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This paper introduces a novel approach named VGAEE (Variational Graph 

AutoEncoder Embedding), an innovative deep-learning framework for 

detecting communities in attributed social networks. By synergistically 

integrating node content with network topology, VGAEE aims to enhance the 

quality of community identification. Initially, we computed the modularity 

and Markov matrices of the input graph. These matrices were then 

concatenated and used as the input for the VGAEE to create a meaningful 

representation of the graph. In the decoder component of VGAEE, two layers 

of Graph Convolutional Networks (GCN) are employed. Subsequently, a K-

Nearest Neighbors (KNN) algorithm was used for clustering communities 

based on the embeddings generated previously. We conducted experiments 

on three benchmark datasets—Cora, Citeseer, and PubMed—and compared 

the results with various baseline and state-of-the-art methods using Accuracy 

(ACC) and Normalized Mutual Information (NMI) as evaluation metrics. The 

findings demonstrate that VGAEE significantly improves community 

detection performance, achieving an accuracy of 84.5% on Cora , 80.5% on 

PubMed, and 75.6% on Citeseer. In terms of NMI, VGAEE reached 70.46% 

on Cora, 55.60% on PubMed, and 57.06% on Citeseer, consistently 

outperforming existing methods. These results confirm the superiority of 

VGAEE in accurately capturing community structures within large, complex 

networks, making it a highly effective tool for unsupervised community 

detection. 
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1.introduction  

The study of community structures within 

networks has advanced significantly since the early 

days of sociological research, evolving into a 

critical field that employs complex mathematical 

tools for large-scale data analysis. Since the 

groundbreaking work of Girvan and Newman in 

2002, identifying and understanding these 

structures has become essential for analyzing the 

composition and function of various networks, 

with applications spanning diverse fields such as 

epidemiology and marketing. 

Despite advancements in topological, content-

based, and graph-theoretical approaches to 

community detection, existing methods still face 

several challenges—especially in the quality of 

vector representations for network nodes. Many 

current techniques fail to fully capture both the 

structural and contextual information of nodes. As 

a result, they often struggle with tasks like 

clustering and classification and are unable to keep 

up with the increasing demands of growing and 

more complex networks. 

This paper explores the limitations of traditional 

community detection methods, particularly when 

applied to large-scale or high-dimensional 

networks constrained by computational power and 

data volume. These challenges significantly hinder 

the effectiveness of conventional approaches in 

analyzing modern, complex relational data. To 

address these issues, this study leverages graph 

neural networks (GNNs), a specialized branch of 

deep learning tailored for graph data. By reducing 

network dimensions and enhancing node 

representations, this approach accelerates the 

community detection process. Additionally, this 

research integrates the modularity matrix with the 

Markov matrix to improve detection accuracy, 

making the proposed methods more efficient and 

suitable for complex network structures. The 

contributions and innovations of this study are 

summarized as follows: 

 Integration of Node Content and 

Network Topology: The VGAEE 

(Variational Graph AutoEncoder 

Embedding) framework uniquely 

combines node content with network 

topology to enhance community detection 

in attributed social networks. This 

integration provides a more 

comprehensive understanding of both 

network structure and content. 

 Use of Modularity and Markov 

Matrices: The approach introduces an 

innovative step by computing modularity 

and Markov matrices from the input graph. 

These matrices are then concatenated and 

used as inputs for VGAEE, enabling a 

more nuanced representation of the graph 

structure. 

 Graph Convolutional Networks in the 

Decoder: The application of two layers of 

Graph Convolutional Networks (GCN) 

within the VGAEE decoder is a novel 

feature. This technique leverages GCNs' 

capabilities to learn and generate high-

quality embeddings that accurately reflect 

the true community structure. 

 Community Clustering via KNN: After 

generating embeddings, VGAEE utilizes 

the K-Nearest Neighbors (KNN) algorithm 

for clustering. This innovative step 

effectively combines a traditional machine 

learning algorithm with a deep learning 

framework to improve community 

identification. 

