 
the coverage requirements of targets vary. Research in this 
area is highly complex because different targets may 
require different numbers of sensors. Study [14] suggests 
that the Q-coverage problem is of NP-complete type. Linear 
programming techniques were used to solve this problem. 
In research [15], a greedy algorithm was proposed to create 
non-overlapping coverage sets in which sensors with 
batteries of longer lifespan are of higher priority. In study 
[16], a genetic-based algorithm was designed to extend 
network lifetime and optimize resource consumption. In 
research [17], using IQP formulae and balanced index (BI), 
we attempted to provide a balanced coverage in the 
networks for targets. Additionally, greedy algorithms were 
designed to solve large-scale problems. 

In study [4], the authors proposed two genetics-based 
algorithms to solve the Q-coverage problem in directional 
sensor networks (DSNs). This research has one important 
goal: Proposing approaches for covering targets under 
various conditions and optimizing network lifetime. The 
most significant works in [4] include examining target 
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coverage in the over-provisioned and under-provisioned 
environments. Two target-based algorithms were developed. 
The first algorithm aims to cover all targets with the 
minimum number of active sensors, and the second 
algorithm is designed for under-provisioned environments 
to provide balanced coverage for different targets based on 
their coverage requirements. The authors developed a 
model for the chromosome that manages the varying 
coverage requirements of targets. This model allows the 
genetic algorithm to adapt to changes in coverage 
requirements.  

The proposed algorithms are compared to algorithms of 
previous research using five indices. These five indices 
include Coverage Balanced Index (QBI), Coverage Quality 
(CQ), Distance Index (DI), Power Consumption (PC), and 
Number of Active Sensors (AS). Assessment is carried out 
using various criteria under various conditions (like change 
in the number of sensors, number of targets, and scope of 
sensor coverage).  

 
3. Network Model and Problem Expression 

Immersion of sensors in water, natural obstacles 
between sensors and targets, or early battery depletion are 
possible and may result in some targets not being properly 
covered. In such cases, each target must be covered with 
multiple sensors. Not all targets are equally important. For 
example, in a museum or gallery, not all objects may be 
important, and some may require coverage by more sensors. 
Monitoring all targets with a fixed number of sensors is not 
a wise approach as it increases network overhead and 
additional costs, which render it not cost-effective. 
Therefore, different targets should be covered by a varying 
number of sensors. To better understand the network model 
used in this research, Table 1 introduces the parameters 
used for the proposed algorithms. 

 
 

Table 1: Parameters Used for the Proposed Algorithm 
Definition  Symbol 
Number of sensors n 
Number of Targets  m 
Number of Sectors in Each Sensor w 
Sensor No. i in Network 1≤i≤n si 
Target No. k in Network 1≤k≤m tk 
Sensors Set {S1, S2, …, Sn} S 
Targets Set {t1, t2, …, tm} T 
Sector j of Sensor i di,j 
Coverage Required by Target t kt 
Coverage Obtained for Target t ρk 
A Set of All Sectors of Sensor 
D= {di,j|i= 1, …, n, j = 1, …, w} 

D 

 
 
3.1 Network Model 
A directional sensor network consists of m targets and n 

directional sensors used for sensor coverage. In this 
environment, both the targets and sensors are stationary and 
do not move. All targets are positioned at known locations 
on a two-dimensional plane, while the directional sensors 

are randomly distributed near the targets. 
 
3.2 Problem Statement 
Here is an official definition of the problem. 

Assumptions for the problem statement are as follows: 
 A series of targets that 
need to be covered by the network; T= {t1, t2 … tm} 
 Sensors with several 
sectors, and each could be active in a sector; S= {s1, 
s2 … sm} 
 K= {k1, k2 … km}, 
that is a set of numbers, where ki is the required cover 
for ti in the network; 

 
Problem: How can we find a coverage set that achieves 

non-uniform balanced coverage of targets with varying 
coverage requirements in an under-provisioned 
environment, in order to maximize balanced coverage 
within the network? 

