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A Hybrid Algorithm for Q-coverage Problem in Under
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Babak Mahmoudi', Homayun Motameni’’, Hosein Mohamadi’

Abstract- This research presents a hybrid algorithm designed to address the challenging Q-coverage
problem in under-provisioned directional sensor networks (DSNs). In such networks, the number of available sensors is
insufficient to meet all predefined coverage requirements, and different targets may need varying numbers of sensors for
adequate monitoring—referred to as Q-coverage. The primary objective is to achieve balanced coverage across all
targets despite resource constraints, ensuring that no single target is disproportionately neglected. The proposed solution
combines a Genetic Algorithm (GA) with Tabu Search (TS) to form an efficient hybrid optimization method. The GA
first explores the solution space to identify promising regions, after which TS acts as a local search optimizer to refine
the solutions and avoid local optima. This synergy leverages GA’s global search capabilities and TS’s ability to escape
local traps, enhancing both convergence speed and solution quality. A novel chromosome encoding scheme is
introduced, where each chromosome represents a coverage set in the form of a two-dimensional matrix. Rows
correspond to coverage levels, and columns represent targets. Genes store sensor-sector identifiers, enabling the model
to accommodate diverse and non-uniform coverage requirements per target. The fitness of chromosomes is evaluated
using the Q-Balancing Index (QBI), a metric that quantifies how evenly coverage is distributed relative to each target’s
needs. Extensive experiments are conducted in a simulated 500m x 500m environment with randomly deployed sensors
and targets. Performance is compared against a pure genetic algorithm using several key metrics: Distance Index
(DI), Q-Balancing Index (QBI), and Coverage Quality (CQ). Results demonstrate that the hybrid GA-TS algorithm
consistently outperforms the baseline GA, particularly in scenarios with reduced sensor counts or increased target
numbers. It maintains higher QBI and DI values, indicating more balanced and effective coverage distribution. In
conclusion, this hybrid approach offers a robust and scalable solution for Q-coverage optimization in resource-limited
directional sensor networks. It effectively balances coverage across heterogeneous targets, making it suitable for real-
world applications such as surveillance, environmental monitoring, and secure facility management where sensor

deployment is constrained and coverage priorities vary.
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1. Introduction

Wireless sensor networks (WSNs) consist of a series of
sensor nodes specifically designed to collect, process, and
transmit information from their surrounding environment.
These networks are used in various fields, including
environmental monitoring, security, agriculture, industry,
and the military. In directional sensor networks, each sensor
node has a limited field of view and can only gather
information from a specific direction. This limitation
presents significant challenges in the design and
management of these networks. A critical concept in
designing such networks is coverage, which plays an
essential role in their overall performance and efficiency
[1].Coverage in directional sensor networks can be
categorized into three main types: Target Coverage, Area
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Coverage, and Barrier Coverage. Target Coverage focuses
on covering specific targets within the environment. The
primary goal is to achieve complete coverage of these
targets using the fewest number of sensors. This type of
coverage is commonly applied in security and the
monitoring of sensitive locations, such as gates, military
bases, and critical infrastructure. Area Coverage aims to
ensure that an entire region is adequately covered by
distributing sensors so that no point within the area remains
uncovered. This type of coverage is utilized in
environmental monitoring, smart agriculture, and urban
surveillance. Barrier Coverage seeks to establish a sensory
barrier that prevents objects or individuals from crossing a
designated boundary. This coverage is particularly relevant
in applications like border security, safeguarding critical
infrastructure, managing vital areas, and creating sensory
barriers around essential locations such as power plants,
chemical storage facilities, or weapon depots [2].