 Benchmark Dataset Experiments: The 

paper conducts extensive experiments 

using three widely recognized benchmark 

datasets—Cora, Citeseer, and PubMed. 

These rigorous tests validate the model's 

effectiveness and provide a strong basis for 

comparison with baseline and state-of-the-

art methods. 

 Superior Performance Metrics: The 

VGAEE framework outperforms existing 

algorithms in both accuracy and 

Normalized Mutual Information (NMI), 

demonstrating its superior ability to 

identify and differentiate community 

structures in complex networks. 

Community detection is widely recognized as an 

NP-hard problem that presents a range of 

computational challenges. This paper addresses 

these issues by focusing on both computational 

efficiency and detection accuracy in attributed 

social networks. By utilizing GNNs, the study 

introduces innovative embedding techniques and 

improved graph representation learning strategies, 

ultimately providing a more effective approach to 

community detection. 

We structure the remainder of this paper as follows: 

Section 2 surveys the existing literature on graph 

convolutional networks and dual embedding 

techniques, outlining fundamental advances and 

identifying the gaps that our study aims to address. 

Section 3 introduces the necessary concepts and 
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notations, providing the foundation for 

understanding the methodologies discussed later. 

Section 4 presents a detailed description of the 

proposed algorithm, VGAEE, along with its 

pseudocode. Section 5 offers a comprehensive 

overview of the datasets used for testing, explains 

the evaluation metrics employed to assess 

performance, and describes the chosen parameters 

and experimental setup. Finally, Section 6 presents 

the conclusion and discusses directions for future 

work. 

2. Literature review 

 

With recent advances in information technology 

and the digital world, complex network theory has 

found applications in various fields, including 

social networks, biological networks, and internet 

networks. One of the key challenges in complex 

network research is community detection, which 

aims to identify the structural properties of 

networks. Communities in a network are formed by 

groups of nodes that have stronger internal 

connections and fewer connections with external 

nodes. Early community detection methods 

primarily relied on the topological characteristics 

of networks, and numerous approaches have been 

proposed based on different criteria for similarity 

and proximity among groups. Before the 

development of deep learning techniques, 

community detection methods were broadly 

categorized into two main groups: Hierarchical 

methods and Partitioning methods. Hierarchical 

methods begin with either a partition where each 

node is considered an independent cluster or a 

partition where all nodes belong to a single 

community. Clusters are then iteratively merged or 

divided based on a quality measurement criterion, 

forming a hierarchical structure. While hierarchical 

methods do not require prior knowledge of the 

number of communities, they do depend on a 

specific criterion to determine meaningful 

partitions. 

On the contrary, partitioning methods identify 

clusters through iterative member allocation. These 

methods assess the quality of partitions by 

optimizing one or more objective functions. Some 

commonly used partitioning techniques include 

finding the largest number of cliques in a graph [1], 

modularity maximization [2], matrix 

decomposition [3], seed expansion [4], linear 

sparse coding [5], sparse linear coding [5], and 

evolutionary algorithms [1]. Both hierarchical and 

partitioning methods involve high computational 

costs, making them inefficient for large-scale 

networks. In other words, these approaches 

struggle to find optimal solutions within a 

reasonable timeframe. To address this issue, more 

adaptive local methods have been introduced to 

detect separate and overlapping communities more 

efficiently [6]. One such example is label 

propagation-based methods, which use the local 

expansion of node labels to identify communities 

in linear time [7]. 

Deep learning (DL) techniques are widely applied 

in various fields, including computer and social 

sciences, economics, agriculture, healthcare, and 

medicine [8]. Network representation learning 

(NRL) converts complex network structure data 

into a low-dimensional, manageable space, making 

it useful across these diverse applications. This 

approach includes learning network 

representations [9], network embedding [10], and 

graph embedding [11], all designed to preserve the 

network’s typological structure, vertex content, 

and auxiliary information. 