 
Proposed Algorithm 
The proposed algorithm for solving the problem 

combines genetic algorithms with Tabu search, creating a 
hybrid approach. Traditional genetic algorithms are often 
not suitable for precise searches in complex hybrid spaces. 
However, hybrid algorithms, when combined with other 
techniques, enhance the efficiency of the search process. In 
this hybrid approach, the genetic algorithm first identifies 
the optimized region, and then a local optimizer, such as 
Tabu search, is employed to find the optimal solution. An 
HA-based algorithm has been developed to leverage the 
benefits of this combined strategy. By integrating genetic 
algorithms and Tabu search, this algorithm offers improved 
search capabilities [3]. 

 
3.3 An Overview of Genetic Algorithms 
In evolutionary algorithm research, the genetic 

algorithm is the most widely used method. The primary 
distinction between evolutionary algorithms and other types 
is that evolutionary algorithms are population-based. 
Typically, these algorithms start by creating and evolving 
an initial population. They utilize a search method to find 
near-optimal solutions within a reasonable timeframe to 
optimize problems. The genetic algorithm begins with a 
primary population of potential solutions, each represented 
as a chromosome. All possible solutions must be encoded 
using a specific coding system. Next, a set of reproduction 
operators needs to be defined, as these operators directly 
affect the chromosomes. Following this, the chromosomes 
undergo mutation and crossover operations. It is crucial to 
design both the coding structure and the operators carefully, 
as this design significantly impacts the performance of the 
genetic algorithm [18]. The selection process involves 
competition among individuals in the population and is 
based on a competency function. Each chromosome has a 
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value related to the quality of the solution it represents. The 
objective of the genetic algorithm is to maximize the value 
of this competency function. If the goal is to minimize a 
target function, it can be adjusted to reflect a 
straightforward minimization process. Any cost function 
can be easily transformed into a competency function. Once 
the reproduction steps and competency function are defined, 
a genetic algorithm can be developed based on this 
fundamental structure [19]. 

 
3.4 Proposed Genetic-Based Algorithm 
Chromosome Structure 
The structure of chromosomes in a genetic algorithm is 

essential, and the first step is to figure out how to model 
and solve this structure. Each gene in the chromosome 
represents the sector number of a sensor, and each 
chromosome symbolizes a cover set. A two-dimensional 
matrix is employed to represent a chromosome; the number 
of rows indicates the maximum coverage required for the 
targets, while the number of columns signifies the number 
of targets within the network. The coverage requirement for 
each target is displayed by the number of non-empty rows 
beneath that target in the matrix. Some genes in the matrix 
may be empty since the coverage requirements for each 
target can differ. The values in a column correspond to the 
sensor numbers that cover the target in a specific sector. 
Figure 1 illustrates a chromosome with four targets to 
enhance understanding of the proposed model. 

 
Tar

get 
Number 

t1 t2 t3 t4 

 
Gen

es 

S2,3 S1,1 S2,1 S8,6 
S7,3 S2,3 S5,3 S1,3 
S9,2   S3,3 
S11,3    

 
Fig. 1. An example chromosome in the network  

 
A set of chromosomes is produced to make the primary 

population randomly.  
 
3.4.1 Chromosome Evaluation Function 
To identify the best chromosomes based on the 

problem's conditions, we utilize an evaluation function. By 
appropriately setting the function's parameters, we can 
obtain an optimal or near-optimal solution within the search 
space. The evaluation function does not necessarily aim to 
fulfill all coverage requirements; instead, coverage is 
assessed based on the prioritization of targets or through 
balanced coverage across targets. This function employs a 
parameter to evaluate the chromosomes and determine their 
relative superiority. Equation 1-4 illustrates the evaluation 
function used within the network, wherekt is the total 
number of sensors required to cover the target, t and m are 
the number of targets, and Øt is the total number of sensors 
currently covering target t. 

