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Abstract. Based on the notion and properties of C∗−algebras, this paper aims to collect im-
portant results of fixed point theorems in generalized C∗−valued metric spaces. We also prove
some new notions and establish an existence result for an integral equation in C∗−valued
b−metric spaces. Moreover, we give some fixed point theorems in different types of spaces such
as C∗−valued (extended b−metric, b−rectangular metric, extended hexagonal b−asymmetric,
S−metric, G−metric and partial metric) spaces.
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1. Introduction and preliminaries

Fixed point theory is an important tool for solving existence of solutions of many non-
linear problems in various branches of science and has been studied in different spaces.
Ma et al. [13] have introduced the notion of C∗−algebra-valued metric spaces by giving
the definition of C∗−algebra-valued contractive mapping analogous to Banach contrac-
tion. Many generalizations of the concept of metric spaces have been defined and some
fixed point theorems have been proved in these spaces. In particular, as a generalization
of metric spaces, C∗−algebra-valued metric spaces were introduced by Ma et al. [13].
They proved certain fixed point theorems, by giving the definition of C∗−algebra-valued
contractive mapping analogous to Banach contraction principle. Many mathematicians
also worked on this interesting space and proved various fixed point results on such
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spaces, see [8, 10, 16] and references therein. Combining conditions used for definitions
of C∗−algebra-valued metric and generalized metric spaces, Piri et al. [15] announced
the notions of C∗−algebra-valued metric space and establish nice results of fixed point
on such space.

Throughout this paper, we denote A by an unital C∗−algebra. We call an element
x ∈ A a positive element, denote it by x ⪰ θ, if x ∈ Ah = {x ∈ A : x = x∗} and
σ(x) ⊂ R+, where σ(x) is the spectrum of x. Using positive element, we can define a
partial ordering “⪯” on Ah as follows:

x ⪯ y if and only if y − x ⪰ θ,

where θ means the zero element in A. We denote the set {x ∈ A : x ⪰ θ} by A+ and

|x| = (x∗x)
1

2 . In 2015, Ma and Jiang [20] introduced a concept of C∗−algebra-valued
b−metric spaces which generalize an ordinary C∗−algebra-valued space and give some
fixed point theorems.

2. C∗−valued metric spaces

Definition 2.1 [13] Let X be a non-empty set. Suppose the mapping d : X ×X → A
satisfies:

1) d(x, y) ⪰ θ for all x, y ∈ X and d(x, y) = θ ⇔ x = y;
2) d(x, y) = d(y, x) for all x, y ∈ X;
3) d(x, y) ⪯ d(x, z) + d(z, y) for all x, y, z ∈ X.

Then d is called a C∗−algebra-valued metric on X and (X,A, d) is called a C∗−algebra-
valued metric space.

Definition 2.2 [13] Let (X,A, d) be a C∗−algebra-valued metric space. A mapping
T : X → X is said to be a C∗−valued contractive mapping on X if there exists λ ∈ A
with ∥λ∥ < 1 such that d(Tx, Ty) ⪯ λ∗d(x, y)λ.

Theorem 2.3 [13] If (X,A, d) is a complete C∗−algebra-valued metric space and T is
a contractive mapping, there exists a unique fixed point in X.

Theorem 2.4 [6] Let (X,A, d) be a complete C∗−algebra-valued metric space. Suppose
the mapping T : X → X satisfies d(Tx, Ty) ⪯ A(d(Tx, y) + d(Ty, x)) for all x, y ∈ X,

where A ∈ A′
+ and ∥A∥ < 1

2
. Then there exists a unique fixed point in X.

Definition 2.5 Let F : A+ → A+ be a function satisfying

(i) F is continuous and nondecreasing;
(ii) F (t) = θ if and only if t = θ.

A mapping T : X → X is said to be a (ϕ, F )-C∗−valued contraction of type (I) if there
exists ϕ : A+ → A+ an ∗−homomorphism such that

d(Tx, Ty) ⪰ θ ⇒ F (d(Tx, Ty)) + ϕ(d(x, y)) ⪯ F (d(x, y)) (1)

for all x, y ∈ X.

Theorem 2.6 Let (X,A, d) be a complete C∗−algebra-valued metric space and T :
X → X be a (ϕ, F )-contraction mapping of type (I). Then T has a unique fixed point
x∗ ∈ X and for every x0 ∈ X, {Tnx0}n∈N is convergent to x∗.
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Proof. First, let us observe that T has at most one fixed point. Indeed, if x∗1, x
∗
2 ∈ X,

then Tx∗1 = x∗1 ̸= x∗2 = Tx∗2 and ϕ(d(x, y)) ⪯ F (d(x∗1, x
∗
2)− F (d(Tx∗1, Tx

∗
2)) = θ, which is

a contradiction. In order to show that it has a fixed point, let x0 ∈ X be arbitrary and
define a sequence {xn}n∈N ⊂ X by xn+1 = Txn for n = 0, 1, .... Denote dn = d(xn+1, xn)
for n = 0, 1, .... If there exists n0 ∈ N for which xn0+1 = xn0

, then Txn0
= xn0

and the
proof is finished. Suppose now that xn+1 ̸= xn for every n ∈ X. Then dn ≻ θ for all
n ∈ N and using (1), F (dn) ⪯ F (dn−1) − ϕ(dn−1) ≺ F (dn−1) for every n ∈ N. Hence,
F is nondecreasing and the sequence (dn) is monotonically decreasing in A+. So there
exists θ ⪯ t ∈ A+ such that

d(xn, xn+1) → t as n→ ∞. (2)

Letting n → ∞, we obtain F (t) ⪯ F (t)− ϕ(t) and ϕ(t) ⪯ θ ⇒ t = θ. Then lim
n→∞

dn = θ.

Now, we shall show that {xn} is a Cauchy sequence in (X,A, d). Assume that {xn} is
not a Cauchy sequence in (X,A, d). Then there exist ε > 0 and subsequences {xmk

} and
{xnk

} with nk > mk > k such that ∥d(xmk
, xnk

)∥ ⩾ ε. Now, corresponding to mk, we
can choose nk such that it is the smallest integer with nk > mk and satisfying above
inequality. Hence, ∥d(xmk

, xnk−1
)∥ < ε. So we have ε ⩽ ∥d(xmk

, xnk
)∥ ⩽ ∥d(xmk

, xnk−1
)∥+

∥d(xnk−1
, xnk

)∥ ⩽ ε+ ∥d(xnk−1
, xnk

)∥. Using (2), we have ε ⩽ lim
k→∞

∥d(xmk
, xnk

)∥ < ε+ θ

implying

lim
k→∞

∥d(xmk
, xnk

)∥ = ε. (3)

Again,

∥d(xnk
, xmk

)∥ ⩽ ∥d(xnk
, xnk−1

)∥+ ∥d(xnk−1
, xmk

)∥

⩽ ∥d(xnk
, xmk−1

)∥+ ∥d(xnk−1
, xmk−1

)∥+ ∥d(xmk−1
, xmk

)∥. (4)

Also,

∥d(xnk−1
, xmk−1

)∥ ⩽ ∥d(xnk−1
, xnk

)∥+ ∥d(xnk
, xmk−1

)∥

⩽ ∥d(xnk−1
, xnk

)∥+ ∥d(xnk
, xmk

)∥+ ∥d(xmk
, xmk−1

)∥. (5)

Letting k → ∞ in (4) and (5) and using (3), we have lim
k→∞

∥d(xnk−1
, xmk−1

)∥ = ε. Since

d(xnk−1
, xmk−1

), d(xnk
, xmk

) ∈ A+ and lim
k→∞

∥d(xnk−1
, xmk−1

)∥ = lim
k→∞

∥d(xnk
, xmk

)∥ = ε,

there exists s ∈ A+ with ∥s∥ = ε such that

lim
k→∞

∥d(xnk−1
, xmk−1

)∥ = lim
k→∞

∥d(xnk
, xmk

)∥ = ∥s∥, (6)

which implies that F (s) = lim
k→∞

F (d(xnk
, xmk

)) ⪯ lim
k→∞

F (d(xnk−1
, xmk−1

)). Therefore,

F (s) + ϕ(s) ⪯ F (s). Hence, ϕ(s) = θ and s = θ, which is a contradiction. Thus, {xn} is
a Cauchy sequence in (X,A, d). Hence, there exist z ∈ X such that lim

n→∞
d(xn, z) = θ.

Now, we shall show that z is fixed point of T . Using (6), we get

d(Txn−1, T z) ⪰ θ ⇒ F (d(xn, T z)) + ϕ(d(xn−1, z)) ⪯ F (d(xn−1, z))
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Letting n → ∞ and using the concept of continuity of the function of T , we have
d(z, Tz) = θ and so Tz = z. ■

Definition 2.7 A mapping T : X → X is said to be a (ϕ, F ) C∗−valued contraction of
type (II) if there exists an ∗−homomorphism ϕ : A+ → A+ satisfying

(a) ϕ(a) ≺ a for a ∈ A+;
(b) Either ϕ(a) ⪯ d(x, y) or d(x, y) ⪯ ϕ(a), where a ∈ A+ and x, y ∈ X;
(c) F (a) ≺ ϕ(a) such that

d(Tx, Ty) ⪰ θ ⇒ F (d(Tx, Ty) + ϕ(d(x, y)) ⪯ F (M(x, y)),

where M(x, y) = a1d(x, y)+a2[d(Tx, y)+d(Ty, x)]+a3[d(Tx, x)+d(Ty, y)] with
a1, a2, a3 ⩾ 0 and a1 + 2a2 + 2a3 ⩽ 1.

Theorem 2.8 Let (X,A, d) be a complete C∗−algebra-valued metric space and T :
X → X be a (ϕ, F ) C∗−valued contraction of type (II). Then T has a fixed point.

Proof. Let x0 ∈ X and define x1 = Tx0, x2 = Tx1, ... , xn = Txn−1. We have

F (d(xn+2, xn+1)) = F (d(Txn+1, Txn))

⪯ F (M(xn+1, xn)) + ϕ(d(xn+1, xn))

= F (a1d(xn+1, xn) + a2[d(xn+2, xn) + d(xn+1, xn+1)]

+ a3[d(xn+2, xn+1) + d(xn+1, xn)])− ϕ(d(xn+1, xn)).

Then

F (d(xn+2, xn+1)) ⪯ F (a1d(xn+1, xn) + a2[d(xn+2, xn) + d(xn+1, xn+1)]

+ a3[d(xn+2, xn+1) + d(xn+1, xn)]).

Using the strongly monotone property of F , we have

d(xn+2, xn+1) ⪯ a1d(xn+1, xn) + a2[d(xn+2, xn) + d(xn+1, xn+1)]

+ a3[d(xn+2, xn+1) + d(xn+1, xn)];

that is,

(1− a2 − a3)d(Txn+1, Txn) ⪯ (a1 + a2 + a3)d(xn+1, xn).

So d(xn+2, xn+1) ⪯
a1 + a2 + a3
1− a2 − a3

d(xn+1, xn), which implies d(xn+2, xn+1) ⪯ d(xn+1, xn).