These advanced learning methods have 

transformed the way complex classification, 

clustering, and prediction models are constructed 

through effective graph data representation. They 

simplify the execution of analytical tasks that 

would traditionally require more complex models. 

Network Representation Learning (NRL) 

techniques focus on reducing the dimensionality of 

network vertices representations while preserving 

essential topological and content features of the 

network [9]. These representations are then utilized 

as vector inputs for machine learning tasks such as 

node classification and link prediction, fostering 

the creation of more refined and effective NRL 

strategies for complex networks [10]. Methods for 

graph representation learning are generally divided 

into three main categories: probabilistic models, 

deep learning-based algorithms, and matrix 

decomposition algorithms. Each category will be 

further discussed to highlight their unique 

approaches and applications. 

Probabilistic Models: Techniques such as LINE 

[12] and Node2vec [13] are designed to extract 

varied graph patterns to enhance embedding 

learning. Node2vec efficiently maps nodes into a 

vector space, which significantly boosts the 

performance of link prediction and node 

classification tasks. LINE is notable for its large-

scale application, utilizing edge sampling strategies 

to address the typical challenges associated with 

stochastic gradient descent. This adaptation 

improves the graph embedding process while 

maintaining high efficiency. 
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Deep Learning-Based Algorithms: DeepWalk 

[14] is a prime example of integrating deep 

learning with graph theory. It excels at encoding 

the complete structural information of graphs by 

leveraging the local structural information of 

vertices and incorporating the Skip-Gram model 

within the framework of random walks. This 

approach has been particularly successful in social 

networks for tasks like multilabel classification. 

Deep learning models capture the nonlinear 

dynamics of complex, extensive networks by 

analyzing various relational data, including nodes, 

neighbors, edges, subgraphs, and community 

features. These models are particularly effective in 

handling sparse networks and excel in 

unsupervised learning contexts. Algorithms like 

DNGR, SNDE, and ANRL [15] use deep 

autoencoder models for representing high-

dimensional data. Conversely, end-to-end 

network-based methods like SNE [16] and 

DeepGL [17] blend structural and attribute data to 

enhance graph representation learning. 

Additionally, MGAE [18] utilizes a single-layer 

autoencoder, simplifying clustering tasks, while 

HNE [19] merges deep autoencoder neural 

networks with convolutional networks to process 

adjacent vectors and images. 

Matrix Decomposition Algorithms: This 

category includes techniques like M-NMF [20] and 

TADW [21], which are focused on matrix 

decomposition to effectively learn node 

representations. These methods are crucial for 

untangling complex network structures, enabling 

deeper insights into network dynamics and 

interactions. 

Together, these methods establish a solid 

framework for managing and analyzing complex 

networks across diverse domains, accommodating 

a broad spectrum of applications from theoretical 

research to practical, real-world problem-solving. 

This comprehensive approach ensures that insights 

derived from graph theory and network analysis are 

not only theoretically sound but also applicable in 

solving actual challenges in fields such as social 

networking, bioinformatics, and 

telecommunications. 

Wang et al. [22] effectively utilized a graph 

autoencoder to achieve deep representations, which 

were then applied in a spectral clustering algorithm 

to enhance graph clustering. In a similar vein, He 

et al. [23] developed a nonlinear restructuring 

approach for modularity matrices using deep neural 

networks, which they further adapted into a semi-

supervised community detection algorithm by 

incorporating constraints on paired graph nodes. 

Both approaches address significant challenges 

associated with high computational demands and 

the need for extensive parameter tuning, such as 

determining the number of clusters, which often 

remains undefined in large and heterogeneous 

networks globally. More recently, advancements in 

graph neural networks (GNNs), including graph 

convolutional networks (GCNs), have been 

introduced to address community detection issues 

[24, 25]. GCNs amalgamate the information from 

neighboring nodes through deep convolutional 

layers in graphs, employing convolutional 

operations similar to those used in convolutional 

neural networks to extract and represent complex 

community features based on network topology 

and node characteristics [26]. 