Despite their wide range of applications, Wireless
Sensor Networks (WSNs) have significant limitations. The
sensor nodes are small and powered by tiny batteries, which
means the lifespan of a sensor network is heavily dependent
on how long these nodes last. A major challenge is to
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extend the network's overall lifespan. WSNs are often
deployed in hard-to-reach areas, such as hazardous
chemical sites or hostile military zones. In some scenarios,
like forest monitoring, the operational environment can be
vast, making it difficult to search for, recharge, or replace
batteries. There are several methods for deploying sensors
in an environment, with two common approaches being
predetermined placement and random deployment. In
predetermined placement, the positions of the sensors are
decided in advance. In random deployment, a relatively
large number of sensors are scattered throughout the
environment without predetermined positions. This
randomness can lead to some sensors being placed in
unfavorable locations, such as in water or behind obstacles,
which renders them ineffective. Additional challenges
include potential sensor damage, consumption by animals,
and other factors. Because some targets may remain
uncovered due to these issues, it is essential to deploy extra
sensors to ensure coverage, depending on the specific type
of network. Coverage can be divided into two categories:
simple coverage and multi-coverage, based on the number
of sensors required to cover each target. In simple coverage,
each target requires coverage from at least one sensor. A
failure or lack of coverage for some targets does not
significantly impact the overall network performance. In
contrast, multi-coverage requires that each target be
covered by a greater number of sensors. When all targets
must have coverage from a fixed number of sensors (like k),
this is referred to as k-coverage. Since not all targets hold
equal importance, and covering them all with the same
number of sensors could increase network overhead,
another coverage type is defined where the coverage
requirements vary for different targets; this is known as Q-
coverage [4].

2. Related Works

Directional sensor networks play a significant role in
improving monitoring and data management with their
unique capabilities. Applying these networks helps resource
optimization, security enhancement, and service quality
improvement in various domains. Extensive research has
been conducted on simple and multi-coverage. In simple
coverage, researchers have proposed several methods to
maximize target coverage using the minimum number of
active sensors. One of the earliest studies [6] offered a
model for "Maximum Coverage with Minimum Sensors".
This model was formulated using an Integer Linear
Programming (ILP), and two greedy algorithms were
developed to solve the problem: A centralized and a
distributed algorithm. These algorithms were very
optimized in terms of computational efficiency. Some
research has been conducted to extend the network's
lifespan in simple coverage. In research [7,8], some
methods are proposed, including sensor scheduling and
sensors' range adjustment. In research [7], two greedy
algorithms were designed to make coverage sets that

provide coverage in various steps. This study specifically
emphasizes critical targets, which are those targets covered
by consuming less energy. In [8], the problem of
"Maximum Network Lifetime with Adjustable Ranges"
(MNLAR) was investigated, and sensors were selected in
terms of direction and range to create a coverage set.
Research has also been conducted, focusing on multi-
objective optimization, and we can imply research [2]. This
study [2] uses an algorithm based on NSGA-IIL. Focusing on
multi-objective  optimization, this algorithm tries to
simultaneously improve parameters such as the number of
sensors and coverage quality.

In k-coverage, each target must be covered by a
minimum of k sensors. Research has proposed methods to
optimize k-coverage and extend network lifetime. Research
[9] proposed a heuristic method focusing on reducing
energy consumption. By preventing activation of
unnecessary sensors, battery life and network lifespan will
be increased. Study [10] investigated the k-coverage
problem and two algorithms based on automated learning
with the relevant rules. These rules prevented the selection
of multiple directions for each sensor in a coverage set.
Where the number of sensors is insufficient for a complete
coverage of targets, it is called an under-provisioned
environment, and some methods have been proposed for a
balanced network coverage. In research [11], in addition to
extending integer linear programming (ILP) for the simple
coverage, a centralized greedy algorithm was designed to
create balanced coverage in the network. Study [12]
proposed an algorithm based on automated learning for
selecting the minimum number of sensors for each
coverage set and maintaining balanced coverage amongst
targets. In sensor networks, heuristic algorithms are used to
achieve an optimal method. In study [13], two genetics-
based algorithms were designed to be applicable in over-
provisioned and under-provisioned environments. These
algorithms aimed to achieve balanced coverage in line with
the Balance Index (BI). Q-coverage refers to a state where
the coverage requirements of targets vary. Research in this
area is highly complex because different targets may
require different numbers of sensors. Study [14] suggests
that the Q-coverage problem is of NP-complete type. Linear
programming techniques were used to solve this problem.
In research [15], a greedy algorithm was proposed to create
non-overlapping coverage sets in which sensors with
batteries of longer lifespan are of higher priority. In study
[16], a genetic-based algorithm was designed to extend
network lifetime and optimize resource consumption. In
research [17], using IQP formulae and balanced index (BI),
we attempted to provide a balanced coverage in the
networks for targets. Additionally, greedy algorithms were
designed to solve large-scale problems.