Since
a1 + a2 + a3
1− a2 − a3

< 1, {d(xn+1, xn)} is monotone decreasing sequence. There exists

u ∈ A+ such that d(xn+1, xn) → u as n→ ∞. Taking n→ ∞ in

F (d(xn+2, xn+1)) ⪯ F (a1d(xn+1, xn) + a2[d(xn+2, xn) + d(xn+1, xn+1)]

+ a3[d(xn+2, xn+1) + d(xn+1, xn)]),

and using the continuities of F and ϕ, we have

F (u) ⪯ F ((a1 + 2a2 + 2a3)u)− ϕ(u) ⇒ F (u) ⪯ F (u)− ϕ(u) ⇒ ϕ(u) ⪯ θ ⇒ u = θ.
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Hence,

d(xn+1, xn) → θ as n→ ∞. (7)

Next, we show that {xn} is a Cauchy sequence. If {xn} is not a Cauchy sequence then
there exists c ∈ A such that F (c) ⪯ d(xn, xm) for all n,m ∈ N with n > m ⩾ n0,
n0 ∈ N. Thus, there exist sequences {mk} and {nk} in N so that for all positive integers
k, nk > mk > k and d(xn(k)

, xm(k)
) ⪰ ϕ(c) and d(xn(k)−1

, xm(k)
) ⪯ ϕ(c). Then

ϕ(c) ⪯ d(xn(k)
, xm(k)

) ⪯ d(xn(k)
, xn(k)−1

) + d(xn(k)−1
, xm(k)

);

that is, ϕ(c) ⪯ d(xn(k)
, xm(k)

) ⪯ [d(xn(k)
, xn(k)−1

) + ϕ(c)]. Letting k → ∞, we have

lim
k→∞

d(xn(k)
, xm(k)

) = ϕ(c) (8)

Again d(xn(k)
, xm(k)

) ⪯ [d(xn(k)
, xn(k)+1

) + d(xn(k)+1
, xm(k)+1

) + d(xm(k)+1
, xm(k)

)] and
d(xn(k)+1

, xm(k)+1
) ⪯ [d(xn(k)+1

, xn(k)
) + d(xn(k)

, xm(k)
) + d(xm(k)

, xm(k)+1
)]. Letting k → ∞

in previous inequalities, we have

lim
k→∞

d(xn(k)+1
, xm(k)+1

) = ϕ(c) (9)

Again d(xn(k)
, xm(k)+1

) ⪯ [d(xn(k)
, xm(k)

) + d(xm(k)
, xm(k)+1

)] and

d(xn(k)+1
, xm(k)

) ⪯ [d(xn(k)+1
, xn(k)

) + d(xn(k)
, xm(k)+1

) + d(xm(k)+1
, xm(k)

)]. Fur-
ther, d(xn(k)+1

, xm(k)
) ⪯ [d(xn(k)+1

, xn(k)
) + d(xn(k)

, xm(k)
)] and d(xn(k)

, xm(k)
) ⪯

[d(xn(k)
, xn(k)+1

) + d(xn(k)+1
, xm(k)

)]. Letting k → ∞ in above four inequalities, we have

lim
k→∞

d(xn(k)
, xm(k)+1

) = ϕ(c) and lim
k→∞

d(xn(k)+1
, xm(k)

) = ϕ(c) (10)

Using (7), (8), (9) and (10), we have

lim
k→∞

M(xn(k)
, xm(k)

) = lim
k→∞

a1d(xn(k)
, xm(k)

) + a2[d(xn(k)
, xm(k)

) + d(xm(k)
, xm(k)+1

)]

+ a3[d(xn(k)
, xm(k)+1

) + d(xm(k)
, xn(k)+1

)]

= (a1 + 2a2)ϕ(c) (11)

Clearly, xmk
⪯ xnk

. Putting x = xn(k)
and y = xm(k)

, we have

F (d(xn(k)+1
, xm(k)+1

) = F (d(Txn(k)
, Txm(k)

) ⪯ F (M(xn(k)
, xm(k)

))− ϕ(xn(k)
, xm(k)

).

Letting k → ∞ in the above inequality and using (7), (8) and (11), and the continuity
of F and ϕ, we have by virtue of a property of ϕ that

F (ϕ(c)) ⪯ F ((a1 + 2a2)ϕ(c))− ϕ(ϕ(c))

⇒ F (ϕ(c)) ⪯ F (ϕ(c))− ϕ(ϕ(c)) ⇒ ϕ(ϕ(c)) ⪯ θ ⇒ ϕ(c) = θ,

Hence, {xn} is a Cauchy sequence. From the completeness of X, there exists z ∈ X such
that xn → z as n→ ∞. Since T is continuous and Txn → Tz as n→ ∞, lim

n→∞
xn+1 = Tz,

that is z = Tz. Hence z is a fixed point of T . ■
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Corollary 2.9 Let (X,A, d) be a complete C∗−algebra-valued metric space and T :
X → X be a (ϕ, F ) C∗−valued contraction of type (II). If a1 = a2 = 0 and a3 = 1

2 ,
a mapping T is said to be (ϕ, F )−Kannan-type C∗−valued contraction. Then T has a
fixed point.

Corollary 2.10 Let (X,A, d) be a complete C∗−algebra-valued metric space and T :
X → X be a (ϕ, F ) C∗−valued contraction of type (II). If a1 = a3 = 1

2 and a2 = 0, a
mapping T is said to be (ϕ, F )−Reiche-type C∗−valued contraction. Then T has a fixed
point.

2.1 Application to Fredholm’s integral equations

Here, we apply Theorem 2.6 to prove the existence and uniqueness of the solution to
Fredholm’s integral equations x(t) = λ

∫
EK(t, s, x(s))ds.

Theorem 2.11 Let E = [0, 1] be a measurable Lebesgue set of finite measure and
X = L∞(E). Consider the Hilbert space L2(E). We denote B(L2(E)) the set of all linear
operators bounded in L2(E), it is a unitary C∗−algebra with the usual norm of operators.
For x, y ∈ X, we define the metric d : X ×X → B(L2(E))+ by d(x, y) = π(x−y)2 , where

πh(f) = hf for f ∈ L2(E). It is clear that (X,B(L2(E)), d) is a complete C∗−valued
metric space. Suppose that there exists 1 > λ > 0 and K : E×E×R → R is a continuous
application. For all x, y ∈ X and t, s ∈ E, consider Fredholm integral equation:

x(t) =

∫
E
K(t, s, x(s))ds, (12)

and suppose the kernel function K satisfies |K(t, s, x(s)) − K(t, s, y(s))| ⩽
λe

− 1

|x(t)−y(t)| |x(t)− y(t)|. Then, (12) admits a unique solution.

Proof. Let T : X → X be defined by T (x)(t) =
∫
EK(t, s, x(s))ds for all x ∈ X. Suppose

that x, y ∈ X and t, s ∈ E. Then

∥d(Tx, Ty)∥ = ∥π(Tx−Ty)2∥ = sup
∥g∥2=1

⟨π(Tx−Ty)2g, g⟩ ∀g ∈ L2(E)

= sup
∥g∥2=1

∫
E

(Tx− Ty)2(t)g(t)g(t)dt

= sup
∥g∥2=1

∫
E

|
∫
E

K(t, s, x(s))−K(t, s, y(s))ds|2g(t)g(t)dt

= sup
∥g∥2=1

∫
E

|
∫
E

K(t, s, x(s))−K(t, s, y(s))ds|2|g(t)|2dt

⩽ sup
∥g∥2=1

∫
E

λ2(

∫
E

e−
1

|x(s)−y(s)| |x(s)− y(s)|ds)2|g(t)|2dt

⩽ λ2 sup
∥g∥2=1

∫
E

[

∫
E

e−
1

|x(s)−y(s)| ds]2|g(t)|2∥(x− y)2∥∞dt

⩽ λ2|
∫
E

e−
1

|x(s)−y(s)| ds|2. sup
∥g∥2=1

∫
E

|g(t)|2dt.∥(x− y)2∥∞.



H. Massit and M. Rossafi / J. Linear. Topological. Algebra. 13(04) (2024) 271-296. 277

Note that the set {s ∈ E/x(s) = y(s)} is negligible. In addition, we have

|x(s)− y(s)| ⩽ sup
s∈E

|x(s)− y(s)| = ∥x− y∥∞ ⇔ 1

|x(s)− y(s)|
⩾ 1

∥x− y∥∞

⇔ −1

|x(s)− y(s)|
⩽ −1

∥x− y∥∞
⇔

∫
E
e

−1

|x(s)−y(s)|ds ⩽
∫
E
e

−1

∥x(s)−y(s)∥∞ ds.

and as ln
∫
E f ⩽

∫
E ln(f) where (E = [0, 1]),

F̃ (∥d(Tx, Ty)∥) ⩽ 2 ln(λ) + 2 ln(∥d(x, y)∥) + 2

∫
E

−1

∥x− y∥∞
ds

⩽ 2(ln(λ) + ln(∥d(x, y)∥)− m(E)

∥d(x, y)∥
)

⩽ 2[F̃ (∥d(x, y)∥)−m(E)ϕ̃(∥d(x, y)∥))].

If we take F (d(x, y)) = F̃ (∥d(x, y)∥)I and ϕ(d(x, y)) = ϕ̃(∥d(x, y)∥)I, then

F ((d(Tx, Ty)) + ϕ(d(x, y)) ⩽ F (d(x, y)) .

Then T satisfies the condition (1), and the equation (12) has a unique solution. ■

3. C∗−valued b−metric spaces

In this section, we introduce the notion of C∗−valued b−metric space.

Definition 3.1 [3] Let X be a non-empty set and A be a unital C∗−algebra. Let b ∈ A
such that ∥b∥ ⩾ 1. A C∗−valued b−metric on X is a mapping T : X ×X → A satisfying
the following conditions:

(1) d(x, y) ⪰ θ, ∀x, y ∈ X and d(x, y) = θ ⇔ x = y;
(2) d(x, y) = d(y, x);
(3) d(x, z) ⪯ b[d(x, y) + d(y, z)] for all x, y, z ∈ X.

(X,A, d) is called a C∗−valued b−metric space with the coefficient b.

Definition 3.2 [3] Let (X,A, d) be a C∗−algebra-valued b−metric space. A mapping
T : X → X is said to be a contraction if there exists λ ∈ A with ∥λ∥ < 1 such that
d(Tx, Ty) ⪯ λ∗d(x, y)λ for all x, y ∈ X.

Theorem 3.3 [3] Let (X,A, d) be a complete C∗−algebra-valued b−metric space. Let
T : X → X be a contraction with the contraction constant λ ∈ A such that ∥b∥∥λ∥2 < 1.
Then T has a unique fixed point in X.

Lemma 3.4 Let (X,A, d) be a C∗−algebra-valued b−metric space with b ⪰ I. Suppose
that {xn} is a sequence in X such that d(xn+1, xn) ⪯ δd(xn, xn−1) for all n ∈ N and

δ ∈ [0, 1) with ∥b∥ < 1

δ
. Then {xn} is a Cauchy sequence.

