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   Zinc oxide nanoparticles (ZnO-NPs) have emerged as one of the leading nanomaterials, 

demonstrating strong antimicrobial properties and high potential in controlling bacterial infections. 

ZnO-NPs exert their antibacterial effects through the generation of reactive oxygen species, damage to 

the cell membrane, and disruption of bacterial DNA and protein functions. Numerous studies have 

shown that these nanoparticles are effective against a wide range of Gram-positive and Gram-negative 

bacteria, including antibiotic-resistant strains. The small size, high specific surface area, and ability to 

penetrate bacterial cell walls are key factors contributing to the efficacy of these nanoparticles. 

Furthermore, due to their minimal side effects on human cells and high biocompatibility, ZnO-NPs are 

considered a suitable option for clinical and industrial applications. The applications of these 

nanoparticles have been extensively reviewed, and potential strategies to enhance their efficiency and 

safety have been proposed. This study highlights the significant potential of ZnO-NPs to either replace 

or complement existing methods in combating bacterial infections, offering a novel approach to 

addressing antibiotic resistance and other challenges. This article reviews the antibacterial 

mechanisms of ZnO-NPs, examining factors influencing their activity and performance, and their 

potential applications in medical and industrial fields.
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I. INTRODUCTION 

Nanotechnology has garnered significant 

global attention in the field of modern materials 

science and its applications in medicine and 

other scientific disciplines. Nanoparticles, 

defined as particles with sizes ranging from 1 to 

100 nanometers, have demonstrated their 

efficacy in treating infectious diseases, 

including antibiotic-resistant strains, in both in 

vitro and animal models. Due to their high 

surface area, nanomaterials exhibit remarkable 

mechanical, optical, magnetic, and chemical 

properties. These tiny particles represent a 

modified version of fundamental elements, 

achieved through the manipulation of their 

atomic and molecular characteristics. Research 

has shown that antibacterial mineral materials 

often include metal nanoparticles and metal 

oxide nanoparticles, such as Ag, Au, Cu, TiO₂, 
and Zinc oxide (ZnO). Among metal oxide 

nanoparticles, ZnO has found extensive 

applications due to its optical (1), 

semiconducting (2), ultraviolet (UV) absorbing 

(3), and antimicrobial (4) properties (5-8). Zinc 

(Zn) is an essential element used in medicine, 

biology, and industry. Adults require 8 to 15 mg 

of Zn daily, with 5 to 6 mg lost through urine 

and sweat. Zn is vital for bones, teeth, enzymes, 

and proteins (9). The use of metallic 

nanoparticles and their oxides represents a 

promising approach to combating antibiotic 

resistance (10). Metal oxide nanoparticles are 

notable for their catalytic inhibitory activity in 

antimicrobial compounds. However, their 

bactericidal mechanisms depend on various 

factors, such as morphology, composition, and 

concentration (11). Given the emergence of 

new bacterial mutations, increasing antibiotic 

resistance, and the proliferation of pathogenic 

strains, there is a pressing need for the 

advancement and development of more 

effective antibacterial agents. ZnO has always 

been of interest due to its strong antibacterial 

properties (12). With the rise of bacterial 

resistance to conventional antibiotics, there is a 

growing need for innovative and effective 

methods to combat bacterial infections. Zinc 

oxide nanoparticles (ZnO-NPs) have emerged 

as a promising alternative due to their strong 

antibacterial properties, high biocompatibility, 

and relatively low production costs. The exact 

mechanisms of ZnO-NPs antibacterial effects, 

as well as the optimization of synthesis 

techniques to increase efficiency and lower 

potential toxicity, remain unclear despite the 

large number of investigations that have been 

done on their synthesis and applications. This 

article provides a comprehensive review of 

ZnO-NPs synthesis methods, analyzes their 

antibacterial mechanisms, and introduces 

medical applications while proposing strategies 

for the effective use of this technology in health 

and treatment. A deeper understanding of these 

aspects can pave the way for the development 

of more effective and safer treatments for 

bacterial infections. 

