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ABSTRACT
The classical Kelvin-Voigt and elastic load-deflection models in describing the 
mechanical response of materials under applied forces in this fundamental 
research are described. When materials experience high-velocity deformations 
under supersonic motion, classical mechanics fails to account for essential 
relativistic effects such as time dilation and length contraction. This study 
extends these models by incorporating special relativity to improve the 
accuracy of stress-strain predictions in supersonic conditions. By relativistic 
behavior of motion, a theoretical framework for analyzing hypervelocity 
mechanism, structural-mechanical behavior of materials in aerospace 
applications, and the dynamic stability of supersonic velocities are provided. 
Our approach is particularly relevant for the development of smart materials, 
adaptive structural systems, and defensive shielding technologies used in space 
exploration and supersonic velocities. Furthermore, we explore the oscillatory 
behavior and energy dissipation mechanisms in relativistic regimes, offering 
insights into the stability and damping characteristics of high-velocity 
mechanical systems. The findings bridge the gap between classical continuum 
mechanics and relativistic physics, presenting a novel methodology for 
studying the deformation and load-bearing behavior of materials under extreme 
accelerations. These results have significant implications for advanced 
engineering applications, including spacecraft shielding, high-speed 
transportation, and next-generation aerospace structures.
                                 
Keywords: Hypervelocity; Load-deflection; Special relativity; Boltzmann 
principle.

1    INTRODUCTION

HE behaviors of a system can be described based on the fundamental principles of structural mechanics. In 
mechanical science taking into account relativistic theory, a moving structural system with high velocity with a 

specific rest mass has the relativistic mass, velocity, and relativistic energy which changes within the time rate [1].  
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Hence, we consider a system as a mechanical system and explain the state behaviors using concepts of structural 
mechanics [1, 2]. This idea helps us to understand the relativistic mechanism of hypervelocity impacts on defensive 
shields, electromagnetic weapons that require precise modeling of materials under high accelerations, study of smart 
materials used in advanced industries such as aerospace and defense, or help us to analyze the behavior of aerospace 
structural materials under re-entry conditions or high-speed travel, design of thermal and mechanical shields, and 
analyze material behavior in interplanetary or interstellar travel, which may approach relativistic speed. In structural 
mechanics, parameters such as deformation, deflection, elastic load-deflection, strain, stress, compressive strength, 
and tensile strength are very important in describing a system [2, 3]. These parameters are compared to a reference 
position of the system and can describe the behavior of a system under an external force that depends on a third 
parameter, time t. As we know, in physics deformation is the change in the dimension (size or shape) of a system 
that can occur because of forces or changes in temperature, etc.; on the other hand, in structural mechanics, 
deformation of a system can take place because of applied loads and using the load-deflection function concerning a 
third parameter, time t, which refers to the applied load and the resulting deformation. Ludwig Boltzmann 
formalized this through the Boltzmann Superposition Principle (BSP) [3,4], which posits a linear relationship 
between an external load,  F t , and the elastic load-deflection,  t , mediated by time t . Elastic load-deflection 

refers to temporary deformations that fully recover upon removal of the external force.

   F t t    (1)

Provided the system stays within its elastic limits. For a structural system of mass m, the elastic load-
deflection  t , is proportional to the applied force,  F t , with a time-dependent proportionality constant,  t
[4]. The load-deflection function quantifies the relationship between externally applied forces and resulting 
deformations under specific conditions, offering a framework to characterize structural behavior. This study extends 
the application of BSP from structural mechanics to special relativity (SR), modeling a system behavior by 
integrating BSP with relativistic velocities to derive properties for structural systems. This theoretical study also 
assesses the validity of BSP in the relativistic limit under Lorentz transformations [4]. The primary objective is to 
illustrate how integrating structural mechanics principles with relativistic physics provides novel insights into 
material behavior and characteristics. Hence, we can effectively describe the properties and behavior of a structure 
changes in response to an external load. The concept of load-deflection function according to physical properties 
concepts of a system generally refers to the relationship between an externally applied force and the resulting 
deformation of the structure under specific conditions. Therefore, we aim to discuss the representation of a particle 
using the BSP method based on structural mechanics theories connecting them to RS. In this theoretical research, 
our goal is to find a new aspect to define the characteristics of a system in the context of relativistic velocities and 
structural mechanics [5,6]. Finally, in the summary and conclusion section, we express the main purpose of the 
current study. The goal of this theoretical research is to show the importance of relativity in structural mechanics 
under the Kelvin-Voigt model in the relativistic limit under the Lowrance transformation when a system is subjected 
to an external force.