Definition 3.5 [7] Let (X,A, d) be a C∗−algebra-valued b−metric space and {xn} a
sequence in X.

(1) {xn} converges to x ∈ X if d(xn, x) → θ as n→ ∞.
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(2) {xn} is a Cauchy sequence if d(xm, xn) → θ as m,n→ ∞
(3) (X,A, d) is complete if very Cauchy sequence in X is convergent.

Definition 3.6 [7] Let T : X → X and α : X ×X → A′
+ be two mappings. T is said

to be α−admissible if α(x, y) ⪰ I implies α(Tx, Ty) ⪰ I.

Definition 3.7 [7] Let T : X → X and α : X ×X → A′
+ be two mappings such that T

is α−admissible. T is said to be triangular α−admissible if α(x, y) ⪰ I and α(y, z) ⪰ I
imply α(x, z) ⪰ I.

Definition 3.8 [7] Let T : X → X and α : X ×X → A′
+ be two mappings. T is said

to be α−orbital admissible if α(x, Tx) ⪰ I implies α(Tx, T 2x) ⪰ I.

Definition 3.9 [7] Let T : X → X and α : X ×X → A′
+ be two mappings such that

T is α−orbital admissible. T is said to be triangular α−orbital admissible if α(x, y) ⪰ I
and α(y, Ty) ⪰ I imply α(x, Ty) ⪰ I.

4. Fixed point theorems for C∗−multivalued contractions in
b−metric space

The concept of multivalued contraction mappings was introduced by Nadler [14]. He
established that a multivalued contraction mapping has a fixed point in a complete
metric space. In 2017, Amer [1] introduced a new concept known as generalized α∗ − ψ-
Geraghty contraction type for multivalued mappings. Let (X,A, d) be a C∗−algebra-
valued b−metric space. We will denote by CB(X) the set of non-empty bounded closed
subsets of X. For M,N ∈ CB(X) and x ∈ X, we define d(x,M) = infa∈M d(x, a) and
d(M,N) = supa∈M d(a,N). The mapping h : CB(X)×CB(X) → A+ given by h(M,N) =
max{supa∈M d(a,N), supb∈N d(b,M)} is the Hausdorff distance between M and N in
CB(X). A point x is said to be a fixed point of multivalued mapping T : X → CB(X)
provided x ∈ T (x).

Definition 4.1 [1] Let (X,A, d) be a C∗−algebra-valued b−metric space and α : X ×
X → A′

+ be a mapping. The space X is said to be α−complete if every Cauchy sequence
{xn} in X with α(xn, xn+1) ⪰ I for all n ∈ N converges in X.

Definition 4.2 [1] Let α : X × X → A′
+ be a mapping and T : X → CB(X) be a

multivalued mapping satisfying the property that if α(x, y) ⪰ I implies α∗(Tx, Ty) ⪰ I,
where α∗(M,N) = inf{α(x, y) : x ∈M,y ∈ N}, then T is said to be α∗−admissible.

Definition 4.3 [1] Let (X,A, d) be a C∗−algebra-valued b−metric space and α, η :
X×X → A+ be two mappings. T is said to be α−η−continuous on (X,A, d) if for given
x ∈ X and a sequence {xn} in X with α(xn, xn+1) ⪰ I for all n ∈ N such that xn → x as
n→ ∞ imply that Txn → Tx as n→ ∞. If η(xn, xn+1) = I, then T is an α−continuous
mapping.

Definition 4.4 [1] Let T, S : X → CB(X) be two multivalued mappings and α : X ×
X → A′

+ be a function. Then the pair (T, S) is said to be triangular α∗−admissible if
the following conditions hold:

(i) α(x, y) ⪰ I ⇒ α∗(Tx, Sy) ⪰ I and α∗(Sx, Ty) ⪰ I;
(ii) α(x, y) ⪰ I and α(y, z) ⪰ I ⇒ α(x, z) ⪰ I.

Definition 4.5 [1] Let T, S : X → CB(X) be two multivalued mappings and α :
X × X → A′

+ be a function. Then the pair (T, S) is said to be triangular α∗−orbital
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admissible if the following condition holds:
α(x, Tx) ⪰ I and α∗(x, Sx) ⪰ I ⇒ α∗(Tx, S

2x) ⪰ I and α∗(Sx, T
2x) ⪰ I.

Definition 4.6 [1] Let T, S : X → CB(X) be two multivalued mappings and α :
X × X → A′

+ be a function. Then the pair (T, S) is said to be triangular α∗−orbital
admissible if the following conditions hold:

(i) (T, S) is α∗−orbital admissible.
(ii) α(x, y) ⪰ I, α(y, Ty) ⪰ I and α∗(y, Sy) ⪰ I imply α∗(x, Ty) ⪰ I and α∗(x, Sy) ⪰

I.

Lemma 4.7 [1] Let T, S : X → B(X) be two multivalued mappings such that the pair
(T, S) is triangular α∗−orbital admissible. Assume that there exists x0 ∈ X such that
α∗(x0, Tx0) ⪰ I. Define a sequence {xn} ∈ X by x2n+1 ∈ Tx2n and x2n+2 ∈ S(x2n+1),
where n = 0, 1, .... Then, for all n,m ∈ N with m > n, we have α(xn, xm) ⪰ I.

Using C∗−Hausdorff metric on CB(X), we give a generalization of some common fixed
point results for rational contraction of multivalued mappings defined on a C∗−algebra-
valued b−metric space.

Lemma 4.8 Let M,N ∈ CB(X) such that (X,A, d) be a C∗−algebra-valued b−metric
space. Suppose that the range of the metric d is a totally ordered subset of A+. For all
a ∈M , we have d(a,N) ⪯ h(M,N).

Lemma 4.9 Let M,N ∈ CB(X) such that (X,A, d) be a C∗−algebra-valued b−metric
space. Suppose that the range of the metric d is a totally ordered subset of A+. For all
a ∈M , if r ⪰ θ, there exists u ∈ N such that d(a, u) ⪯ h(M,N) + r.

Lemma 4.10 Let M,N ∈ CB(X) such that (X,A, d) be a C∗−algebra-valued b−metric
space. Then for all a ∈M and q < 1, there exists u ∈ N such that qd(a, u) ⪯ h(M,N).

Definition 4.11 Let (X,A, d) be a C∗−algebra-valued b−metric space. Let α : X×X →
A′

+ be a mapping and T : X → CB(X) be a multivalued mapping. Then T is said an
α−continuous multivalued mapping on (CB(X), h).

Definition 4.12 Let (X,A, d) be a C∗−algebra-valued b−metric space with a coefficient
b ⪰ I. A mapping T : X → CB(X) is called a C∗−multivalued contraction if there exists
λ ∈ A with ∥λ∥ < 1 and ∥b∥∥λ∥2 < 1 such that h(Tx, Ty) ⪯ λ∗d(x, y)λ for all x, y ∈ X.

Theorem 4.13 Let (X,A, d) be a complete C∗−algebra-valued b−metric space with a
coefficient b ⪰ I and T : X → CB(X) be a C∗−multivalued contraction. That is, there
exists λ ∈ A with ∥λ∥ < 1 and ∥b∥∥λ∥2 < 1 such that h(Tx, Ty) ⪯ λ∗d(x, y)λ for all
x, y ∈ X. Then T has a fixed point.

Proof. Let x0 ∈ X. Consider x1 ∈ Tx0 and x2 ∈ Tx1 such that d(x1, x2) ⪯
h(Tx0, Tx1) + λ∗λ. Again, since Tx1 and Tx2 are closed and bounded subsets of
X and x2 lies in Tx1, there will be a point x3 ∈ Tx2, which satisfies d(x2, x3) ⪯
h(Tx1, Tx2) + (λ∗λ)2. Proceeding in this way, we obtain a sequence {xn}n∈{1,2,..} of
points of X such that xn+1 ∈ Txn and d(xn, xn+1) ⪯ h(Txn−1, Txn) + (λ∗λ)n for all
n ⩾ 1. We note that

d(xn, xn+1) ⪯ h(Txn−1, Txn) + (λ∗λ)n ⪯ λ∗d(xn−1, xn)λ) + (λ∗λ)n

⪯ λ∗[h(Txn−2, Txn−1) + (λ∗λ)n−1]λ+ (λ∗λ)n = λ∗[h(Txn−2, Txn−1)]λ+ 2(λ∗λ)n

⪯ λ∗nd(x0, x1)λ
n + n(λ∗λ)n.
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for all n ⩾ 1. Hence, for all n,m ⩾ 1,

d(xm, xn) ⪯ b[d(xm, xm+1) + d(xm+1, xn)]

⪯ bd(xm, xm+1) + b2d(xm+1, xm+2) + ...+ bn−md(xn−1, xn)

⪯ b[λ∗md(x0, x1)λ
m +m(λ∗λ)m] + b2[λ∗(m+1)d(x0, x1)λ

m+1 + (m+ 1)(λ∗λ)m+1]

+ ...+ bn−m[λ∗(n−1)d(x0, x1)λ
n−1 + (n− 1)(λ∗λ)n−1]

⪯ ∥b∥−m+1[

n−1∑
k=m

∥bk∥∥(λ∗)k∥2∥(d(x0, x1))
1

2 ∥2IA +

n−1∑
k=m

∥bk∥k∥λk∥2IA]

⪯ ∥b∥−m+1∥(d(x0, x1))
1

2 ∥2
n−1∑
k=m

∥bk∥∥λk∥2IA + ∥b∥−m+1
n−1∑
k=m

k∥bk∥ ∥λk∥2IA

⪯ ∥b∥−m+1∥(d(x0, x1))
1

2 ∥2
n−1∑
k=m

(∥b∥∥λ2∥)kIA + ∥b∥−m+1
n−1∑
k=m

k(∥b∥ ∥λ2∥)kIA → θ,

as m → ∞. It follows that {xn} is a Cauchy sequence in X. Since X is complete,
the sequence {xn} will converge to some x0 ∈ X. Also, h(Txn, Tx0) ⪯ λ∗d(xn, x0)λ.
Therefore, the sequence {Txn} converges to Tx0. Also, xn ∈ Txn−1 for all n ∈ {1, ...}
and d(xn, Tx0) → θ as n→ ∞. We obtain that x0 ∈ Tx0. ■

If whenever {xn} is a sequence in X with α(xn, xn+1) ⪰ I for all n ∈ N and x ∈ X
such that lim

n→+∞
d(xn, x) = θ, then lim

n→+∞
h(Txn, Tx) = θ.

Definition 4.14 Let (X,A, d) be a C∗−algebra-valued b−metric space. Let α : X×X →
A′

+ be a mapping and T, S : X → CB(X) two multivalued mappings said to be a pair
of generalized rational α∗−contraction type for multivalued mappings if α(x, y) ⪰ I and
h(Tx, Sy) ⪯ λ∗M(x, y)λ for all x, y ∈ X, where λ ∈ A with ∥λ∥ < 1 and ∥b∥∥λ∥2 < 1,
and M(x, y) = max{d(x, y), d(x, Tx), d(y, Sy)}.