II. STRUCTURE AND 

PHYSICOCHEMICAL PROPERTIES OF 

ZINC OXIDE 

All of the human body's tissues contain Zn; 

however, muscle and bone have the highest 

concentration (around 85% of the total zinc 

content) (13). Zn is essential for the proper 

functioning of numerous macromolecules and 

enzymes, serving as a coenzyme with catalytic 

and structural roles. Furthermore, protein 

subdomains can interact with DNA or other 

proteins thanks to the special framework that 

zinc-finger structures offer (14). ZnO is an 

inorganic compound that typically appears as a 

white powder and is insoluble in water (15). 

ZnO exhibits three crystalline structures: 

wurtzite, zinc-blende, and rock salt, with the 

latter being rarely observed. Crystalline ZnO 

has a wurtzite structure with a hexagonal unit 

cell. Each anion is surrounded by four cations 

in a tetrahedral arrangement, representing sp³ 

covalent bonding and creating an asymmetric 

structure (16). ZnO-NPs are versatile materials 

widely used in biosensors, cosmetics, drug 

delivery, and agriculture due to their optical, 
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electrical, piezoelectric, and antimicrobial 

properties. The morphology of ZnO-NPs, such 

as nanorods (17), nanowires (18), and 

nanoflowers, depends on the synthesis process 

(19). Traditional methods for synthesizing 

ZnO-NPs, including sol-gel, hydrothermal, and 

mechanochemical processes, are often time-

consuming, expensive, and require high 

temperatures and specialized precursors. These 

methods also generate significant chemical 

waste (20). In contrast, green synthesis of 

nanoparticles utilizes renewable organic 

extracts from sources such as yeast, bacteria, 

and plants. This approach avoids the use of 

toxic chemicals and helps reduce waste (21). 

Compared to other nanoparticles in the same 

group, Zn demonstrates higher antibacterial 

activity against Gram-positive bacteria (9). The 

synthesis of ZnO-NPs has led to their 

investigation as a novel antibacterial agent. In 

addition to strong antibacterial and antifungal 

properties, these nanoparticles exhibit high 

catalytic and photochemical activities. 

Furthermore, ZnO has high optical absorption 

in the UVA and UVB ranges, making it suitable 

for antibacterial applications and UV protection 

in cosmetics (22). ZnO is a wide-bandgap 

semiconductor (3.37 eV at room temperature) 

with unique properties such as high 

transparency, strong luminescence, and 

excellent electron mobility (23). Despite partial 

covalent characteristics, ZnO primarily features 

strong ionic bonding in its Zn-O structure, 

contributing to superior durability, enhanced 

selectivity, and greater thermal resistance 

compared to organic and inorganic materials 

(4). According to an investigation using 

scanning electron microscopy and energy 

dispersive X-ray, ZnO-NPs are mostly made up 

of Zn (37.5%), oxygen (19.9%), and carbon 

(42.6%), which is consistent with the green 

synthesis technique used (24). 

III. METHODS FOR SYNTHESIS 

OF ZINC OXIDE 

NANOPARTICLES 

ZnO-NPs are produced using various physical 

and chemical methods such as solvent 

evaporation, sol-gel, physical degradation, 

interference lithography, vapor condensation, 

and microemulsion deposition (25, 26). 