2    SOLID RHEOLOGICAL MODEL

The rheology of solid matter or solid rheology is the study of the deformation of materials under applied forces. In 
this context, some of the characteristics of matter such as stress, strain, and creep can be described based on the 
forces acting on matter, and their definitions are related to the resulting deformations in stress conditions. Solid 
rheology holds great importance in modern sciences, including the research on the ability of matter to recall specific 
properties after the conditions that caused the original state and to return to the original state. When a force is 
applied to a solid object, it causes the object to deform, so deformation represents and describes the change in 
position or shape of the solid matter due to the applied force [2, 7,8].  In the solid rheology, the relationship between 
the applied force and the resulting deformation is named “load-deflection”  t ; and for some specific types of 

matter, the load-deflection relationship is linear but this linear relationship depends on time and it has complexity 

influenced by the force acting at time t, which can be described by    .t const F t  . Function  t - is the 

elongation produced by a time-varying force. On the other words, the load-deflection  t represents the 
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displacement (elongation) produced by the time-varying force  F t , and then    d t
t

dt


  , would represent the 

velocity of the matter (object) at time t , which is the rate of change of elongation concerning t . The load-deflection 

 t is a physical quantity that shows how much a system will deform by acting an external force  F t in the time 

duration 2 1dt t t  i.e.,      t t F t  and the proportionality constant is supposed to be a function of time. On 

the other words, the load-deflection  t is the elongation produced by the time dt varying force  F t . So, the 

velocity of the deflection (the elastic load-deflection) in the inertial one-dimensional coordinate system along 

the x axis is defined by relation    d t
t

dt


  . Variation of the elastic load-deflection by the time dt is 

     t t F t   , the characteristic function of the system is  t , and it is supposed to be a constant function of 

time [8]. Hence, following the rheological model, the elastic load-deflection its rate of change, and also its effects on 
the structural system can help us to describe a system's behavior under relativistic conditions. Any model in 
structural mechanics for describing the elastic load-deflection effects and behavior is associated with elastic 
elements (springs - oscillatory systems) and viscous elements (dashpots - provide damping or resistance to motion). 
In this research, the spring can indeed be considered as an oscillatory system. An oscillatory system exhibits a 
characteristic behavior of the constituent particle under external force when they undergo oscillatory motion from 
their equilibrium position at high velocities. This back-and-forth motion (oscillatory motion) can be presented as the 
individual oscillation of the constituent particles or the collective oscillation of the structural system. We consider a 
system as a linear spring-dashpot system in Fig.1, based on structural mechanics and obeys Hook’s law and 
Newton’s law precisely. As we know, oscillatory motion can be described by Hooke's Law    kF t k t and 

dashpot effect can be described by Newton’s law    F t t   .

Fig. 1 
The Kelvin-Voigt model of parallel spring-dashpot combination as an interacting particle in the external field.