Theorem 4.15 Let (X,A, d) be a C∗−algebra-valued b−metric space with b ⪰ I and
α : X ×X → A′

+ be a mapping. Let T, S : X → CB(X) be a pair of generalized rational
α∗−contraction type for multivalued mappings and

(i) (X,A, d) is an α−complete;
(ii) (T, S) is triangular α∗−orbital admissible;
(iii) α∗(x0, Tx0) ⪰ I for x0 ∈ X;
(iv) T and S are α−continuous.

Then there exists a common fixed point of T and S in X.

Proof. Let x0 ∈ X such that α∗(x0, Tx0) ⪰ I. Let x1 ∈ Tx0 so that α(x0, x1) ⪰ I and
x1 ̸= x0. We have 0 < d(x1, Sx1) ⪯ h(Tx0, Sx1) ⪯ λ∗M(x0, x1)λ. There exists x2 ∈ Sx1
such that d(x1, x2) ⪯ h(Tx0, Sx1) ⪯ λ∗M(x0, x1)λ with

M(x0, x1) = max{d(x0, x1), d(x0, Tx0), d(x1, Sx1)}

= max{d(x0, x1), d(x0, x1), d(x1, Sx1)} = max{d(x0, x1), d(x1, Sx1)}.

If max{d(x0, x1), d(x1, Sx1)} = d(x1, Sx1), we get d(x1, Sx1) ⪯ λ∗d(x1, Sx1)λ, implying
that ∥d(x1, Sx1)∥ ⩽ ∥λ∥2∥d(x1, Sx1)∥ < ∥d(x1, Sx1)∥, which is a contradiction. Hence,
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max{d(x0, x1), d(x1, Sx1)} = d(x0, x1), by Lemma 4.10 with q = 1/∥b∥, there is x2 ∈
Sx1 so that ∥d(x1, x2)∥ ⩽ ∥b∥ ∥λ∥2 ∥d(x0, x1)∥ < ∥d(x0, x1)∥. Similarly, for x3 ∈ Tx2,
1

∥b∥
d(x2, x3) ⪯ h(Sx1, Tx2) ⪯ λ∗M(x1, x2)λ, where

M(x1, x2) = max{d(x1, x2), d(x1, Sx1), d(x2, Tx2)} = max{d(x1, x2), d(x2, Tx2)}.

We obtain d(x2, x3) ⪯ h(Sx1, Tx2) ⪯ λ∗M(x1, x2)λ where

M(x1, x2) = max{d(x1, x2), d(x1, Sx1), d(x2, Tx2), } = max{d(x1, x2), d(x2, Tx2)}.

If M(x1, x2) = d(x2, Tx2), by 0 ≺ d(x2, Tx2) ⪯ h(Sx1, Tx2) ⪯ λ∗d(x2, Tx2)λ, we have

1

∥b∥
d(x2n+1, x2n+2) ⪯ h(Tx2n, Sx2n+1) ⪯ λ∗M(x2n, x2n+1)λ,

and ∥d(x2, Tx2)∥ < ∥λ∥∥d(x2, Tx2)∥, a contradiction. So max{d(x1, x2), d(x2, Tx2)} =
d(x1, x2) and ∥d(x2, x3)∥ ⩽ ∥b∥ ∥λ∥2 ∥d(x1, x2)∥. We define a sequence {xn} by x2n+1 ∈
Tx2n and x2n ∈ Sx2n+1 for n = 0, 1, .... Thus, α(xn, xn+1) ⪰ I for all n ∈ N and

0 ≺ d(x2n+1, Sx2n+1) ⪯ h(Tx2n, Sx2n+1) ⪯ λ∗M(x2n, x2n+1)λ, (13)

and

1

∥b∥
d(x2n+1, x2n+2) ⪯ h(Tx2n, Sx2n+1) ⪯ λ∗M(x2n, x2n+1)λ,

we have

M(x2n, x2n+1) = max{d(x2n, x2n+1), d(x2n, Tx2n), d(x2n+1, Sx2n+1)}

= max{d(x2n+1, x2n), d(x2n+1, Sx2n+1)}.

If max{d(x2n+1, x2n), d(x2n+1, Sx2n+1)} = d(x2n+1, Sx2n+1), then we have by (13) that

d(x2n+1, Sx2n+1) ⪯ λ∗d(x2n+1, Sx2n+1)λ⇒ ∥d(x2n+1, Sx2n+1)∥ < ∥λ∥∥d(x2n+1, Sx2n+1)∥,

which is a contradiction. Hence, max{d(x2n+1, x2n), d(x2n+1, Sx2n+1)} = d(x2n, x2n+1)
and d(x2n+1, Sx2n+1) ⪯ λ∗d(x2n, x2n+1)λ, which implies that ∥d(x2n+1, x2n+2)∥ ⩽
∥b∥ ∥λ∥2 ∥d(x2n+1, x2n)∥ and by Lemma 3.4, {xn} is a Cauchy sequence. By complete-
ness of (X,A, d), there is z ∈ X so that for all n ∈ N ∪ {0}, lim

n→+∞
d(xn, z) = θ implying

lim
n→+∞

d(x2n+1, z) = lim
n→+∞

d(x2n+2, z) = θ. As S is α−continous, lim
n→+∞

h(Sx2n+2, Sz) =

θ. Therefore, d(z, Sz) ⪯ b[d(z, x2n+1) + d(x2n+1, Sz)] → θas n → ∞ then, z ∈ Sz.
Similarly, we obtain z ∈ Tz. Thus, z is a common fixed point of T and S. ■

In the following, the α−continuity proprety is replaced by a new condition.

Theorem 4.16 Let (X,A, d) be a C∗−algebra-valued b−metric space with b ⪰ I and
α : X ×X → A′

+ be a mapping and T, S : X → CB(X) be a pair of generalized rational
α∗−contraction type, where

(i) (X,A, d) is an α−complete;
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(ii) (T, S) is triangular α∗−orbital admissible;
(iii) α∗(x0, Tx0) ⪰ I for x0 ∈ X;
(iv) If {xn} is a sequence in X such that α(xn, xn+1) ⪰ I for all n ∈ N ∪ {0} and

lim
n→∞

d(xn, z) = θ, then there exists a subsequence {xn(k)} of {xn} such that

α(xn(k), z) ⪰ I for all k ∈ N ∪ {0}.

Then, T and S have a common fixed point in X.

Proof. Let {xn} be a sequence in X such that x2n+1 ∈ Tx2n and x2n+2 ∈ Sx2n+1 for
n = 0, 1, ..., with α(xn, xn+1) ⪰ I and xn → z ∈ X. By (iv), we have for all k ∈ N that

d(z, Tz) ⪯ b[d(z, x2n(k)+1) + d(x2n(k)+1, T z)] ⪯ bd(z, x2n(k)+1) + bh(Sx2n(k), T z)

⪯ bd(z, x2n(k)+1) + bλ∗M(x2n(k), z)λ, (14)

where M(x2n(k), z) = max{d(x2n(k), z), d(x2n(k), Sx2n(k)), d(z, Tz)}. Letting k → ∞, we
get M(x2n(k), z) → d(z, Tz), and by (14), we have

d(z, Tz) ⪯ bλ∗d(z, Tz)λ⇒ ∥d(z, Tz)∥ < ∥b∥∥λ∥2∥d(z, Tz)∥,

which is a contradiction. Then z ∈ Tz i.e, z is a fixed point of T . Proceeding in this
manner we prove that z ∈ Sz, i.e, z is the common fixed point of T and S. ■

We denote Φ the class of all functions ϕ : A+ → A+ such that for any bounded
sequence {tn} of positive real numbers, lim

n→∞
ϕ(tn) = I implies lim

n→∞
tn = θ and ∥ϕ∥ < 1,

and Ψ the class of the functions ψ : A+ → A+ satisfying the conditions:

(i) ψ is nondecreasing and continuous;
(ii) ψ(t) = θ ⇔ t = θ.

Definition 4.17 Let (X,A, d) be a C∗−algebra-valued b−metric space with b ≻ I and
α : X ×X → A′

+ be a mapping. Let T, S : X → CB(X) be a pair of generalized rational
α∗−ψ− Geraghty contraction type for multivalued mappings if there is ϕ ∈ Φ and ψ ∈ Ψ
such that for x, y ∈ X with α(x, y) ⪰ I, the pair (T, S) satisfies the following inequality:

α(x, y)ψ(h(Tx, Sy)) ⪯ ϕ(ψ(M(x, y)))ψ(M(x, y)), (15)

where M(x, y) = max{d(x, y), d(x, Tx), d(y, Sy)}.

Theorem 4.18 Let (X,A, d) be a C∗−algebra-valued b−metric space with b ⪰ I, α :
X × X → A′

+ be a mapping and T, S : X → CB(X) be a pair of generalized rational
α∗ − ψ−Geraghty contraction type, where

(i) (X,A, d) is an α−complete;
(ii) (T, S) is triangular α∗−orbital admissible;
(iii) α∗(x0, Tx0) ⪰ 1 for x0 ∈ X;
(iv) T and S are α−continuous.

Then there exists a common fixed point of T and S in X.

Proof. Let x0 ∈ X. Construct the sequence {xn} such that x2n+1 ∈ Tx2n and x2n+2 ∈
Sx2n+1 for n = 0, 1, ... with α(xn, xn+1) ⪰ I. By (15), we have

0 < ψ(d(x1, Sx1)) ⪯ ψ(h(Tx0, Sx1)) ⪯ α(x0, x1)ψ(h(Tx0, Sx1))

⪯ ϕ(ψ(M(x0, x1)))ψ(M(x0, x1)).
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There exists x2 ∈ Sx1 such that

ψ(d(x1, x2)) ⪯ α(x0, x1)ψ(h(Tx0, Sx1)) ⪯ ϕ(ψ(M(x0, x1)))ψ(M(x0, x1))

with

M(x0, x1) = max{d(x0, x1), d(x0, Tx0), d(x1, Sx1)} = max{d(x0, x1), d(x0, x1), d(x1, Sx1)}

= max{d(x0, x1), d(x1, Sx1)}.

If max{d(x0, x1), d(x1, Sx1)} = d(x1, Sx1), we get

ψ(d(x1, Sx1)) ⪯ ϕ(ψ(d(x1, Sx1)))ψ(d(x1, Sx1))

⇒ ∥ψ(d(x1, Sx1))∥ ⩽ ∥ϕ(ψ(d(x1, Sx1)))∥∥ψ(d(x1, Sx1))∥,

which is a contradiction. Hence, max{d(x0, x1), d(x1, Sx1)} = d(x0, x1). Then

ψ(d(x1, x2)) ⪯ ϕ(ψ(d(x0, x1)))ψ(d(x0, x1)).