In study [4], the authors proposed two genetics-based
algorithms to solve the Q-coverage problem in directional
sensor networks (DSNs). This research has one important
goal: Proposing approaches for covering targets under
various conditions and optimizing network lifetime. The
most significant works in [4] include examining target
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coverage in the over-provisioned and under-provisioned

environments. Two target-based algorithms were developed.

The first algorithm aims to cover all targets with the
minimum number of active sensors, and the second
algorithm is designed for under-provisioned environments
to provide balanced coverage for different targets based on
their coverage requirements. The authors developed a
model for the chromosome that manages the varying
coverage requirements of targets. This model allows the
genetic algorithm to adapt to changes in coverage
requirements.

The proposed algorithms are compared to algorithms of
previous research using five indices. These five indices
include Coverage Balanced Index (QBI), Coverage Quality
(CQ), Distance Index (DI), Power Consumption (PC), and
Number of Active Sensors (AS). Assessment is carried out
using various criteria under various conditions (like change
in the number of sensors, number of targets, and scope of
Sensor coverage).

3. Network Model and Problem Expression

Immersion of sensors in water, natural obstacles
between sensors and targets, or early battery depletion are
possible and may result in some targets not being properly
covered. In such cases, each target must be covered with
multiple sensors. Not all targets are equally important. For
example, in a museum or gallery, not all objects may be
important, and some may require coverage by more sensors.
Monitoring all targets with a fixed number of sensors is not
a wise approach as it increases network overhead and
additional costs, which render it not cost-effective.
Therefore, different targets should be covered by a varying
number of sensors. To better understand the network model
used in this research, Table 1 introduces the parameters
used for the proposed algorithms.

Table 1: Parameters Used for the Proposed Algorithm

Definition Symbol
Number of sensors n
Number of Targets m
Number of Sectors in Each Sensor w
Sensor No. 7 in Network 1<i<n si
Target No. k in Network 1<i<m tk
Sensors Set {Si, Sy, ..., Su} S
Targets Set {ti, t, ..., tm} T
Sector j of Sensor i dij
Coverage Required by Target ¢ ki
Coverage Obtained for Target ¢ Pic
A Set of All Sectors of Sensor D
D= {dijli=1,...,nj=1,..., w}

3.1 Network Model

A directional sensor network consists of m targets and n
directional sensors used for sensor coverage. In this
environment, both the targets and sensors are stationary and
do not move. All targets are positioned at known locations
on a two-dimensional plane, while the directional sensors

are randomly distributed near the targets.

3.2 Problem Statement
Here is an official definition of the problem.
Assumptions for the problem statement are as follows:

. A series of targets that
need to be covered by the network; T= {t1, t2 ... tm}
. Sensors with several

sectors, and each could be active in a sector; S= {sl1,
s2 ... sm}

. K= {k1, k2 ... km},
that is a set of numbers, where ki is the required cover
for ti in the network;

Problem: How can we find a coverage set that achieves
non-uniform balanced coverage of targets with varying
coverage requirements in an  under-provisioned
environment, in order to maximize balanced coverage
within the network?