In the solid rheological model, the system is presented as a spring and characterized by the spring constant 
parameter k; also, the viscous properties are presented as a dashpot and characterized by the dashpot constant 
parameter  . Here we declare that the theoretical formulation of the spring-dashpot system that we choose to 

describe a state property under the BSP method is formed of a parallel configuration of a linear spring and a dashpot 
Fig. 1, which is named after the Kelvin-Voigt model [1, 4, 6]. The parallel configuration of the spring and dashpot 
(the Kelvin-Voigt model) describes the total deformation of the spring force and the damping force, under the 
dynamic stability of interaction. Hence, the elongation of the spring and dashpot is the same for the spring and 
dashpot    k t t    , so, the dynamics of the system and its variation over time are explained by equations

         kF t F t F t k t t          (2)

and 

     kF t P t P t      (3)
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Therefore, the behavior of the spring-dashpot system gives us the characteristic that is analogous to a harmonic 
oscillator and makes it a useful model for studying a particle state mechanism, i.e.,  kF t describes deflection and 

 F t diminishes the deflection; and describe the rate of fluctuation and variation of momentum concerning 

time; if   0P t  , it indicates that the force is increasing over time, if   0P t  , it signifies a decrease in force, and 

if   0P t  it suggests that the force is not changing concerning time [9-11]. We can present a useful function for 

the Kelvin-Voigt model that describes the connection between the elongation of spring and the elastic load-
deflection of dashpot as follows:

  1
kt

a
t e

k
 

 
   

 

   
(4)

where a= constant and presents the best linear form of sudden or impulsive external force  F t , that occur at a 

specific time instant ( 0dt  ), and then persist indefinitely which is described by the Heaviside step function:

    1, 0

0, 0

x
F t aH t a

x

 
   

 

where  H x is the Heaviside step function. 

Fig. 2
The Heaviside step function.

If   0F t  , then as presented in Fig. 2,   1H t  and we consider 1a  The term 
kt

e  describes the 

exponential decay form of the response with time. When t  , the term 0
kt

e   , the response of matter reaches 

a steady state. Hence,  t describes the relation between the relationship between stress and strain in the matter).

3    SPOECIAL RELATIVITY WITHIN THE KELVIN-VOIGT FRAMEWORK

This section aims to derive the relativistic momentum over time and elucidate the relativistic dynamics [4,5,8] of an 
object with rest mass m|, based on a solid rheological model [8]. Consider an object of mass m in an inertial rest 

frame K , moving with velocity u along the x-direction, where 0

du
F m

dt
 holds in this frame. We then introduce a 

coordinate system K  , moving at a relative velocity v concerning K , to examine the motion of the mass in K and 
capture the relativistic effects on mass and velocity. To characterize the relativistic properties of a moving mass and 
link them to the Kelvin-Voigt model, we define the relativistic momentum as 0p mv m v  , and the relativistic 
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force as  0

d
F p m v

dt
  , based on the spring-dashpot dynamics of the Kelvin-Voigt model [1, 8, 9]. This 

requires applying the Lorentz transformation within quantum field theory. In natural units  where c is the speed of 
light (c = 1), the Lorentz transformation Fig. 3, along the x-direction is expressed as follows:

    
    

x x t v t

t t v t x t





   

  

where   
1

2 21 v t


  is the Lorentz factor.

Fig. 3
The Minkowski spacetime of a moving object.

We consider an object of mass m accelerating under an external force F in the inertial frame K, where it has a 
relativistic velocity v. This force causes the velocity v to change in the inertial frame K  , with components 
perpendicular dv and parallel dv to v , as follows:

21
1

du
dv v

vdu


  


  
(5)

1

du v
dv v

vdu


 







  
(6)

As we know in the rest coordinate the velocity of object u= 0 , hence Eqs. (Error! Reference source not 
found.) and (Error! Reference source not found.) represent in the form of 

1
dv du


 

  
(7)

2

1
dv du


 

  
(8)

Using the relativistic transformation between frames K and K  , with dt dt  , under    F t p t  an 

external force along the x direction, we define the relativistic dynamics of a system with velocity v, rest mass 0m , 

and relativistic mass   0m t m . The external force in K  can be expressed separately as F and F based on 

the equations of motion in the rest frame K , relating the velocity components dv and dv in a relativistic 

framework from K to K  .
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 0 3
0 0

m du dv d v
F m m v

dt dt dt v
 

        