In the same way, for x2 ∈ Sx1 and x3 ∈ Tx2, we obtain

ψ(d(x2, x3)) ⪯ α(x1, x2)ψ(h(Sx1, Tx2)) ⪯ ϕ(ψ(M(x1, x2)))ψ(M(x1, x2))

where M(x1, x2) = max{d(x1, x2), d(x1, Sx1), d(x2, Tx2)} = max{d(x1, x2), d(x2, Tx2)}.
If M(x1, x2) = d(x2, Tx2), we obtain

ψ(d(x2, x3)) ⪯ ϕ(ψ(d(x2, Tx2)))ψ(d(x2, Tx2))

⇒ ∥ψ(d(x2, Tx2))∥ ⩽ ∥ϕ(ψ(d(x2, Tx2)))∥∥ψ(d(x2, Tx2))∥,

which is a contradiction. Hence, max{d(x1, x2), d(x2, Tx2)} = d(x1, x2) and we have
ψ(d(x2, x3)) ⪯ ϕ(ψ(d(x1, x2)))ψ(d(x1, x2)). We define a sequence {xn} by x2n+1 ∈ Tx2n
and x2n ∈ Sx2n+1 for n = 0, 1, .... So α(xn, xn+1) ⪰ I for all n ∈ N ∪ {0} and

ψ(d(x2n+1, Sx2n+1)) ⪯ ψ(h(Tx2n, Sx2n+1)) ⪯ ϕ(ψ(M(x2n, x2n+1)))ψ(M(x2n, x2n+1)),

and

ψ(d(x2n+1, x2n+2)) ⪯ ψ(h(Tx2n, Sx2n+1)) ⪯ ϕ(ψ(M(x2n, x2n+1)))ψ(M(x2n, x2n+1)),

where

M(x2n, x2n+1) = max{d(x2n, x2n+1), d(x2n, Tx2n), d(x2n+1, Sx2n+1)}

= max{d(x2n+1, x2n), d(x2n+1, Sx2n+1)}.

If max{d(x2n+1, x2n), d(x2n+1, Sx2n+1)} = d(x2n+1, Sx2n+1), then

ψ(d(x2n+1, Sx2n+1)) ⪯ ϕ(ψ(d(x2n+1, Sx2n+1)))ψ(d(x2n+1, Sx2n+1))

⇒ ∥ψ(d(x2n+1, Sx2n+1))∥ ⩽ ∥ϕ(ψ(d(x2n+1, Sx2n+1)))∥∥ψ(d(x2n+1, Sx2n+1))∥,
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which is a contradiction. Hence, max{d(x2n+1, x2n), d(x2n+1, Sx2n+1)} = d(x2n+1, x2n)
and we have ψ(d(x2n+1, Sx2n+1)) ⪯ ϕ(ψ(d(x2n+1, x2n)))ψ(d(x2n+1, x2n)). Using prop-
erties of ψ and ϕ, we conclude that {xn} is a Cauchy sequence. By completeness of
(X,A, d), there exists z ∈ X such that

lim
n→+∞

d(xn, z) = θ ⇒ lim
n→+∞

d(x2n+1, z) = lim
n→+∞

d(x2n+2, z) = θ.

for all n ∈ N ∪ {0}. Since S is α−continuous, lim
n→+∞

h(Sx2n+2, Sz) = θ. Therefore,

d(z, Sz) ⪯ b[d(z, x2n+1)+d(x2n+1, Sz)] → θ. So, z ∈ Sz. Similarly, we show that z ∈ Tz.
Then T and S have a common fixed point in X. ■

5. C∗−valued extended b−metric spaces

Definition 5.1 [2] Let X be a non-empty set and E : X × X → A′
. A function d :

X ×X → A is called a C∗−algebra-valued extended b−metric spaces on X if

1) d(x, y) = θ ⇔ x = y for all x, y ∈ X and d(x, y) ⪰ θ;
2) d(x, y) = d(y, x) for all x, y ∈ X,
3) d(x, y) ⪯ E(x, y)[d(x, z) + d(z, y)] for all x, y, z ∈ X.

(X,A, d) is called a C∗−algebra-valued extended b−metric space.

Theorem 5.2 [2] Let (X,A, d) be complete C∗−algebra-valued extended b−metric space
and T : X → X satisfies d(Tx, Ty) ⪯ λ∗d(x, y)λ for all x, y ∈ X, where λ ∈ A with
∥λ∥ < 1 and lim

n,m→∞
E(xn, xm)∥λ∥ ≺ I. Then T has a unique fixed point x ∈ X.

6. C∗−valued rectangular metric spaces

In 2000, Branciari [4] introduced the notion of a generalized (rectangular) metric space.
Rectangular metric space is different with metric space and b−metric space. The differ-
ence is located in the last properties, that is triangle inequality, which is in this space we
used rectangular inequality.

Definition 6.1 Assume X is a non-empty set and the mapping d : X × X → A+

satisfies:

(i) d(x, y) = θ if and only if x = y;
(ii) d(x, y) = d(y, x) for all distinct points x, y ∈ X;
(iii) d(x, y) ⪯ d(x, u) + d(u, v) + d(v, y) for all x, y ∈ X and for all distinct points

u, v ∈ X − {x, y}.

Then (X,A, d) is called a C∗−valued rectangular metric space.

Definition 6.2 Let (X,A, d) be a C∗−valued rectangular metric space. A mapping
T : X → X is said to be a contraction if there exists λ ∈ A with ∥λ∥ < 1 such that
d(Tx, Ty) ⪯ λ∗d(x, y)λ for all x, y ∈ X.

Theorem 6.3 Let (X,A, d) be a complete C∗−algebra-valued rectangular metric space.
Let T : X → X be a contraction with the contraction constant λ ∈ A such that ∥λ∥ < 1.
Then T has a unique fixed point in X.
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Proof. Choose x0 ∈ X and define x1 = Tx0, x2 = Tx1, ... , xn = Txn−1. Then

d(xn+1, xn) = d(Txn, Txn−1) ⪯ λ∗d(xn, xn−1)λ

⪯ (λ∗)2d(xn−1, xn−2)λ
2 ⪯ (λ∗)nd(x1, x0)λ

n = (λ∗)nBλn,

where B = d(x1, x0). For any m ⩾ 1 and p ⩾ 1, we have

d(xm+p, xm) ⪯ d(xm+p, xm+p−1) + d(xm+p−1, xm+p−2) + d(xm+p−2, xm)

⪯ d(xm+p, xm+p−1) + d(xm+p−1, xm+p−2) + d(xm+p−2, xm+p−3) + ...

+ d(xm+3, xm+2) + d(xm+2, xm+1) + d(xm+1, xm)

⪯ (λ∗)m+p−1Bλm+p−1 + (λ∗)m+p−2Bλm+p−2 + (λ∗)m+p−3Bλm+p−3

+ (λ∗)m+p−4Bλm+p−4 + ...+ (λ∗)m+1Bλm+1 + (λ∗)mBλm

⪯

P−1

2∑
k=1

∥B
1

2λm+p−(2k−1)∥2I +

P−1

2∑
k=1

∥B
1

2λm+p−(2k)∥2 + ∥B
1

2λm∥2I

⪯ ∥B∥

P−1

2∑
k=1

λ∥2(m+p−(2k−1)I + ∥B∥

P−1

2∑
k=1

∥λ∥2(m+p−(2k)I + ∥B∥∥λ∥2mI → θ

as m, p→ ∞. Hence, {xn} is a Cauchy sequence in X with respect to A. By completeness
of (X,A, d), xn → x ∈ X, i.e., lim

n→∞
xn = lim

n→∞
Txn−1 = x. We have

d(Tx, x) ⪯ d(Tx, Txn) + d(Txn, Txn+1) + d(Txn+1, x)

⪯ λ∗d(x, xn)λ+ λ∗d(xn, xn+1)λ+ d(xn+2, x),

which implies that d(Tx, x) → θ as n → ∞. Hence, Tx = x. To prove the uniqueness
of the fixed point x, suppose that u is another fixed point of T . We have d(x, u) =
d(Tx, Tu) ⪯ λ∗d(x, u)λ. Using the norm of A, we have

∥d(x, y)∥ = ∥d(Tx, Ty)∥ ⩽ ∥λ∗d(x, y)λ∥ ⩽ ∥λ∗∥∥d(x, y)∥∥λ∥ = ∥λ∥2∥d(x, y)∥

⇒ d(x, y) = θ ⇒ x = y.

■

Theorem 6.4 Let (X,A, d) be a complete C∗−algebra-valued rectangular metric space.
Assume the mapping T : X → X satisfies d(Tx, Ty) ⪯ λ(d(Tx, x) + d(Ty, y)) for all
x, y ∈ X, where λ ∈ A+ such that ∥λ∥ < 1

2 . Then T has a unique fixed point in X.

Proof. Choose x0 ∈ X and define x1 = Tx0, x2 = Tx1, ... , xn = Txn−1. We have

d(xn+1, xn) = d(Txn, Txn−1) ⪯ λ(d(Txn, xn) + d(Txn−1, xn−1))

= λ(d(xn+1, xn) + d(xn, xn−1)).

As ∥B∥ < 1

2
and I−λ is invertible, d(xn+1, xn) ⪯ (I−λ)−1λd(xn, xn−1) = αd(xn, xn−1),

where α = (I − λ)−1λ. So d(xn+1, xn) ⪯ αd(xn, xn−1) ⪯ α2d(xn−1, xn−2) ⪯ αnd(x1, x0).
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For any m ⩾ 1 and p ⩾ 1, we have

d(xm+p, xm) ⪯ d(xm+p, xm+p−1) + d(xm+p−1, xm+p−2) + d(xm+p−2, xm)

⪯ d(xm+p, xm+p−1) + d(xm+p−1, xm+p−2) + d(xm+p−2, xm+p−3)...

+ d(xm+3, xm+2) + d(xm+2, xm+1) + d(xm+1, xm)

⪯ αm+p−1B + αm+p−2B + αm+p−3B + ...+ αm+2B + αm+1B + αmB

⪯ ∥B∥

P−1

2∑
k=1

∥∥α∥m+p−(2k−1)∥I + ∥B∥

P−1

2∑
k=1

∥α∥m+p−2kI + ∥B∥∥α∥mI

⪯ ∥B∥∥α∥m+p−1[
∥α∥−p+1 − 1

∥α∥−2 − 1
]I + ∥B∥∥α∥m+p−1∥[∥α∥

−p+1 − 1

∥α∥−2 − 1
]I

+ ∥B∥∥α∥mI → θ as m, p→ ∞.

Therefore, {xn} is a Cauchy sequence with respect to A. By the completeness of (X,A, d),
there exists x ∈ X such that lim

n→∞
xn = lim

n→∞
Txn−1 = x. Since

θ ⪯ d(Tx, x) ⪯ d(Tx, xn) + d(Txn, Txn+1) + d(Txn+1, x)

⪯ λd(Tx, x) + λd(Txn, xn) + d(Txn, Txn+1) + d(Txn+1, x),

we have

d(Tx, x) ⪯ (I − λ)−1λd(Txn, Txn−1) + (I − λ)−1d(Txn, Txn+1)(I − λ)−1d(Txn+1, x).