Originally, Graph Convolutional Networks 

(GCNs) were not designed with community 

detection in mind, meaning they did not 

specifically target community structures during 

node embedding learning, nor did they impose 

constraints on the structural relationships between 

communities and nodes. Addressing this limitation, 

Jin et al. [27] introduced a semi-supervised 

community detection model named MRFasGCN. 

This model integrates a GCN with the Markov 

Random Fields (MRF) statistical model to enhance 

community detection capabilities. The innovation 

lies in extending the Markov Random Field into a 

new convolutional layer within the GCN 

framework, thereby allowing MRFasGCN to 

effectively oversee and refine the overall outcomes 

of the GCN's community detection efforts. 

Sun et al. [28] developed a framework to enhance 

network embedding for clustering nodes in 

attributed graphs. This innovative framework 

concurrently learns graph-based and cluster-

oriented representations. It consists of three key 

components: a graph autoencoder module, a soft 

modularity maximization module, and a self-

clustering module. The graph autoencoder module 

is tasked with learning node embeddings that 

incorporate both the topological structure and the 

node properties. 

Jin et al. [29] introduced an unsupervised model for 

community detection using GCN embedding, 

employing the GCN as the primary structure of the 

encoder to reconcile two types of information: 

topology and property. This model utilizes a dual 

encoder setup to extract distinct embeddings from 

these two data sources. 

Luo et al. [30] presented a deep-learning model that 

aims to simultaneously identify communities and 

structural holes using a GCN-based encoder. This 
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approach leverages the GCN's ability to integrate 

network topology and node properties for 

community detection. However, the model faces 

challenges as it (1) learns representations through 

encoding topological features and node properties 

without considering community-specific features, 

resulting in embeddings that are not community-

centric, and (2) operates as a semi-supervised 

rather than a fully unsupervised model. 

Wang et al. [31, 32] proposed a novel approach 

involving nonnegative matrix decomposition, 

introducing a community membership matrix and a 

community characteristic matrix. They also 

developed several efficient updating rules that 

ensure convergence. This method enhances 

community detection by incorporating node 

attributes, which also provide a semantic 

interpretation of the communities. 

Efforts have also been made to develop semi-

supervised methods for community detection by 

integrating network representations with data 

labels through graph-based regulation to identify 

unlabeled nodes. Young et al. [33] utilized node 

representations to predict network backgrounds 

and applied node labels to facilitate various transfer 

and inductive learning strategies. Recent 

advancements include the introduction of graph 

convolutional networks for network analysis, with 

GCN-based methods enhancing both network 

topology and attribute data analysis. Unlike most 

semi-supervised approaches that predominantly 

focus on network structure, these methods require 

a substantial number of node labels to classify 

unlabeled nodes. Sun et al. also introduced a graph 

convolutional autoencoder framework for 

clustering nodes, and several unsupervised 

methods have been recently proposed to advance 

this field. 

In [34], a supervised model within the CNN 

framework was introduced for typological defect 

networks. This model incorporates two CNN layers 

with max-pooling operators to represent the 

network structure and a fully connected DNN layer 

dedicated to community detection. The 

convolutional layers are designed to capture the 

local attributes of each node from multiple 

perspectives. Testing on Topological Interference 

Networks (TINs), with a configuration of 10% 

labeled nodes and 90% unlabeled nodes, this model 

achieved an impressive 80% accuracy in 

community detection, highlighting that 

incorporating high-order neighbor representation 

can significantly enhance the accuracy of detecting 

communities. 

In [35], a model named the Linear Graph Neural 

Network (LGNN) was proposed to enhance the 

efficiency of the Stochastic Block Model (SBM) in 

community detection while also reducing 

computational costs. The LGNN effectively learns 

the represented attributes of nodes in directed 

networks by employing a combination of non-

backtracking operators and messaging rules, 

streamlining the process and optimizing 

performance. 