 



   
(9a)

20
0

m du dv d v
F m p

dt dt dt v
  



        

   
(9b)

 F t F F  (10)

                                                   

and then by putting ,
d v v

dv dv
dt v v

              

 

, we can define

   0

d v d v dp v d v
F t m v p p

dt v dt v dt v dt v
  

                                      

      
(11)

where p is the momentum in the stationary frame K and p is the momentum of matter in the frame K  , and 

2 2 2 2

1 1 1 1 1dv dvd v dv dv dv dv dv dv v
v v v v v v v v v

dt v dt dt dt dt dt dt dt v v dtv v v v


                                                      



    
 

Now using    F t p t  , and linear momentum      p t m t v t , one can represent Eq. (Error! Reference 

source not found.) as follows:

         F t p p m t v t m t v t   
      

(12)

Now, we take into consideration the moving matter properties under the relativistic conditions according to the 
solid rheological model and then present the relativistic bound state of two particles within this context and 
framework. As we presented above, the solid rheological model of the bound states at high energy should be 
explained in the context of relativistic interaction and relativistic theories. Therefore, as in the earlier segment, the 
characteristic function of the relativistic system reads

           r r rv t t F t t H t t     (13)

According to (Error! Reference source not found.), a spring-dashpot system can present and describe the 
motion of a relativistic bound state within an external strong field with relativistic velocities. As we know, at the 
relativistic limit, the mass   0m t m of moving object, increases with velocity. Consequently, an object with 

relativistic mass  m t accelerates and its velocity will increase but the maximum limit of the velocity of a moving 

object  v t cannot exceed the speed of light c. Therefore, we can consider that in relativistic conditions of 

interactions within the external field, we should consider two different types of forces: the first one is the force 

 vF t F  , that acts on the object and accelerates it, and finally, as a result, increases the rest mass of an object and 

is the equivalent of the spring force  kF t . The second one is the force  vF t F , that prevents the velocity of the 

moving mass (object) in the relativistic condition i.e., v c ,  and is the equivalent of dashpot force  F t . So, the 

total acting force can be expressed in the following form 

     v vF t F t F t F F    
(14)
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Now, we consider the spatial changes of the object in the relativistic condition as a spring-dashpot system due to 
the Eqs. (Error! Reference source not found.), based on the mathematical presentation of the BSP and behavior of 
the spring-dashpot system for a moving mass [5, 11]. We consider that the velocity of the mass and its derivation is 
proportional to the applied force      n mF t v t v t  , but the constants of proportionality are a function of time. 

So, equation reads

         0 0F t m v t m v t    (15)

One can represent using the Kelvin-Voigt model by the linear spring constant k and the damping coefficient of 
dashpot 

     F t k t t    (16)

i.e.,      0vF t m v t  produces acceleration and increases the rest mass of an object 0m m  as a deformation 

force  kF t (spring), while      0vF t m v t  reduces the velocity of the moving matter, based on the relativistic 

principles it keeps the velocity below c , as a deflection force  F t (dashpot) and its damping effect which reduces 

the deformation in the Kelvin-Voigt model [10, 11]. In this context, the derivation function of the Lorentz factor to 
time given by

    3v t v t   (17)

Hence the total force of increasing mass of matter and reduced velocity of matter below the speed of light from 
reads 

     
                   

   
22

2
0 02 2 2

1
1 1 1

v t v tv
F t m v t v t m v t mv t mv t m t v t m v t

v t v t v t
  

   
                

      (18)

and then from the relation          F t m t v t m t v t   and using (Error! Reference source not found.) and 

(Error! Reference source not found.), the relativistic characteristic function of the system  r t using BSP 

supposes to be as follows:

   

 
 1

1

m t
t

m tv t e
m t

 
  