Then,

∥d(Tx, x)∥ ⩽ ∥(I − λ)−1λ∥∥d(Txn, Txn−1)∥+ ∥(I − λ)−1∥∥d(Txn, Txn+1)∥

+∥(I − λ)−1∥∥d(Txn+1, x)∥ → 0 as n→ ∞.

This implies that x is a fixed point of T . Now if y ̸= x is another fixed point of T , then
θ ⪯ d(x, y) = d(Tx, Ty) ⪯ λ(d(Tx, y)+ d(Ty, y)) = θ. Hence, x = y. Therefore, the fixed
point is unique. ■

7. C∗−valued b−rectangular metric spaces

Definition 7.1 [11] Let X be a non-empty set and b ⪰ I. Assume d : X × X → A+

satisfies

(i) d(x, y) = θ if and only if x = y;
(ii) d(x, y) = d(y, x) for all x, y ∈ X;
(iii) d(x, y) ⩽ b[d(x, u)+d(u, v)+d(v, y)] for all x, y ∈ X and for all u, v ∈ X−{x, y}.

Then (X,A, d) is called a C∗−valued rectangular b−metric space.

Definition 7.2 [11] Let (X,A, d) be a C∗−valued b−rectangular metric space. A map-
ping T : X → X is said to be a contraction if there exists λ ∈ A with ∥λ∥ < 1 such that
d(Tx, Ty) ⪯ λ∗d(x, y)λ for all x, y ∈ X.
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Theorem 7.3 [11] Let (X,A, d) be a complete C∗−algebra-valued b−rectangular metric
space and T : X → X be a contraction with the contraction constant λ ∈ A such that
∥λ∥ < 1. Then T has a unique fixed point in X.

Theorem 7.4 [11] (Kannan type) Let (X,A, d) be a complete C∗−algebra-valued
b−rectangular metric space. Suppose the mapping T : X → X satisfies d(Tx, Ty) ⪯
λ(d(Tx, x) + d(Ty, y)) for all x, y ∈ X, where λ ∈ A+ such that ∥λ∥ < 1

2 . Then T has a
unique fixed point in X.

We give some fixed point theorems in C∗−algebra-valued rectangular b−metric space
using a positive function.

Theorem 7.5 Let (X,A, d) be a complete C∗−algebra-valued rectangular b−metric
space. Assume T : X → X satisfies d(Tx, Ty) ⪯ a∗d(x, y)a − ψ(d(x, y)), where ψ is
∗−homomorphism and lim

a→∞
ψ(a) = ∞ and ∥b∥∥a∥2 < 1. Then T has a unique fixed

point.

Proof. Choose x0 ∈ X and define x1 = Tx0, x2 = Tx1, ... , xn = Txn−1. We have

d(xn+1, xn) = d(Txn, Txn−1) ⪯ a∗d(xn, xn−1)a− ψ(d(xn, xn−1))

⪯ (a∗)nd(x1, x0)(a)
n − ψn(d(x1, x0)).

Then, for m ⩾ 1 and p ⩾ 1, we have

d(xm+p, xm) ⪯ b[d(xm+p, xm+p−1) + d(xm+p−1, xm+p−2) + d(xm+p−2, xm)]

⪯ bd(xm+p, xm+p−1) + bd(xm+p−1, xm+p−2) + b[b[d(xm+p−2, xm+p−3)

+ d(xm+p−3, xm+p−4) + d(xm+p−4, xm)]]

⪯

p−1

2∑
k=1

∥b
k

2 ∥[∥(a∗)m+p−(2k−1)d(x1, x0)
1

2 ∥2 − ∥ψm+p−(2k−1)(d(x1, x0))∥]I

+

p−1

2∑
k=1

∥b
k

2 ∥[∥(a∗)m+p−2kd(x1, x0)
1

2 ∥2 − ∥ψm+p−2k(d(x1, x0)∥]I

+ ∥b
p−1

2 ∥[∥am(d(x1, x0)
1

2 ∥2 − ∥ψm(d(x1, x0)∥]I → θ (m→ ∞).

Therefore, {xn} is a Cauchy sequence with respect to A. By the completeness of (X,A, d),
there exists an x ∈ X such that lim

n→∞
xn = lim

n→∞
Txn−1 = x = Tx. Let y be another fixed

point of T , where

d(x, y) = d(Txn, T yn) ⪯ (a∗)nd(x, y)an − ψn(d(x, y)).

We have ∥d(x, y)∥ ⩽ ∥a∥2n∥d(x, y)∥ − ∥ψn(d(x, y))∥ → θ as n → ∞, which implies that
the fixed point is unique. ■

8. C∗−algebra-valued extended hexagonal b−asymmetric metric
spaces

The notion of extended hexagonal b−metric spaces was introduced by Kalpana et al.
[12].
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Definition 8.1 Let X be a non-empty set and b ∈ A′
such that b ⪰ I. Suppose the

mapping d : X ×X → A satisfies

1) d(x, y) ⪰ θ and d(x, y) = θ ⇔ x = y for all x, y ∈ X;
2) d(x, y) = d(y, x) for all x, y ∈ X;
3) d(x, y) ⪯ b[d(x, u)+ d(u, v)+ d(v, w)+ d(w, z)+ d(z, y)] for all x, y, u, v, w, z ∈ X

and x ̸= u, u ̸= v, v ̸= w,w ̸= z, z ̸= y.

d is called a C∗−algebra-valued hexagonal b−metric and (X,A, d) is called a C∗−algebra-
valued hexagonal b−metric space.

The definition of C∗−algebra-valued extended hexagonal b−metric space was defined
in the following way in [12].

Definition 8.2 Let X be a non-empty set and E : X ×X → A′
. Suppose the mapping

d : X ×X → A satisfies

1) d(x, y) ⪰ θ and d(x, y) = θ ⇔ x = y for all x, y ∈ X;
2) d(x, y) = d(y, x) for all x, y ∈ X;
3) d(x, y) ⪯ E(x, y)[d(x, u)+d(u, v)+d(v, w)+d(w, z)+d(z, y)] for all x, y, u, v, w, z ∈

X and x ̸= u, u ̸= v, v ̸= w,w ̸= z, z ̸= y.

(X,A, d) is called a C∗−algebra-valued extended hexagonal b−metric space.

Many generalizations of the concept of metric spaces are defined and some fixed point
theorems were proved in these spaces. In particular, asymmetric metric space were intro-
duce by Wilson [19] as metric spaces, but without the requirement that the asymmetric
metric d has to satisfy d(x, y) = d(y, x).

Definition 8.3 Let X be a non-empty set and b ∈ A′
such that b ⪰ I. Suppose the

mapping d : X ×X → A satisfies

1) d(x, y) ⪰ θ and d(x, y) = θ ⇔ x = y for all x, y ∈ X;
2) d(x, y) ⪯ b[d(x, u)+ d(u, v)+ d(v, w)+ d(w, z)+ d(z, y)] for all x, y, u, v, w, z ∈ X

and x ̸= u, u ̸= v, v ̸= w,w ̸= z, z ̸= y.

d is called a C∗−algebra-valued hexagonal b−asymmetric metric and (X,A, d) is called
a C∗−algebra-valued hexagonal b−asymmetric metric space.

Definition 8.4 Let X be a non-empty set and E : X ×X → A′
. Suppose the mapping

d : X ×X → A satisfies

1) d(x, y) ⪰ θ and d(x, y) = θ ⇔ x = y for all x, y ∈ X;
2) d(x, y) ⪯ E(x, y)[d(x, u)+d(u, v)+d(v, w)+d(w, z)+d(z, y)] for all x, y, u, v, w, z ∈

X and x ̸= u, u ̸= v, v ̸= w,w ̸= z, z ̸= y.

(X,A, d) is called a C∗−algebra-valued extended hexagonal b−asymmetric metric space.

Definition 8.5 Assume that (X,A, d) is a C∗−algebra-valued extended hexagonal
b−asymmetric metric space. A sequence {xn} in X is said to be

(i) {xn} b−forward (respectively, b−backward) converges to x ∈ X with respect to
A iff for all ε ≻ θ, there exists Nε ∈ N such that d(x, xn) ⪯ ε (respectively,
d(xn, x) ⪯ ε);

(ii) {xn} converges to x if lim
n→∞

d(x, xn) = lim
n→∞

d(xn, x) = θ;

(iii) {xn} is b−forward Cauchy sequence respect with A if for all ε ≻ θ, there exists
Nε ∈ N such that d(xm, xn) ⪯ ε for all m > n ⩾ Nε;
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(iv) {xn} is b−backward Cauchy sequence respect with A if for all ε ≻ θ, there exists
Nε ∈ N such that d(xm, xn) ⪯ ε for all n > m ⩾ Nε.

Definition 8.6 Let (X,A, d) be a C∗−algebra-valued extended hexagonal
b−asymmetric metric space. X is said to be b−forward (respectively, b−backward)
complete if every b−forward (respectively, b−backward) Cauchy sequence {xn} converges
to x in X.

Definition 8.7 Let (X,A, d) be a C∗−algebra-valued extended hexagonal
b−asymmetric metric space. X is said to be complete if X is b−forward and
b−backward complete.

Lemma 8.8 Let (X,A, d) be a C∗−algebra-valued extended hexagonal b−asymmetric
metric space and {xn}n be a forward (or backward) Cauchy sequence with pairwise
disjoint elements in X. If {xn}n forward converges to x ∈ X and backward converges to
y ∈ X, then x = y.

Theorem 8.9 Let (X,A, d) be a complete C∗−algebra-valued hexagonal b−asymmetric
metric space and T : X → X be a mapping satisfying d(Tx, Ty) ⪯ λ∗d(x, y)λ for all
x, y ∈ X with λ ∈ A and ∥λ∥ < 1. Then T has a unique fixed point in X.

Proof. Let x0 ∈ X and define a sequence {xn} by xn+1 = Txn = Tn+1x0 for all n ∈ N.
Then

d(xn+1, xn) = d(Txn, Txn−1) ⪯ λ∗d(xn, xn−1)λ

⪯ (λ∗)2d(xn−1, xn−2)λ
2 ⪯ (λ∗)nd(x1, x0)λ

n.

Thus, d(xn+1, xn) → θ as n→ ∞. For m ⩾ 1 and r ⩾ 1, it follows that

d(xm+r, xm) ⪯ b[d(xm+r, xm+r−1) + d(xm+r−1, xm+r−2) + ...+ d(xm+r−4, xm)]

⪯ b[d(xm+r, xm+r−1) + ...+ d(xm+r−3, xm+r−4)]

+ b2[d(xm+r−4, xm+r−5)...+ d(xm+r−7, xm+r−8)]

+ ...+ br−1[d(xm+5, xm+4) + ...+ d(xm+1, xm)]

⪯ b

4∑
k=1

(λ∗)m+r−kd(x1, x0)λ
m+r−k + ...+ br−1

4∑
k=1

(λ∗)m+kd(x1, x0)λ
m+k

+ br−1(λ∗)md(x1, x0)λ
m

⪯ (∥b∥
4∑

k=1

∥λ∥2(m+r−k) + ∥d(x1, x0)∥+ ...+ ∥b∥r−1
4∑

k=1

∥λ∥2(m+k))∥d(x1, x0)

+ ∥br−1∥∥λ∥2m∥d(x1, x0)∥)I → θ as m→ ∞.