Proposed Algorithm

The proposed algorithm for solving the problem
combines genetic algorithms with Tabu search, creating a
hybrid approach. Traditional genetic algorithms are often
not suitable for precise searches in complex hybrid spaces.
However, hybrid algorithms, when combined with other
techniques, enhance the efficiency of the search process. In
this hybrid approach, the genetic algorithm first identifies
the optimized region, and then a local optimizer, such as
Tabu search, is employed to find the optimal solution. An
HA-based algorithm has been developed to leverage the
benefits of this combined strategy. By integrating genetic
algorithms and Tabu search, this algorithm offers improved
search capabilities [3].

3.3 An Overview of Genetic Algorithms

In evolutionary algorithm research, the genetic
algorithm is the most widely used method. The primary
distinction between evolutionary algorithms and other types
is that evolutionary algorithms are population-based.
Typically, these algorithms start by creating and evolving
an initial population. They utilize a search method to find
near-optimal solutions within a reasonable timeframe to
optimize problems. The genetic algorithm begins with a
primary population of potential solutions, each represented
as a chromosome. All possible solutions must be encoded
using a specific coding system. Next, a set of reproduction
operators needs to be defined, as these operators directly
affect the chromosomes. Following this, the chromosomes
undergo mutation and crossover operations. It is crucial to
design both the coding structure and the operators carefully,
as this design significantly impacts the performance of the
genetic algorithm [18]. The selection process involves
competition among individuals in the population and is
based on a competency function. Each chromosome has a
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value related to the quality of the solution it represents. The
objective of the genetic algorithm is to maximize the value
of this competency function. If the goal is to minimize a
target function, it can be adjusted to reflect a
straightforward minimization process. Any cost function
can be easily transformed into a competency function. Once
the reproduction steps and competency function are defined,
a genetic algorithm can be developed based on this
fundamental structure [19].

3.4 Proposed Genetic-Based Algorithm

Chromosome Structure

The structure of chromosomes in a genetic algorithm is
essential, and the first step is to figure out how to model
and solve this structure. Each gene in the chromosome
represents the sector number of a sensor, and each
chromosome symbolizes a cover set. A two-dimensional
matrix is employed to represent a chromosome; the number
of rows indicates the maximum coverage required for the
targets, while the number of columns signifies the number
of targets within the network. The coverage requirement for
each target is displayed by the number of non-empty rows
beneath that target in the matrix. Some genes in the matrix
may be empty since the coverage requirements for each
target can differ. The values in a column correspond to the
sensor numbers that cover the target in a specific sector.
Figure 1 illustrates a chromosome with four targets to
enhance understanding of the proposed model.

Tar t1 t2 t3 t4
get
Number
Sy Sia Sau S
Gen S7s Sas Ss3 Sis
es Soa Sis
Siis

Fig. 1. An example chromosome in the network

A set of chromosomes is produced to make the primary
population randomly.

3.4.1 Chromosome Evaluation Function

To identify the best chromosomes based on the
problem's conditions, we utilize an evaluation function. By
appropriately setting the function's parameters, we can
obtain an optimal or near-optimal solution within the search
space. The evaluation function does not necessarily aim to
fulfill all coverage requirements; instead, coverage is
assessed based on the prioritization of targets or through
balanced coverage across targets. This function employs a
parameter to evaluate the chromosomes and determine their
relative superiority. Equation 1-4 illustrates the evaluation
function used within the network, wherekt is the total
number of sensors required to cover the target, t and m are
the number of targets, and Ot is the total number of sensors
currently covering target t.
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3.4.2 Selection Operator

To enhance selection and reproduction, this operator
identifies suitable chromosomes from the population,
allowing them to be reproduced more frequently than others.
Various selection methods exist in genetic algorithms (GAs),
including roulette wheel selection, rank selection, and
tournament selection [20]. In this algorithm, we use roulette
wheel selection, which means chromosomes that perform
better have a higher likelihood of being chosen.