 

 
(1) 

3.4.2 Selection Operator 
To enhance selection and reproduction, this operator 

identifies suitable chromosomes from the population, 
allowing them to be reproduced more frequently than others. 
Various selection methods exist in genetic algorithms (GAs), 
including roulette wheel selection, rank selection, and 
tournament selection [20]. In this algorithm, we use roulette 
wheel selection, which means chromosomes that perform 
better have a higher likelihood of being chosen. 

3.4.3 Crossover Operator 
Different methods for crossover performance have been 

proposed, including single-point, two-point, and uniform 
crossover. In these methods, the offspring inherits some 
genes from one parent and the remaining genes from the 
other parent. The crossover operator is utilized to create 
new offspring by combining genetic information from both 
parents. This approach generates new solutions within the 
population [21]. First, two parents must be selected. 

 
 

Second Parent First Parent 
 

Fig. 2. Single-Point Operator Performance 
 

Next, a point is randomly selected, and two parent 
chromosomes transfer their genetic information to produce 
two offspring. After this phase, some offspring might have 
sensors in multiple sectors, which invalidates their 
chromosomes and requires correction. 

 
 

  
Second Parent First Parent  

 
Fig.3. Single-point crossover operator and second offering is correct 

 
3.4.4 Mutation Operator 
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The mutation operation helps a genetic algorithm (GA) 
avoid getting stuck in local optima. A local optimum occurs 
when the algorithm searches for solutions within a limited 
area, without exploring the broader search space. The 
mutation operator introduces significant changes to the 
chromosome by randomly selecting a gene and altering its 
value [5].  

 
3.4.5 Stopping Condition 
One of the stopping conditions for the genetic algorithm 

is reaching a predetermined number of iterations. The 
stopping condition for the algorithm is the 
number of iterations specified in advance. 

 
3.5 An Overview of Tabu Search  
 
Tabu Search (TS) is an optimization algorithm first 

introduced by Glover in 1986 [22]. It employs a list of 
movements, known as Tabu points, to prevent revisiting 
these movements in subsequent searches. This approach 
enables the algorithm to move beyond local optimization 
and work towards achieving global optimization. The two 
main components of the Tabu Search algorithm are the 
Tabu list and the aspiration criterion. The Tabu list tracks 
recent moves, thus avoiding their selection for as long as 
possible. The duration a move remains in the Tabu list is 
defined by a parameter called Tabu Tenure. If a move in the 
Tabu list could potentially lead to a better solution, it may 
still be selected based on the aspiration criterion, despite 
being in the list. Once a new move is chosen and added to 
the Tabu list, some previously listed moves may be 
removed [22]. In the proposed algorithm, a new function is 
introduced to enhance the quality of chromosomes, which 
can be applied to all chromosomes in the current population. 
Since evaluating all chromosomes is computationally 
expensive, extensive use across all potential solutions is 
impractical. This method effectively adjusts the 
convergence of Genetic Algorithms (GA), as Tabu Search 
typically enhances chromosomes. The steps for executing 
Tabu Search are as follows: 

1. Begin by creating an initial solution based on the 
defined problem conditions. Evaluate this solution to 
determine if it is the best option available.  

2. Prepare a list of allowed operations that are based on 
adjacent production methods.  

3. Execute both allowed and non-Tabu operations to 
determine the solution according to the target function.  

4. Select the best solution from those obtained in the 
previous step.  

5. Update the Tabu list, which in the fast Tabu search 
algorithm involves adding the selected operation to the 
Tabu list and removing one or more operations from it. In 
this phase, also update the best solution found. 6. If the 
stopping criterion has not been met, return to step 4. 

 

4. Experiments 
To create a network scenario, various targets were 

randomly distributed within a 500m x 500m area. Several 
sensors, each with a sensing radius (r) and a sensing angle 
(π/�2), were employed to monitor these targets. The 
coverage requirements for each target were established 
beforehand. To ensure more reliable results, each scenario 
was repeated ten times, and the average outcome was 
recorded as the algorithm's performance. In the experiments, 
the population size was set to 50, with crossover and 
mutation rates of 0.2 and 0.05, respectively. To accurately 
assess the algorithm's performance, a comparison was made 
with a recently proposed greedy algorithm (referenced as 
[4]). Performance evaluation utilized indices introduced in 
[4], which include the Distance Index (DI), Q-Balancing 
Index (QBI), and Active Sensor (AS).  