However, chemical methods often employ 

toxic substances that are hazardous to operators 

and harmful to the environment, while physical 

methods require high energy, pressure, and 

temperature (27). Common toxic compounds 

used in chemical synthesis include 

triethylamine (28), oleic acid (29), thioglycerol 

(30), polyvinyl alcohol (31), and ethylene 

diamine tetraacetic acid (32). These compounds 

are typically used as stabilizers or coatings to 

control nanoparticle size and prevent 

aggregation. However, residual amounts of 

these compounds in the final product may 

introduce toxicity, limiting the biomedical and 

environmental applications of the nanoparticles 

(25). Green synthesis of metal and metal oxide 

nanoparticles using biological methods 

(particularly plant extracts, microorganisms, 

and fungi) has emerged as a novel field in 

nanotechnology, offering a sustainable 

alternative to chemical and physical approaches 

(33, 34). Natural sources such as plants, algae, 

fungi, and non-pathogenic microorganisms 

(e.g., Lactobacillus bacteria) are used in the 

biosynthesis of ZnO-NPs. This approach 

represents an eco-friendly, cost-effective, and 

green solution that utilizes biological 

compounds (e.g., enzymes and secondary 

metabolites) for the safe and sustainable 

production of nanoparticles with minimal 

environmental contamination and without 

hazardous chemicals (32, 35). Plant extracts are 

more widely used in nanoparticle synthesis than 

microorganism-based methods due to their 

bioactive phytomolecules (e.g., flavonoids and 

terpenoids) and advantages such as high 

biocompatibility and simple extraction 

processes (36). Phytochemical studies have 

shown that key plant-derived compounds and 

metabolites, including lupeol, oleanolic acid, 

kaempferol glycosides, quercetin, 

leucocyanidin, ursolic acid, sitosterol, rutin, 

anthocyanins, and proanthocyanidins possess 

antioxidant, antibacterial, antimutagenic, and 

chemopreventive properties (37). Studies 

indicate that ZnO-NPs synthesized from plant 

extracts exhibit superior antibacterial properties 

compared to conventional drugs in disease 

treatment (38). In this synthesis, plant 
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components (roots, leaves, stems, seeds, and 

fruits) are used because their extracts contain 

high concentrations of phytochemicals that act 

as stabilizing and reducing agents. The most 

common method for preparing ZnO-NPs from 

leaves or flowers involves washing, 

sterilization, drying, grinding, adding Milli-Q 

H₂ O, boiling, filtering, and finally mixing with 

hydrated zinc nitrate, ZnO, or zinc sulfate (39). 

Although green synthesis of ZnO-NPs is 

promising, variability in plant extract 

composition can lead to heterogeneity in 

nanoparticle size, shape, and purity. This 

necessitates precise control of reaction 

parameters (e.g., metal ion concentration, 

temperature, pH, and time) to ensure 

reproducibility (40-43). Recent studies have 

demonstrated the efficacy of lactic acid bacteria 

(LAB) in mediating ZnO-NP synthesis (44, 45). 

Given their ability to synthesize metallic 

nanoparticles  (e.g., Se, Au, and Ag), LAB 

strains are recognized as efficient cellular 

factories for metal nanoparticle production. 

Gram-positive LAB possess thick cell walls 

composed of peptidoglycan, lipoteichoic acid, 

collagen, and polysaccharides. Due to their 

negative electrophoretic mobility, these layers 

serve as sites for biosorption of metal ions and 

bioreduction, attracting metal cations to initiate 

nanoparticle biosynthesis (46, 47). Green 

production of ZnO-NPs using bacteria such as 

Lactobacillus and Bacillus has gained attention 

as a sustainable and eco-friendly alternative to 

chemical methods. Species like Lactobacillus 

plantarum and Lactobacillus casei significantly 

contribute to metal ion reduction and ZnO-NP 

formation through their bioactive metabolites 

and enzymes. Studies show these nanoparticles 

are predominantly spherical (average size: 10–

13 nm) and exhibit exceptional antibacterial 

and antibiofilm properties (48-50). Green 

synthesis of ZnO-NPs has also been achieved 

using non-Lactobacillus bacteria (e.g., Bacillus 

subtilis), enabling tailored control over 

nanoparticle size and morphology. These 

nanoparticles are effective in organic pollutant 

removal and exhibit strong antibacterial activity 

against Salmonella typhimurium, Escherichia 

coli, and Staphylococcus aureus (S. aureus) 

(51). Enzymes produced by non-pathogenic 

Lactobacillus strains can act as reducing, 

stabilizing, or capping agents in nanoparticle 

synthesis (43). 