In [36], the CommDGI model was introduced, 

which optimizes graph representation and 

clustering concurrently through mutual 

information on nodes and communities while 

aiming to maximize graph modularity. This 

approach utilizes k-means clustering to 

strategically align nodes with cluster centers, 

enhancing the clarity and effectiveness of 

community detection. 

Additionally, while Spectral GCNs adeptly reveal 

all hidden attributes of a node's neighborhood, they 

can lead to over-smoothing, which may obscure 

distinct community structures. To counter this 

effect, graph convolutional ladder-shaped 

networks have been developed as a novel GCN 

architecture. Inspired by the U-Net model in the 

CNN domain, this unsupervised community 

detection approach [37] aims to mitigate the over-

smoothing issue, ensuring more distinct and 

actionable community detection outcomes. 

In scenarios where various types of links are treated 

as simple edges, GCNs typically represent each 

link separately and then aggregate them, which can 

lead to redundancy in representation. To address 

this, IPGDN [38] introduces a methodology that 

segments neighborhoods into different sections and 

autonomously identifies independent hidden 

attributes of a graph. This approach simplifies the 

process of community detection. The IPGDN 

model is enhanced by the use of the Hilbert–

Schmidt independence criterion in neighborhood 

routing, facilitating more precise and effective 

community detection. Moreover, adaptive graph 

convolution has been developed to identify 

communities within attributed graphs. This 

technique relies on both structural data and 

representational features, categorizing neighboring 

nodes and nodes with similar attributes into the 

same community cluster. In this process, two graph 

signals are combined, necessitating the filtering of 

high-frequency noise, which is achieved through 

the design of a low-pass graph filter with a specific 

frequency response function. 
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In [39], a sophisticated method using Cayley 

polynomials was introduced to achieve high-order 

approximations within the spectral convolutional 

framework of graph neural networks. Although the 

exploration of GCN filters is relatively limited, 

CayleyNets are distinguished by their use of low-

pass filters that effectively utilize extensive 

community data for precise community 

identification. 

In [40], challenges associated with graph 

convolutional neural networks in processing 

complex relational graphs, such as excessive 

smoothing during node classification, are 

addressed. The newly developed SM-GCN model 

strives to enhance node categorization accuracy by 

reducing dependency on individual node features 

and incorporating scattering embeddings. This 

innovation is specifically designed to mitigate the 

over-smoothing effect, ensuring more distinct and 

accurate node classifications in complex network 

structures. 

In [41], a new model known as the Graph 

Convolutional Fusion Model (GCFM) was 

introduced for enhancing community detection in 

multiplex networks, which are composed of 

multiple layers, each representing a different type 

of relationship among the same set of nodes. The 

GCFM utilizes a graph convolutional autoencoder 

for each layer to capture and encode the structural 

features specific to each layer while considering 

the connections between neighboring nodes. This 

approach allows for a more nuanced and accurate 

detection of communities across the complex 

interlayer dynamics of multiplex networks. 

In [42], the Temporal Attributed Network 

Matrix Factorization (TANMF) algorithm was 

developed to detect dynamic modules within 

cancer temporal-attributed networks, incorporating 

both genomic data and temporal network changes. 

The experimental results showed that TANMF not 

only surpasses existing methods in accuracy but 

also enriches identified modules with known 

biological pathways and demonstrates correlations 

with patient survival outcomes, providing valuable 

insights into cancer progression. 

In [43], the Joint Learning Dynamic Edge 

Community (jLDEC) algorithm was proposed for 

identifying dynamic communities within temporal 

networks. This algorithm integrates graph 

representation learning with community detection 

and the dynamics of network edges into a unified 

framework, significantly enhancing the precision 

of community detection. The jLDEC algorithm has 

been shown to perform better than traditional 

methods, particularly in accurately capturing the 

changing dynamics of community structures within 

temporal networks. 