Similarly, we obtain d(xm, xm+r) → θ as m → ∞. Consequently, {xn} is b−forward
and b−backward Cauchy sequence. By completeness of X, there exists z ∈ X such that
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lim
n→∞

xn = z. Now, we show that d(z, Tz) = d(Tz, z) = θ.

d(Tz, z) ⪯ b[d(Tz, Txn) + d(xn+1, xn+2) + d(xn+2, xn+3) + d(xn+3, xn+4) + d(xn+4, z)]

⪯ b[λ∗d(z, xn)λ+ d(xn+1, xn+2) + d(xn+2, xn+3) + d(xn+3, xn+4) + d(xn+4, z)]

⇔ ∥d(z, Tz)∥ ⩽ ∥b∥[∥λ∥2∥d(z, xn)∥+ ∥d(xn+1, xn+2)∥+ ∥d(xn+2, xn+3)∥

+ ∥d(xn+3, xn+4)∥+ ∥d(xn+4, z)∥] → θ (n→ ∞).

Hence, Tz = z and z is a fixed point of T .
Unicity: Let z′ ̸= z be another fixed point of T . We have 0 ⩽ ∥d(z, z′)∥ ⩽

∥λ∗d(z, z′)λ∥ ⩽ ∥λ∥2∥d(z, z′)∥, which is a contradiction (∥λ∥2 ⩾ 1). Hence, the fixed
point z is unique. ■

Theorem 8.10 Let (X,A, d) is a complete C∗−algebra-valued hexagonal b−asymmetric
metric space and T : X → X be a mapping satisfying d(Tx, Ty) ⪯ λ[d(x, Tx)+d(y, Ty)]

for all x, y ∈ X with λ ∈ A and ∥λ∥ < 1

2
. Then T has a unique fixed point in X.

Proof. Let x0 ∈ X and define a sequence {xn} by xn+1 = Txn = Tn+1x0 for all n ∈ N.

d(xn, xn+1) = d(Txn−1, Txn) ⪯ λ[d(xn−1, xn) + d(xn, xn+1)]

⇒ (I − λ)d(xn, xn+1) ⪯ λd(xn−1, xn) ⪯ βnd(x0, x1).

Let β = (I − λ)−1(λ). Since ∥λ∥ < 1

2
, we have ∥β∥ < 1. Then

(I − λ)d(xn, xn+1) ⪯ λd(xn−1, xn) ⪯ (β)nd(x0, x1)

and d(xn, xn+1) → θ as n→ ∞. For m ⩾ 1 and r ⩾ 1, it follows that

d(xm, xm+r) ⪯ b[d(xm, xm+1) + d(xm+1, xm+2) + ...+ d(xm+4, xm)]

⪯ b[d(xm, xm+1) + d(xm+1, xm+2) + d(xm+2, xm+3) + d(xm+3, xm+4)]

b2[d(xm+4, xm+5) + d(xm+5, xm+6) + d(xm+6, xm+7) + d(xm+7, xm+8)]+

...+ br−1[d(xm+r−5, xm+r−4) + d(xm+r−4, xm+r−3)+

d(xm+r−3, xm+r−2) + d(xm+r−2, xm+r−1) + d(xm+r−1, xm+r)]

⪯ b

4∑
k=1

(β)m+r−kd(x0, x1) + ...+ br−1
4∑

k=1

(β)m+kd(x0, x1) + br−1βmd(x0, x1)

⪯ (∥b∥
4∑

k=1

∥β∥2(m+r−k) + ∥d(x0, x1)∥+ ...+ ∥b∥r−1
4∑

k=1

∥β∥2(m+k))∥d(x0, x1)+

∥br−1∥∥β∥2m∥d(x0, x1)∥)I → θ as m→ ∞.

Similarly, we obtain d(xm+r, xm) → θ as m → ∞. Consequently, {xn} is b−forward
and b−backward Cauchy sequence. By completeness of X, there exists z ∈ X such that
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lim
n→∞

xn = z. Now, we show that d(z, Tz) = d(Tz, z) = θ.

d(Tz, z) ⪯ b[d(Tz, Txn) + d(xn+1, xn+2) + d(xn+2, xn+3) + d(xn+3, xn+4) + d(xn+4, z)]

⪯ b[λ(d(z, Tz) + d(xn, Txn)) + d(xn+1, xn+2) + ...+ d(xn+4, z)]

⇔ ∥d(z, Tz)∥ ⩽ ∥b∥[∥λ∥ ∥d(z, xn)∥+ ∥λ∥ ∥d(xn, xn+1) + ∥d(xn+1, xn+2)∥

+ ∥d(xn+2, xn+3)∥+ ∥d(xn+3, xn+4)∥+ ∥d(xn+4, z)∥] → θ (n→ ∞).

Hence, Tz = z and z is a fixed point of T .
Unicity: Let z′ ̸= z be another fixed point of T . We have d(z, z′) ⩽ λ(d(z, Tz) +

d(z′, T z′)) = λ(d(z, z) + d(z′, z′)) = θ, which is a contradiction (d(z, z′) = θ ⇒ z = z′),
hence the fixed point z is unique. ■

9. C∗−algebra-valued S-metric spaces

Definition 9.1 [9] Let X be non-empty set and S : X × X × X → A+ be a function
satisfying the following properties:

1) S(x, y, , z) ⪰ θ for all x, y, z ∈ X;
2) S(x, y, z) = θ if and only if x = y = z;
3) S(x, y, z) ⪯ S(x, x, a) + S(y, y, a) + S(z, z, a) for all x, y, z, a ∈ X.

Then S is said to be C∗−algebra-valued S−metric on X and (X,A, S) is said to be a
C∗−algebra-valued S−metric space.

Definition 9.2 Suppose that (X,A, S) be a C∗−algebra-valued S−metric space. Let
{xn}n be a sequence in X. If ∥S(xn, xn, x)∥ → 0 as (n→ ∞), then it is said that {xn}n
converges to x and we denote it by lim

n→+∞
xn = x. If for any p ∈ N ∥S(xn+p, xn+p, xn)∥ →

θ as (n→ ∞), then {xn} is called a Cauchy sequence in X. If every Cauchy sequence is
convergent in X, then (X,A, S) is called a complete C∗−algebra-valued S−metric space.

Lemma 9.3 [9]

1) If {bn}n ⊂ A and lim
n→∞

bn = θ, then lim
n→∞

a∗bna = θ for any a ∈ A.
2) If a, b ∈ Ah and c ∈ A a ⪯ b⇒ ca ⪯ cb.

Lemma 9.4 [9] Let (X,A, S) be a complete C∗−algebra-valued S−metric space. Then,
S(x, x, y) = S(y, y, x).

Lemma 9.5 [9] Let {xn} be a sequence in X. If {xn} converge to x and y, then x = y.

Theorem 9.6 [9] Let (X,S, d) a complete C∗−algebra-valued S−metric space. Suppose
that the mapping f : X → X satisfies S(fx, fx, fy) ⪯ a∗S(x, x, y)a for all x, y ∈ X with
∥a∥ < 1. Then there exists a unique fixed point in X.

10. C∗−algebra-valued G-metric spaces

Definition 10.1 [17] Let X be non-empty set and S3 be the permutation group on
{1, 2, 3}. G : X ×X ×X → A+ be a function satisfying the following properties:

1) G(x1, x2, x3) = θ ⇔ x1 = x2 = x3;
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2) G(xσ(1), xσ(2), xσ(3)) = G(x1, x2, x3) for all x1, x2, x3 ∈ X and σ ∈ S3;
3) G(x1, x1, x3) ⪯ G(x1, x2, x3) for all x1, x2, x3 ∈ X with x2 ̸= x3;
4) G(x1, x1, x3) ⪯ G(x1, a, a) +G(a, x2, x3) for all x1, x2, x3, a ∈ X.

Then G is said to be C∗−algebra-valued G−metric on X and (X,A, G) is said to be a
C∗−algebra-valued G−metric space.

Definition 10.2 [17] Let (X,A, G) be a C∗−algebra-valued G−metric space and {xn}n
be a sequence inX. If ∥G(xn, xn, x)∥ → 0 as (n→ ∞), then it is said that {xn}n converges
to x and we denote it by lim

n→+∞
xn = x. If ∥G(xn+p, xn+p, xn)∥ → θ for any p ∈ N as

(n→ ∞), then {xn} is called a G− Cauchy sequence in X. If every G−Cauchy sequence
is convergent in X, then (X,A, G) is called a complete C∗−algebra-valued G−metric
space.

Proposition 10.3 [17] Let (X,A, G) be a C∗−algebra-valued G−metric space and
{xn} ⊂ X. Then {xn} is a G−Cauchy sequence if and only if for any ε > 0, there
is an N ∈ N so that ∥G(xm, xn, xn)∥ < ε for all m,n > N .

Definition 10.4 [17] Let (X,A, G) be a C∗−algebra-valued G−metric space and T :
X → X is a mapping. If there exists λ ∈ A with ∥λ∥ < 1 such that

G(Tx, Ty, Tz) ⪯ λ∗G(x, y, z)λ

for all x, y, z ∈ X, then T is called a contractive mapping on (X,A, G).

Theorem 10.5 [17] Let (X,A, G) be a C∗−algebra-valued G−metric space. If T : X →
X is a contractive mapping on (X,A, G), then there is a unique fixed point of T on X.

11. C∗−algebra-valued partial metric space

Definition 11.1 [5] Let X be a non-empty set. A mapping p : X ×X → A is called a
C∗−algebra-valued metric on X if the following conditions are satisfied:

(i) θ ⪯ p(x, y) for all x, y ∈ X and p(x, x) = p(y, y) = p(x, y) if and only if x = y;
(ii) p(x, y) = p(y, x) for all x, y ∈ X;
(iii) p(x, x) ⪯ p(x, y) for all x, y ∈ X;
(iv) p(x, y) ⪯ p(x, z) + p(z, y)− p(z, z) for all x, y, z ∈ X.

Then (X,A, p) is called a C∗−algebra-valued partial metric space.

If we take A = R, then the new notion of C∗−algebra-valued partial metric space
becomes equivalent to the definition of the real partial metric space.

Definition 11.2 [5] Let (X,A, p) be a C∗−algebra-valued partial metric space.

(1) A sequence {xn} ⊂ X converges to x ∈ X, whenever for every ε > 0, there is a
natural number N such that for all n > N , ∥p(xn, x) + p(x, x)∥ ⩽ ε. We denote
it by lim

n−→∞
p(xn, x)− p(x, x) = θ.

(2) {xn} is a partial Cauchy sequence respect to A, whenever ε > 0 there is a natural
number N such that

(p(xn, xm)− 1

2
p(xn, xn)−

1

2
p(xm, xm))((p(xn, xm)− 1

2
p(xn, xn)−

1

2
p(xm, xm))∗ ⪯ ε2

for all n,m > N .
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(3) (X,A+, p) is said to be complete with respect to A if every partial Cauchy
sequence with respect to A converges to x ∈ X such that lim

n→∞
(p(xn, x) −

1

2
p(xn, xn)−

1

2
p(x, x)) = θ.