The Distance Index (DI) metric is defined in [4]. In 
equation 2, ݇௧ represents the required coverage for target t, 
while Øt indicates the coverage achieved for that target. A 
higher DI value signifies better network coverage, with a 
maximum possible value of 1. 

 
                       (2) 

The QBI metric serves as an assessment function for 
chromosomes. A higher QBI value indicates better-balanced 
coverage. According to equation 3, the maximum value of 
this metric is 1, which is achieved when the required 
coverage is provided for all targets. 

 
                                (3) 

4.1 Coverage Quality (CQ) 
The CQ metric proposed in reference [27] is utilized in 

this research. An increase in the distance between targets 
and sensors leads to a decrease in the quality of coverage. 
Additionally, the distance between targets and sensors plays 
a significant role in determining the coverage quality within 
the environment. In a network, both the number of sensors 
and their distance from the targets influence the CQ value. 
This parameter, represented as cq, is calculated as follows: 

 
                                 (4) 

4.2 First Experiment 
Impact of Reducing the Number of Sensors on QBI 
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When there are enough sensors in a network, all targets 
can meet their coverage requirements, which results in a 
QBI value of 1. In this experiment, we decreased the 
number of sensors from 150 to 50 to observe the impact on 
QBI. As the number of sensors decreases, it becomes more 
challenging to meet the coverage requirements for all 
targets, necessitating a balanced level of coverage based on 
the available sensors. As illustrated in Figure 4, the 
reduction in the number of sensors leads to a gradual 
decline in the QBI value. In both algorithms being 
compared, the proposed algorithm consistently achieves a 
higher QBI value than the GA algorithm, indicating that it 
effectively maintains a more balanced level of coverage. 

 
Fig. 4. Effect of increasing the number of sensors on the Q-coverage 

balancing index 
 
4.3 Second Experiment 
In this experiment, we examine how increasing the 

number of targets affects the DI (coverage performance 
index). As the number of targets rises, the coverage 
requirements also increase. Consequently, the distance 
between the required coverage vector and the achieved 
coverage vector grows. As illustrated in Figure 5, with more 
targets, the curve deviates further from the normal value 
(DI=1). A comparison of the proposed GA-TS algorithm 
with the standard GA shows that the GA-TS curve remains 
closer to 1, indicating better performance in this aspect. 

 
Fig. 5. Effect of increasing the number of targets on the Distance 

Index 
 
4.4 Third Experiment 

Impact of Increasing the Sensing Range on CQ 
 
The third experiment aimed to evaluate the effect of 

changing the sensing range on the coverage quality (CQ). 
In this scenario, both the sensors and the targets are situated 
in a fixed environment. Increasing the sensing range of the 
sensors does not alter the distance between the targets and 
the sensors. However, a larger sensing range allows a single 
sensor to cover more targets. As demonstrated in Equation 
(5) and illustrated in Figure 6, the CQ value increases as the 
sensing range is increased. 

 
Fig. 6. Effect of increasing the sensing range on the coverage quality 

 
5. Conclusion  

Coverage in sensor networks is a key research area for 
many scholars. When the number of sensors in a network 
decreases, maintaining sufficient coverage becomes a 
significant challenge, especially considering the varying 
coverage requirements of different sensors. In such 
situations, one effective solution is to develop a method that 
balances the coverage needs of various targets, ensuring 
that these needs can be met with the available sensors. This 
research presents a method for achieving balanced coverage 
in the network, taking into account that each target may 
have different coverage requirements. The approach 
combines a genetic algorithm with a tabu search to optimize 
coverage. 
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