IV. THE EFFECT OF ZINC OXIDE ON 

GRAM-POSITIVE AND GRAM-

NEGATIVE BACTERIA 

ZnO-NPs exhibit effective antimicrobial and 

anti-biofilm properties, impacting a wide range 

of Gram-positive and Gram-negative bacteria 

(52). ZnO-NPs effectively target drug-resistant 

bacteria, disrupt biofilms, and reduce the 

virulence of pathogens. They also demonstrate 

promising antifungal properties, particularly for 

skin infections (53). During the exponential 

development phase, ZnO-NPs exhibit potent 

antibacterial properties against both Gram-

positive and Gram-negative bacteria. However, 

their antibacterial efficacy significantly 

decreases during the lag and stationary phases 

of bacterial growth (54). Biologically 

synthesized ZnO-NPs have demonstrated 

significantly higher growth inhibition 

compared to chemically synthesized ZnO-NPs 

and other conventional antimicrobial agents. 

ZnO also exhibits notable selectivity, greater 

durability, and good thermal resistance. These 

unique properties make ZnO a powerful tool in 

combating a wide range of microorganisms, 

including S. aureus (55, 56), Escherichia coli 

(57). TiO₂, ZnO, and Ag are used in various 

fields to regulate microbial proliferation. 

However, ZnO exhibits greater 

biocompatibility compared to TiO₂ due to its 

exceptional photocatalytic efficiency (58). 

Green-synthesized ZnO-NPs demonstrate 

antibacterial properties against both Gram-

positive and Gram-negative bacteria (59). 

Typically, Gram-negative bacteria show lower 

sensitivity to ZnO-NPs compared to Gram-

positive bacteria. This increased resistance in 

Gram-negative bacteria can be attributed to the 

unique structure of their cell walls, which, 

unlike Gram-positive bacteria, include an 

additional outer membrane composed of 

lipopolysaccharides that reduces their 

susceptibility (60, 61). ZnO-NPs inhibit the 

formation of amyloid peptide fibrils, which are 

essential for bacterial biofilm formation (62). 

The combination of meropenem and ZnO-NPs 

reduces the expression of genes associated with 
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biofilm formation. Additionally, the small size 

of ZnO-NPs enhances their ability to penetrate 

the biofilm matrix, leading to stronger anti-

biofilm activity. Complete biofilm removal in 

certain areas has been observed using scanning 

electron microscopy (63). Based on evidence 

from studies, ZnO-NPs, particularly those 

synthesized via green methods, are considered 

promising anti-biofilm agents for medical 

applications (e.g., implant coatings) and the 

control of biofilm-related infections (64). 

According to studies, ZnO-NPs reduce the 

ability of S. aureus to form biofilms by 

inhibiting the expression of biofilm-related 

genes such as ica A, ica D, and fnb A. These 

nanoparticles exhibit strong antibacterial 

activity against multidrug-resistant strains of S. 

aureus, including methicillin-resistant, 

vancomycin-resistant, and linezolid-resistant 

strains (65) (Table 1). 

 

Reference Mechanism of action Effect of ZnO-NPs 
Type of 

bacteria 

Name of 

bacteria 

(66) 

Production of reactive oxygen 

species (ROS), disruption of cell 

membrane function 

Inhibition of bacterial 

growth, damage to the 

cell wall, and plasma 

membrane 

Gram 

positive 

 

Staphylococcus 

aureus 

(67) 

Inhibition of the expression of 

biofilm-related genes such as 

icaA and fnbA 

Reduction of biofilm 

formation 

(68) 
Damage to lipids and membrane 

proteins 

Increase in cell 

membrane permeability 

Gram 

positive 

 

Streptococcus 

pyogenes 

(69) 

ROS production, damage to 

lipopolysaccharides, and 

membrane proteins 

Inhibition of bacterial 

growth, damage to the 

outer and plasma 

membranes 

Gram 

negative 
Escherichia coli 

(70) 

Disruption of the biofilm matrix 

and inhibition of bacterial 

attachment to surfaces 

Reduction of biofilm 

formation 

Gram 

negative 

Pseudomonas 

aeruginosa 

(71) 

Increase the permeability of the 

outer membrane and facilitate 

the entry of antibiotics. 