In [44], the Network Embedding to Nonnegative 

Matrix Factorization (NE2NMF) algorithm 

addresses the challenge of detecting dynamic 

communities by combining network embedding 

with nonnegative matrix factorization. It 

incorporates a third-order smoothness strategy that 

accounts for previous, current, and subsequent 

network snapshots, thereby providing a more 

comprehensive characterization of community 

dynamics. Experimental validations confirm that 

NE2NMF not only improves accuracy but also 

enhances the robustness of community detection 

compared to conventional approaches, making it 

particularly effective in dynamic network 

environments. 

In [45], the Joint Learning of Multidimensional 

Clustering (jLMDC) algorithm was presented for 

dynamic community detection in temporal 

networks. This approach integrates feature 

extraction and clustering into a single framework, 

significantly enhancing both the accuracy and 

efficiency of detecting dynamic communities. 

Compared to traditional methods, jLMDC shows 

marked improvements in computational speed and 

accuracy, making it highly effective for managing 

large-scale networks and their complex community 

dynamics. 

In [46], the Deep Autoencoder-like Nonnegative 

Matrix Factorization for Multi-View Learning 

(DANMF-MRL) was introduced, employing a 

deep encoding process to create a representation 

matrix. This matrix is subsequently decoded to 

reconstruct the original data. Utilizing the DANMF 

framework, the method addresses the challenges of 

maintaining consistency and complementarity in 

multi-view data, greatly enriching the depth and 

comprehensiveness of data representations. 

In [47], a Nonnegative Matrix Factorization-based 

Multi-View Learning (MRL) framework was 

proposed, which considers two critical 

components: an exclusivity term to leverage 

diverse intra-view information and a consistency 

term to ensure unified representations across 

multiple views. Additionally, a local manifold 

component is included to preserve the local 

geometric structure of the data. An alternating 

optimization algorithm based on multiplicative 

updates was introduced to solve this problem, with 

proven convergence. 

Review studies have shown that graph embedding 

methods can substantially improve efficiency and 
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reduce the time needed for community detection in 

social networks. Variational Graph AutoEncoder 

(VGE), a deep learning-based embedding 

technique, is utilized for network representation 

learning. However, a significant challenge with 

GCNs is their lack of inherent community 

orientation, which can result in node 

representations that may not be sufficiently precise 

for effective community detection. To address this, 

the k-core algorithm is used first to filter the graph 

and eliminate less significant nodes, thereby 

reducing the graph's size and enhancing the 

distinctiveness of its communities. Subsequently, 

the modularity matrix and the Markov matrix, 

which represent the graph's structure and content 

respectively, are concatenated and used as input for 

the VGE. The VGE encoder processes this input 

through two layers of the graph convolution 

network, producing a reduced-dimensional 

representation for each node. This representation is 

then normalized and utilized as the input for the k-

nearest neighbors clustering algorithm to identify 

communities. 

3. Preliminaries and Notation 

This section provides a concise introduction to the 

foundational concepts, including essential 

notations and the formal problem statement. These 

preliminaries establish the groundwork necessary 

for understanding the proposed approach. 

3.1. Attributed graph 

Suppose that 𝐺 = (𝑉, 𝐸, 𝐴, 𝑋) is an attributed 

network where V is a set of vertices 
{𝑣1, 𝑣2, … , 𝑣𝑛}, 𝐸 is a set of edges between nodes, 

A is the adjacency matrix, and X is the attribute 

matrix where an element 𝑋𝑖𝑝 represents the value 

of the p-th attribute for the vertex 𝑣𝑖. In adjacency 

matrix A, if there is an edge between the two 

vertices of 𝑣𝑖 and 𝑣𝑗  then 𝑎𝑖𝑗 > 0. For weightless 

networks, if there is an edge, 𝑎𝑖𝑗 =

1; otherwise,  𝑎𝑖𝑗 = 0. if the network is not direct, 

𝑎𝑖𝑗 = 𝑎𝑗𝑖  also holds [50].  