 
 




(19)

From Error! Reference source not found.19) under the asymptotic conditions of the special relativistic theory 
at t=0 and t   , we determine important characteristics of the relativistic object in the Kelvin-Voigt model as 
follows:

 0 00t m m     (20)

and  

   01 1t v c m       (21)

and the result of the characteristic function of the relativistic system    r t v t  under the Kelvin-Voigt model 

for a moving object with the rest mass 0m , the moving mass and relativistic velocity  v t at time t in the natural 

unit system (c=1) can be presented in the form 
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   
1

1
t

m tv t e


  (22)

4    APPLIED PERSPECTIVE OF THIS RESEARCH  

Understanding how materials deform under applied forces is a fundamental part of modern material science and 
structural mechanics. When a material is subjected to external forces, key properties like stress, strain, and creep
determine how it reacts whether it stretches, compresses, or eventually recovers its shape. These properties define 
the material's ability to withstand and adapt to forces, which is crucial in engineering, aerospace, and physics 
applications. When a force acts on a solid object, it causes deformation, which is simply a change in shape or 
position. The core concept that describes this relationship between the applied force and the material’s response, 
reflects how much the material elongates or deforms over time when a force is applied. For many materials 
especially in the linear viscoelastic regime, this relationship is directly proportional but may depend on time, and 
represents by a time-dependent force. Therefore, the importance of relativity in structural mechanics under the 
Kelvin-Voigt model is particularly presented above in the context of relativistic mechanics, it shows us how a 
system responds when it is subjected to extreme speeds or forces approaching the limits imposed by relativity. In 
this scenario, we are not merely dealing with classical deformations but must also consider relativistic corrections to 
how energy, force, and deformation propagate within materials. Hence, the applied perspective of this research 
focuses on bridging classical structural mechanics and relativistic physics to address modern engineering and 
scientific challenges. The Kelvin-Voigt model, as a foundational viscoelastic model, has been extensively used to 
analyze materials that exhibit both elastic and damping behaviors. However, when materials and systems are 
subjected to extremely high velocities, strong fields, or rapid dynamic loads, classical interpretations of stress-strain 
relationships become insufficient. This is where special relativity becomes crucial, and our research explores this 
intersection. From an applied standpoint, incorporating relativistic effects into the Kelvin-Voigt framework allows 
for accurate modeling of material behavior under extreme conditions, such as  aerospace and spacecraft engineering: 
re-entry vehicles and hypersonic aircraft experience intense dynamic loads and thermal stresses. Understanding the 
viscoelastic and relativistic deformation of structural components ensures their integrity and safety. Spacecraft 
shielding against micrometeoroid and debris impacts requires precise modeling of high-speed collisions, where 
relativistic corrections become relevant for predictive simulations; Advanced defense and protective structures: 
high-velocity projectiles, including electromagnetic railgun munitions or laser-induced impacts, impose loading 
rates that necessitate a relativistic-mechanical analysis of material response for armor and protective layers. 
Hypervelocity impacts on defensive shields, relevant to both military and space applications, require understanding 
the coupled elastic-viscous-relativistic response; astrophysics and space exploration materials: materials used in 
interstellar or relativistic-speed probes encounter forces and environments where traditional material models fail. 
Integrating relativistic corrections to viscoelastic models helps predict long-term durability and dynamic response in 
unknown extreme conditions; Nuclear and particle physics engineering: in facilities like particle accelerators or 
fusion reactors, materials are exposed to high-energy particle flows, demanding a relativistic interpretation of stress-
strain relations for component longevity and performance. Understanding oscillatory and dissipative behaviors of 
structural materials within high-energy physics environments enhances both safety and design; Smart materials and 
nanotechnology: advanced smart materials, including nanocomposites and meta-materials, may undergo ultra-fast 
dynamic processes (e.g., femtosecond-scale deformations), where relativistic time-dependent effects could influence 
their real-time mechanical responses. 