Increase the sensitivity 

to antibiotics 

Gram 

negative 

Klebsiella 

pneumoniae 

(25) 

ROS production, damage to the 

cell membrane, and disruption 

of DNA function 

Inhibition of bacterial 

growth and reduction of 

spore formation 

Gram 

positive 

 

Bacillus subtilis 

(72) 

ROS production, damage to the 

outer membrane, and disruption 

of DNA function 

Inhibition of bacterial 

growth and reduction of 

biofilm formation 

Gram 

negative 
Salmonella typhi 

 

V. THE EFFECT OF ZINC OXIDE ON 

OTHER MICROORGANISMS 

ZnO-NPs exhibit strong antifungal and anti-

yeast properties against various harmful fungi 

and yeasts. Studies have shown that 

biosynthesized ZnO-NPs are effective against 

Fusarium solani, Fusarium oxysporum, 

Sclerotinia sclerotiorum, and Aspergillus 

terreus (73). Additionally, ZnO-NPs produced 

using Serratia nematodiphila have shown 

significant antifungal activity against 

Alternaria species and Xanthomonas oryzae pv. 

Oryzae (74). ZnO-NPs significantly inhibit the 

growth of yeasts such as Saccharomyces 

cerevisiae (75), Candida albicans (76), and 

Candida tropicalis (77). Aquatic ecosystems 
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may be significantly affected by the toxicity of 

nanoparticles, and algae are an ideal organism 

for understanding the impact of nanoparticle 

toxicity. ZnO-NPs have an effect on the algae 

Chlorella vulgaris (78), Microcystis 

aeruginosa (79), and Spirulina platensis (80). 

VI. MECHANISM OF ACTION OF ZINC 

OXIDE ON BACTERIA 

ZnO-NPs, recognized as Generally Recognized 

as Safe by the U.S. Food and Drug 

Administration (FDA), are a suitable 

alternative to antibiotics against drug-resistant 

bacteria (81). ZnO-NPs exert their antibacterial 

effects by disrupting bacterial DNA replication 

processes, causing cell membrane rupture, 

binding to proteins and DNA, generating 

reactive oxygen species (ROS), and altering 

(often reducing) the expression of several genes 

(10). Metal oxide nanoparticles induce 

oxidative stress, membrane damage, and cell 

death by infecting bacteria, increasing ROS 

production, causing membrane peroxidation, 

lipid bilayer peroxidation, and leakage of 

cytoplasmic components (82). Due to its 

powerful oxidative properties, ZnO damages 

bacterial cell membranes and disrupts their 

metabolic pathways by generating ROS and 

releasing zinc ions (Zn²⁺). Further studies on 

the antibacterial mechanisms of ZnO-NPs 

could enhance our understanding of bacterial 

resistance mechanisms and improve the contact 

time and efficacy of ZnO-NPs in inhibiting 

bacteria (11). The reduction of Zn²⁺ disrupts 

intracellular Zn²⁺ balance, leading to enzyme 

inactivation, chromatin structure alteration, 

inhibition of DNA replication, and ultimately 

bacterial death (83). 

A. Generation of Reactive Oxygen Species by 

Zinc Oxide 

The toxicity of metallic and metal oxide 

nanoparticles is primarily attributed to their 

ability to generate ROS (84). Several 

investigations have demonstrated that the high 

amounts of ROS generated in ZnO aqueous 

solutions aid in the antibacterial activity of 

ZnO. These species include hydroxyl radicals 

(OH), hydrogen peroxide (H₂O₂), and singlet 

oxygen, which play a key role in killing bacteria 

(55). ROS disrupt or alter respiratory cycles, 

protein synthesis, food metabolism, and DNA 

replication, leading to cell death (25). Exposure 

to UV radiation stimulates valence band 

electrons in ZnO-NPs, creating holes in the 

conduction band that require energy absorption 

to cross the bandgap (85). Electrons in the 

conduction band can reduce molecular oxygen 

on the ZnO surface, forming superoxide anions, 

which can react with each other to produce 

other ROS, such as H₂O₂ (86). H₂O₂ penetrates 

the cell membrane, causing membrane damage 

and degradation of DNA and membrane 

proteins. Negatively charged peroxides cannot 

cross the cell membrane, and OH⁻ accumulates 

on the bacterial cell membrane, destroying it 

(87). 