3.4.3 Crossover Operator

Different methods for crossover performance have been
proposed, including single-point, two-point, and uniform
crossover. In these methods, the offspring inherits some
genes from one parent and the remaining genes from the
other parent. The crossover operator is utilized to create
new offspring by combining genetic information from both
parents. This approach generates new solutions within the
population [21]. First, two parents must be selected.

t1 t2 t3| t4 t1 2 3|
S23 | %11 521 Sae S192( 517.3| 531 | S11.3
573|523 | 553 | Sua 512,31 5153 Sere
Sg2 S35 S11| S13] Sa2
5113 S2.3

Second Parent First Parent

Fig. 2. Single-Point Operator Performance

Next, a point is randomly selected, and two parent
chromosomes transfer their genetic information to produce
two offspring. After this phase, some offspring might have
sensors in multiple sectors, which invalidates their
chromosomes and requires correction.

t1 t2 t3| t4 tl1 t2 t3| t4

S102| 5173 Sy 4 Sa6 So3 | 511|521 5148
Si23 515,3 513 S73 S23 S53| S3a3
514 512|532 Saz2 Se16
Sz3 S113

Second Parent First Parent

Fig.3. Single-point crossover operator and second offering is correct

3.4.4 Mutation Operator
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The mutation operation helps a genetic algorithm (GA)
avoid getting stuck in local optima. A local optimum occurs
when the algorithm searches for solutions within a limited
area, without exploring the broader search space. The
mutation operator introduces significant changes to the
chromosome by randomly selecting a gene and altering its
value [5].

3.4.5 Stopping Condition
One of the stopping conditions for the genetic algorithm

is reaching a predetermined number of iterations. The
stopping condition for the algorithm is the
number of iterations specified in advance.

3.5 An Overview of Tabu Search

Tabu Search (TS) is an optimization algorithm first
introduced by Glover in 1986 [22]. It employs a list of
movements, known as Tabu points, to prevent revisiting
these movements in subsequent searches. This approach
enables the algorithm to move beyond local optimization
and work towards achieving global optimization. The two
main components of the Tabu Search algorithm are the
Tabu list and the aspiration criterion. The Tabu list tracks
recent moves, thus avoiding their selection for as long as
possible. The duration a move remains in the Tabu list is
defined by a parameter called Tabu Tenure. If a move in the
Tabu list could potentially lead to a better solution, it may
still be selected based on the aspiration criterion, despite
being in the list. Once a new move is chosen and added to
the Tabu list, some previously listed moves may be
removed [22]. In the proposed algorithm, a new function is
introduced to enhance the quality of chromosomes, which

can be applied to all chromosomes in the current population.

Since evaluating all chromosomes is computationally
expensive, extensive use across all potential solutions is
impractical.  This method effectively adjusts the
convergence of Genetic Algorithms (GA), as Tabu Search
typically enhances chromosomes. The steps for executing
Tabu Search are as follows:

1. Begin by creating an initial solution based on the
defined problem conditions. Evaluate this solution to
determine if it is the best option available.

2. Prepare a list of allowed operations that are based on
adjacent production methods.

3. Execute both allowed and non-Tabu operations to
determine the solution according to the target function.

4. Select the best solution from those obtained in the
previous step.

5. Update the Tabu list, which in the fast Tabu search
algorithm involves adding the selected operation to the
Tabu list and removing one or more operations from it. In
this phase, also update the best solution found. 6. If the
stopping criterion has not been met, return to step 4.

4. Experiments

To create a network scenario, various targets were
randomly distributed within a 500m x 500m area. Several
sensors, each with a sensing radius (r) and a sensing angle
(m/[1,), were employed to monitor these targets. The
coverage requirements for each target were established
beforehand. To ensure more reliable results, each scenario
was repeated ten times, and the average outcome was
recorded as the algorithm's performance. In the experiments,
the population size was set to 50, with crossover and
mutation rates of 0.2 and 0.05, respectively. To accurately
assess the algorithm's performance, a comparison was made
with a recently proposed greedy algorithm (referenced as
[4]). Performance evaluation utilized indices introduced in
[4], which include the Distance Index (DI), Q-Balancing
Index (QBI), and Active Sensor (AS).