5    RESULTS AND DISCUSSION   

In this article we can define five important and useful points with their relevance to modern high technology and 
future mechanical science: 
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1. Integration of relativity with structural mechanics: significance to describe high-velocity impacts or 
supersonic technology, high-speed aerospace engineering, space travel, and electromagnetic weapons 
where relativistic subjected to ultra-high motion. 

2. Hypervelocity impact and defensive shields: understanding how materials respond to hypervelocity impacts 
is crucial for protective structures, especially in aerospace and defense industries. This point is useful for 
developing advanced shielding materials for spacecraft, satellites, and military defense systems to 
withstand high-speed projectiles.

3. Smart materials and adaptive structural behavior: smart materials, which can dynamically adapt to external 
forces and environmental changes. This is important for aerospace and automotive industries, enabling 
materials that self-heal, adjust stiffness, or respond to external stimuli such as temperature or 
electromagnetic fields.

4. Elastic load-deflection in advanced engineering: the Kelvin-Voigt model in the relativistic limits allows for 
a better understanding of material behavior under extreme conditions. It can be useful for designing thermal 
and mechanical shields for spacecraft, high-speed trains, and supersonic structures where load-deflection 
properties are critical.

5. Oscillatory behavior and energy in high-velocity systems: we described how oscillatory motion (spring-
dashpot system) is essential for analyzing dynamic stability in structural mechanics under ultra-high 
motion. It plays a key role in vibration control in buildings, earthquake-resistant structures, high-speed 
transportation systems, and nano-scale mechanical systems where damping and stability are critical. Hence, 
we can see these insights bridge the gap between usual structural mechanics and relativistic based of 
structural mechanics using theoretical general relativistic physics. This research provides a foundation for 
future developments in mechanical engineering, material science, and space exploration.

6    CONCLUSIONS

The term "history-dependent behavior of matter" typically refers to the idea that the current state of a matter is 
influenced by its past interactions. It implies that matter such as a structural system retains information about its 
previous states, which can impact its response to external force. This concept is relevant in structural mechanics and 
is explained based on the Kelvin-Voigt model, which is a mathematical representation used to describe the behavior 
of elasticity and viscosity of matters. In the Kelvin-Voigt model, the matter is represented by a spring-dashpot 
connected in parallel. The spring represents the elastic component and returns matter to its original state after 
removing the load-force. The dashpot represents the viscosity behavior of matter, which resists the deformation. 
This consideration of the spring-dashpot and the moving relativistic system led us to present the relativistic effect of 
external forces, which can act as loading effects on the deformation behaviors of springs and dashpots. This 
explanation describes how the movement of an object is mathematically connected to the intrinsic history of the 
loading force (external force) on the spring and dashpot. Using the RS theory, we calculated the relativistic 
characteristic function of the system that presents the relativistic velocity of the moving system. This correction of 
mass is defined based on the equations      F t k t t   , and           0 0F t m v t m v t    at the 

relativistic velocity helped establish a connection between SR theory and the history-dependent behavior of a 
system. The results presented the different relations using the relativistic corrections to the moving equation. We 
defined good approximation and proximity to be equivalent to the relativistic parameters such as the velocity of the 
moving system at time t , equivalently of the constant parameters k to the derivation of mass and the  constant 

parameters k to the constituent mass of moving system at relativistic velocities. These behaviors are explained 
based on the characteristics of the spring-dashpot model of the moving object. In summary, this research presents a 
novel extension of the Kelvin-Voigt viscoelastic model, adapted for relativistic environments, offering practical 
insights for cutting-edge technologies in aerospace, defense, astrophysics, and advanced material science. By 
developing a deeper understanding of elastic load-deflection behaviors under relativistic constraints, this work paves 
the way for designing materials and structures capable of withstanding extreme mechanical and dynamic loads with 
enhanced reliability and functionality.
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