B. Release of Zn²⁺ Ions and Their Impact on 

the Antibacterial Activity of Zinc Oxide 

Nanoparticles 

The antibacterial activity of ZnO-NPs is 

primarily associated with the release of Zn²⁺ 
ions, which can inhibit bacterial growth by 

disrupting metal-dependent enzymes and 

osmotic homeostasis. This toxicity occurs even 

without direct physical contact with the 

nanoparticles and is highly dependent on 

environmental conditions, such as soluble 

compounds and surface defects of the particles 

(88). ZnO-NPs can slowly release Zn²⁺ ions in 

aqueous solutions, which can penetrate the cell 

membrane, leading to protein denaturation and 

disruption of cellular respiration. However, 

studies have shown that increasing Zn²⁺ 
concentration does not significantly enhance 

antibacterial effects. Additionally, experiments 

have demonstrated that minimal Zn²⁺ release 

under certain conditions does not fully explain 

high cell mortality. Therefore, Zn²⁺ release 

should not be considered the primary 

mechanism of ZnO's antibacterial activity (87) 

(Figure 1). 
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Figure 1. Mechanisms of action of ZnO-NPs on bacteria, including the generation of reactive oxygen species, release of 

Zn²⁺ ions, and their effects on the cell membrane and bacterial metabolism.

VII. APPLICATIONS OF ZINC OXIDE IN 

MEDICINE AND INDUSTRY 

ZnO nanostructures, due to their 

multifunctional properties, are utilized in 

sensors, energy harvesting, and electronic 

devices. Additionally, in the medical and 

antiviral fields, ZnO is highly regarded for its 

excellent biocompatibility, solubility in 

alkaline environments, and polar surfaces (89). 

The use of nanoparticles as drug carriers and for 

targeted delivery of substances, particularly in 

treating infections caused by microbial 

biofilms, is a significant and actively 

researched area among scientists (90). Drug 

delivery systems are innovative technologies 

that facilitate the transport of drugs, including 

tablets and vaccines, into or throughout the 

body. These systems protect drugs from 

degradation and maintain their stability until 

they reach the target site, thereby enhancing the 

efficacy and safety of therapeutic treatments 

(91). The small size of nanoparticles enables 

them to cross the blood-brain barrier (92). 

Doping ZnO with Gd³⁺ and Al³⁺ improves 

electrical conductivity and increases charge 

carrier concentration. The high exciton binding 

energy of ZnO is attributed to its high dielectric 

constant, which is influenced by defects such as 

Zn interstitials and oxygen vacancies. The 

enhanced dielectric properties of ZnO-NPs are 

due to oxygen vacancies, nanoscale size effects, 

and the electronegativity of added impurities. 

For instance, Li-In doped ZnO achieved a 

dielectric constant of 3800, with ε′ stabilizing at 

higher frequencies for doped samples, unlike 

pure ZnO, where dielectric relaxation was 

observed in all samples (93). ZnO is well-

known for its antibacterial properties in 

skincare creams and UV protection. The use of 

modified ZnO-NPs (4%) in coatings for 

hospital implants can be more effective in 

controlling bacterial infections. Moreover, 

these modified nanoparticles are a better option 

for use in skin lotions and UV protection 

compared to conventional ZnO (4). In addition 

to FDA approval, ZnO-NPs are suitable for 

various biomedical applications, including 

medical devices, biomedical diagnostics, tissue 

engineering, healthcare, and drug delivery, due 

to their simple, safe, and cost-effective 

production process (94-97). In biology and 

medicine, ZnO-NPs hold significant value due 

to their anticancer (98), antimicrobial (99), anti-

inflammatory (100, 101), wound-healing (102), 

bioimaging (103, 104), and antidiabetic (105, 

106) properties. The freeze-dry technique was 

used to create a composite bandage composed 

of ZnO-NPs and alginate hydrogel. This porous 

bandage not only demonstrated exceptional 

antibacterial activity against a wide range of 

pathogens but also promoted controlled 
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degradation and accelerated blood clotting 

(107). According to preliminary research, ZnO-

NPs at low concentrations in a biomaterial can 

enhance tissue integration by improving 

fibroblast attachment, promoting new blood 

vessel growth, and accelerating wound healing. 