If we take ps(x, y) = 2p(x, y)− p(x, x)− p(y, y), then ps is a C∗−algebra-valued metric.

Lemma 11.3 [5] Let (X,A, p) be a C∗−algebra-valued partial metric space.

(1) {xn} is a partial Cauchy sequence in (X,A, p) if and only if it is Cauchy sequence
in the C∗−algebra-valued metric (X,A, ps).

(2) A C∗−algebra-valued partial metric space (U,A, p) is complete if and only if
C∗−algebra-valued metric space (X,A, ps) is complete. Furthermore,

lim
n→∞

ps(xn, x) = θ ⇔ lim
n→∞

(2p(xn, x)− p(xn, xn)− p(x, x)) = θ

or

lim
n→∞

ps(xn, x) = θ ⇔ lim
n→∞

(p(xn, x)−p(xn, xn)) = θ and lim
n→∞

(p(xn, x)−p(x, x)) = θ.

Lemma 11.4 [5] If xn → x and yn → y as n→ ∞ in a C∗−algebra-valued partial metric
space (X,A, p), then lim

n→∞
(p(xn, yn)− p(xn, xn)) = p(x, y)− p(x, x) and lim

n→∞
(p(xn, yn)−

p(yn, yn)) = p(x, y)− p(y, y).

Definition 11.5 [18] Let (X,A, p) be a C∗−algebra-valued partial metric space. A map-
ping T : X → X is said to be a C∗−valued contractive mapping on X if there exists
λ ∈ A with ∥λ∥ < 1 such that p(Tx, Ty) ⪯ λ∗p(x, y)λ.

Theorem 11.6 [18] If (X,A, p) is a complete C∗−algebra-valued partial metric space
and T is a contractive mapping, then T has a unique fixed point.

Definition 11.7 Let F : A+ → A+ be a function satisfying

(i) F is continuous and nondecreasing;
(ii) F (T ) = θ if and only if T = θ.

A mapping T : X → X is said to be a (ϕ, F ) C∗−valued partial contraction of type (I)
if there exists ϕ : A+ → A+ an ∗−homomorphism such that

p(Tx, Ty) ⪰ θ ⇒ F (p(Tx, Ty)) + ϕ(p(x, y)) ⪯ F (p(x, y)) (16)

for all x, y ∈ X.

Theorem 11.8 Let (X,A, p) be a complete C∗−algebra-valued partial metric space and
T : X → X be a (ϕ, F ) C∗−valued partial contraction mapping of type (I). Then T has
a unique fixed point x∗ ∈ X and for every x0 ∈ X a sequence {Tnx0}n∈N is convergent
to x∗.

Proof. First, let us observe that T has at most one fixed point. Indeed if x∗1, x
∗
2 ∈ X:

Tx∗1 = x∗1 ̸= x∗2 = Tx∗2, then we get ϕ(p(x, y)) ⪯ F (p(x∗1, x
∗
2)−F (p(Tx∗1, Tx∗2)) = θ, which

is a contradiction. In order to show that it has a fixed point, let x0 ∈ X be arbitrary
and fixed. We define a sequence {xn}n∈N ⊂ X by xn+1 = Txn for n = 0, 1, .... Denote
pn = p(xn+1, xn) for n = 0, 1, .... If there exists n0 ∈ N for which xn0+1 = xn0

, then
Txn0

= xn0
and the proof is finished. Suppose now that xn+1 ̸= xn for every n ∈ X,
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Then pn ≻ θ for all n ∈ N. Using (16), the following holds

F (pn) ⪯ F (pn−1)− ϕ(pn−1) ≺ F (pn−1) (17)

for every n ∈ N. Hence, F is non decreasing and so the sequence (pn) is monotonically
decreasing in A+. So there exists θ ⪯ t ∈ A+ such that p(xn, xn+1) → t as n→ ∞. From
(17), we obtain lim

n→∞
F (pn) = θ that together with (ii) gives

lim
n→∞

pn = θ. (18)

Now, we shall show that {xn} is a Cauchy sequence in (X,A, p). By Lemma 11.4, it
is sufficient to prove that {xn} is a Cauchy sequence in (X,A, ps). We have proved
lim
n→∞

pn = θ. Keeping in mind that θ ⪯ p(xn, xn) ⪯ p(xn, xn+1), we get

lim
n→∞

p(xn, xn) = θ. (19)

Also, θ ⪯ p(xn+1, xn+1) ⪯ p(xn, xn+1) implies lim
n→∞

p(xn+1, xn+1) = θ. Assume that {xn}
is not a Cauchy sequence in (X,A, ps). Then there exist ε > 0 and subsequences {xmk

}
and {xnk

} with nk > mk > k such that ∥ps(xmk
, xnk

)∥ > ε. Now, corresponding to mk,
we can choose nk such that it is the smallest integer with nk > mk satisfying above
inequality. Hence, ∥ps(xmk

, xnk−1
)∥ ⩽ ε. So, we have

ε ⩽ ∥ps(xmk
, xnk

)∥

⩽ ∥ps(xmk
, xnk−1

) + ps(xnk−1
, xnk

)− ps(xnk−1
, xnk−1

)∥

⩽ ∥ps(xmk
, xnk−1

)∥+ ∥ps(xnk−1
, xnk

)∥

⩽ ε+ ∥ps(xnk−1
, xnk

)∥. (20)

We know that

ps(xnk−1
, xnk

) = 2p(xnk−1
, xnk

)− ps(xnk−1
, xnk−1

)− ps(xnk
, xnk

). (21)

Using (18), (19), (20), and (21), we have ε ⩽ lim
k→∞

∥ps(xnk−1
, xnk

)∥ < ε+ θ. This implies

lim
k→∞

∥ps(xmk
, xnk

)∥ = ε. (22)

Again,

∥ps(xnk
, xmk

)∥ ⩽ ∥ps(xnk
, xnk−1) + ps(xnk−1, xmk

)− ps(xnk−1, xnk−1)∥

⩽ ∥ps(xnk
, xnk−1)∥+ ∥ps(xnk−1, xmk

)∥

⩽ ∥ps(xnk
, xnk−1)∥+ ∥ps(xnk−1, xmk−1) + ps(xmk−1, xmk

)

− ps(xmk−1, xmk−1)∥

⩽ ∥ps(xnk
, xnk−1)∥+ ∥ps(xnk−1, xmk−1)∥+ ∥ps(xmk−1, xmk

)∥. (23)
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Also,

∥ps(xnk−1, xmk−1)∥ ⩽ ∥ps(xnk−1, xnk
) + ps(xnk

, xmk−1)− ps(xnk
, xmk

)∥

⩽ ∥ps(xnk−1, xnk
)∥+ ∥ps(xnk

, xmk−1)∥

⩽ ∥ps(xnk−1, xnk)∥+ ∥ps(xnk
, xmk

) + ps(xmk
, xmk−1)− ps(xmk

, xmk
)∥

⩽ ∥ps(xnk−1, xnk)∥+ ∥ps(xnk
, xmk

)∥+ ∥ps(xmk
, xmk−1)∥. (24)

Letting k → ∞ in (23) and (24) and using (19) and (22), lim
k→∞

∥ps(xnk−1
, xmk−1

)∥ = ε.

Thus,

lim
k→∞

∥p(xnk−1
, xmk−1

)∥ =
1

2
lim
k→∞

∥2ps(xnk−1
, xmk−1

)− ps(xnk−1
, xnk−1

)− ps(xmk−1
, xmk−1

)∥

=
1

2
lim
k→∞

∥ps(xnk−1
, xmk−1

)∥

=
ε

2
.

As p(xnk−1
, xmk−1

), p(xnk
, xmk

) ∈ A+ and lim
k→∞

∥p(xnk−1
, xmk−1

)∥ = lim
k→∞

∥p(xnk
, xmk

)∥ =

ε

2
, there is s ∈ A+ with ∥s∥ = ε such that

lim
k→∞

∥p(xnk−1
, xmk−1

)∥ = lim
k→∞

∥p(xnk
, xmk

)∥ = s (25)

By (25), we have F (s) ≺ F (s)−ϕ(s). Thus, ϕ(s) = θ and so s = θ which is a contradiction.
Hence, {xn} is a Cauchy sequence in (X,A, ps) and {xn} is partially Cauchy in the
complete C∗−algebra-valued partial metric space (X,A, p). Hence, there exist z ∈ X such
that lim

n→∞
p(xn, z)−p(xn, xn) = θ. Using (19), we get lim

n→∞
p(xn, z) = θ and thus, p(z, z) =

θ. Now, we shall show that z is fixed point of T . Using (16), we get θ ⪯ F (p(Tz, Tz)) ≺
F (p(z, z)) = F (θ) = θ. Thus, F (p(Tz, Tz)) = θ, which implies p(Tv, Tv) = θ. On the
other hand, F (p(xn, T z)) ≺ F (p(xn−1, z)). Letting n → ∞ and using the concept of
continuity of the function of T , we have p(z, Tz) = θ. Hence, by Definition 11.1, we have
p(z, z) = p(Tz, Tz) = p(z, Tz) = θ and then Tz = z, which completes the proof. ■

References

[1] E. Amer, M. Arshad, W. Shatanawi, Common fixed point results for generalized α∗ − ψ−contraction multi-
valued mappings in b- metric spaces, J. Fixed point Theory Appl. 19 (4) (2017), 3069-3086.

[2] M. Asim, M. Imdad, C∗−algebra-valued extended b- Metric spaces and fixed point results with an application,
U. P. B. Sci. Bull, Series A. 82 (1) (2020), 207-218.

[3] S. Batul. Fixed Point Theorems in Operator-Valued Metric Spaces, A thesis for degree of Doctor of Philosophy
Capital University of science and Technology, Islmabad, 2016.

[4] A. Branciari, A fixed point theorem for mapping satisfying a general contractive condition of integral type,
Int. J. Math. Sci. 29 (2002), 531-536.

[5] S. Chandok, D. Kumar, C. Park, C∗−algebra-valued partial metric space and fixed point theorems, Proc.
Math. Sci. 129 (2019), 129:37.

[6] S. K. Chatterjea, Fixed point theorems, Acad. Bulgare. Sci. 25 (1972), 727-730.
[7] S. Czerwik, Contraction mapping in b−metric spaces, Acta. Math. Inf. Uni. Ost. 1 (1) (1993), 5-11.
[8] M. Jleli, B. Samet, A new generalization of the Banach contraction principle, J. Inequal. Appl. (2014),

2014:38.
[9] C. Kalaivani, G. Kalpana, Fixed point theorems in C∗-algebra-valued S-metric spaces with some applications,

U.P.B. Sci. Bull. Ser. A. 80 (3) (2018), 93-102.



296 H. Massit and M. Rossafi / J. Linear. Topological. Algebra. 13(04) (2024) 271-296.
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