The Distance Index (DI) metric is defined in [4]. In
equation 2, k; represents the required coverage for target t,
while @t indicates the coverage achieved for that target. A
higher DI value signifies better network coverage, with a
maximum possible value of 1.

Dl = rrn-l k? - Z;n-l(kf — ':'0[)2
- m k%

t=1

2
The QBI metric serves as an assessment function for
chromosomes. A higher QBI value indicates better-balanced
coverage. According to equation 3, the maximum value of
this metric is 1, which is achieved when the required
coverage is provided for all targets.
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4.1 Coverage Quality (CQ)

The CQ metric proposed in reference [27] is utilized in
this research. An increase in the distance between targets
and sensors leads to a decrease in the quality of coverage.
Additionally, the distance between targets and sensors plays
a significant role in determining the coverage quality within
the environment. In a network, both the number of sensors
and their distance from the targets influence the CQ value.
This parameter, represented as cq, is calculated as follows:

—

1—( l;': )2 if ty is covered by sj;.

0 otherwise,

Cqgij k) =

4)
4.2 First Experiment
Impact of Reducing the Number of Sensors on QBI
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When there are enough sensors in a network, all targets
can meet their coverage requirements, which results in a
QBI value of 1. In this experiment, we decreased the
number of sensors from 150 to 50 to observe the impact on
QBL As the number of sensors decreases, it becomes more
challenging to meet the coverage requirements for all
targets, necessitating a balanced level of coverage based on
the available sensors. As illustrated in Figure 4, the
reduction in the number of sensors leads to a gradual
decline in the QBI value. In both algorithms being
compared, the proposed algorithm consistently achieves a
higher QBI value than the GA algorithm, indicating that it
effectively maintains a more balanced level of coverage.

1

0.9 g | —%—GA

[ —5— BA-TS

Q-Coverage Balancing Index

04

oali i ! R I | Lo
200 180 160 140 120 100 80 60 40 20
Number of Sensors
Fig. 4. Effect of increasing the number of sensors on the Q-coverage
balancing index

4.3 Second Experiment

In this experiment, we examine how increasing the
number of targets affects the DI (coverage performance
index). As the number of targets rises, the coverage
requirements also increase. Consequently, the distance
between the required coverage vector and the achieved
coverage vector grows. As illustrated in Figure 5, with more
targets, the curve deviates further from the normal value
(DI=1). A comparison of the proposed GA-TS algorithm
with the standard GA shows that the GA-TS curve remains

closer to 1, indicating better performance in this aspect.

=
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08|

Distance Index

07

20 40 60 80 100 120
Number of Targets

Fig. 5. Effect of increasing the number of targets on the Distance
Index

4.4 Third Experiment

Impact of Increasing the Sensing Range on CQ

The third experiment aimed to evaluate the effect of
changing the sensing range on the coverage quality (CQ).
In this scenario, both the sensors and the targets are situated
in a fixed environment. Increasing the sensing range of the
sensors does not alter the distance between the targets and
the sensors. However, a larger sensing range allows a single
sensor to cover more targets. As demonstrated in Equation
(5) and illustrated in Figure 6, the CQ value increases as the
sensing range is increased.
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Fig. 6. Effect of increasing the sensing range on the coverage quality

5. Conclusion

Coverage in sensor networks is a key research area for
many scholars. When the number of sensors in a network
decreases, maintaining sufficient coverage becomes a
significant challenge, especially considering the varying
coverage requirements of different sensors. In such
situations, one effective solution is to develop a method that
balances the coverage needs of various targets, ensuring
that these needs can be met with the available sensors. This
research presents a method for achieving balanced coverage
in the network, taking into account that each target may
have different coverage requirements. The approach
combines a genetic algorithm with a tabu search to optimize
coverage.
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