ZnO-NPs may also increase levels of 

angiogenic factors such as vascular endothelial 

growth factor through the production of ROS 

(108). Skin wounds should be treated with 

topical medications that stimulate tissue repair 

while minimizing free radical production (109, 

110). Consequently, having a wound dressing 

material that possesses both antibacterial 

properties and wound-healing capabilities is 

crucial (111). 

VIII.  KEY CHALLENGES IN 

ANTIMICROBIAL AND ENVIRONMENTAL 

APPLICATIONS OF ZINC OXIDE 

NANOPARTICLES 

Organic materials reduce the antimicrobial 

efficacy of ZnO-NPs by affecting their stability 

and surface properties. For instance, ZnO-NPs 

perform better in organic-free environments 

because organic compounds limit their activity 

by coating the nanoparticle surfaces (112). The 

production process of ZnO-NPs, including the 

high-energy ball milling of metal powders, 

reduces particle size and ultimately yields 

nanoparticles. However, the resulting 

nanoparticles often have irregular sizes and 

shapes, which may lead to contamination from 

the surrounding environment or milling 

process, rendering them unusable (113). While 

antimicrobial nanoparticles hold significant 

potential, they face challenges such as 

resistance development, biocompatibility and 

toxicity concerns, environmental impact, 

nonspecific effects on microbiota, formulation 

optimization, drug delivery hurdles, and 

regulatory frameworks (114). The use of man-

made nanoparticles in agriculture, such as 

nanofertilizers and nanopesticides, has led to 

their accumulation in soil. Although ZnO-NPs 

are more biocompatible, their antimicrobial 

properties may disrupt soil microbiota and 

interfere with key processes such as the 

nitrogen cycle and plant growth (115). The 

toxicity of nanoparticles varies depending on 

their type and concentration. For example, 

while ZnO-NPs provide UV protection, they 

can penetrate the skin and generate ROS, 

leading to cellular damage. Toxicity tests that 

examine nanoparticle characteristics, exposure 

pathways, distribution, and biological 

interactions are essential to ensure safe usage 

(116). Although the application of ZnO-NPs 

has been limited due to concerns over toxicity, 

stability, and environmental effects, targeted 

synthesis techniques have enabled the 

development of safer and more efficient 

formulations. These advancements pave the 

way for maximizing the antimicrobial and 

protective capabilities of nanoparticles in 

healthcare products, provided that safety 

assessments and regulatory standards evolve 

alongside technological progress to ensure safer 

and more effective products (117). 

IX. CONCLUSION 

ZnO-NPs have garnered significant attention 

due to their unique properties, such as 

antimicrobial and optical activities. As potent 

antibacterial agents, ZnO-NPs exhibit broad 

applications, particularly in combating 

antibiotic-resistant bacteria. By penetrating 

bacterial cell membranes, ZnO-NPs disrupt 

membrane integrity and reduce the 

transcription of genes associated with oxidative 

stress resistance. In the medical field, these 

nanoparticles are utilized in drug delivery, 

bioimaging, cancer therapy, and wound 

healing. Green synthesis of ZnO-NPs using 

natural resources offers an environmentally 

friendly and cost-effective approach. Key 

challenges in biosynthesis include 

heterogeneity in nanoparticle size and shape, 

toxicity arising from ROS and Zn²⁺ ions, 

environmental accumulation, and scalability 

issues in large-scale production. However, 

owing to their high biocompatibility and safety, 

ZnO-NPs are regarded as promising 

alternatives to antibiotics and are increasingly 

being explored for advanced industrial and 

biomedical applications.  
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