3.2. Community and community detection 

Consider that we have the community set 𝐶 =
{𝐶1, 𝐶2, … , 𝐶𝑟}. Each community is a network 

partition with regional structures and shared cluster 

attributes. The node 𝑣𝑖 that is clustered in the 

community 𝐶𝑖 It should meet the condition that the 

internal degree of every node is greater than its 

external degree. In this paper, community detection 

is considered in the attributed graph. The graph has 

G attributes and the number of r communities. This 

paper aims to find the function 𝑓: 𝑣 → {1,2,3,… , 𝑟} 
such that r is true for all 𝑓(𝑣𝑖) = 𝑟 nodes of the r 

community. Function partitions should follow the 

following principles: (1) Nodes of a group are 

connected, while the nodes are not connected in 

different groups. (2) Nodes in the same community 

tend to have similar attribute values, while those 

from different communities may vary relatively, 

even if they are neighbors at the graph level. (3) 

The function can adequately maintain the attributed 

graph's node attributes and structural information. 

Finally, we can find the groups separate from the 

nodes and their inductive subnodes, i.e., 

communities. 

3.3. Decomposition k-core:  

Assume a graph G = (V, E) of |V | = n vertices and 

|E| = e edges; a k-core is defined as follows: A 

subgraph H = (C, E|C) induced by the set C ⊆ V is 

a k-core or a core of order k iff ∀ v ∈ C: degree H 

(v) ≥ k, and H is the maximum subgraph with this 

property. Therefore, a k-core of G can be obtained 

by recursively removing all the vertices of degrees 

less than k until all vertices in the remaining graph 

have at least degree k. 

3.4. Modularity and normalization cut:  

Assume that network G = (A, S) is undirected and 

attributed to n nodes, where  𝐴 = [𝑎𝑖𝑗] ∈ 𝑅𝑛∗𝑛 is 

the adjacency matrix. In this matrix 𝑎𝑖𝑗 = 1 if there 

is an edge between nodes i and j; otherwise,  𝑎𝑖𝑗 =

0. Here, 𝛽𝑖 = ∑ 𝑎𝑖𝑗𝑗  is the degree of node i, and 

𝑚 =
1

2
∑ 𝛽𝑖𝑖  is the total number of network edges. 

𝑆 = [𝑠𝑖𝑗] ∈ 𝑅𝑛∗𝑛 is a similarity matrix in which 𝑠𝑖𝑗  

is the cosine similarity value between the 

corresponding content vectors of nodes i and j. 

According to these explanations, the normalized 

cut and modularity models are defined as follows: 

3.4.1. Modularity Model:  

The modularity function Q was first introduced by 

Newman and Girvan in [51] and is widely 

recognized as one of the most prominent quality 

functions for community detection. Due to its 

effectiveness, optimizing Q-modularity has 

become a fundamental approach in community 

detection. Equation (1) formally defines this 

function for two communities: 

∅ =
1

4𝑚
∑ (𝑎𝑖𝑗 −

𝛽𝑖𝛽𝑗

2𝑚
)𝑖𝑗 (𝜓𝑖𝜓𝑗)                       (1)                    

Where 𝜓𝑖 is equal to 1 (or -1) if node 𝑣𝑖 Belongs to 

community 1 (or 2). Modularity can be easily    

optimized using specific vectors and values by 

defining a modularity matrix, as shown in equation 

(2): 
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𝐵 = [𝑏𝑖𝑗] ∈ 𝑅𝑛∗𝑛, with entries   𝑏𝑖𝑗 = 𝑎𝑖𝑗 −
𝛽𝑖𝛽𝑗

2𝑚
                (2) 

Therefore, the modularity ∅  can be rewritten as 

equation (3): 

∅ =
1

4𝑚
𝜓𝑇𝐵𝜓                                                 (3)                 

Where 𝜓 = [𝜓𝑖] ∈ {−1,1}𝑛represents 

membership in a community node. However, 

maximizing modularity is an NP-hard problem. By 

simplifying the problem and allowing variables 𝜓𝑖 

to take any integer value, the problem can be easily 

solved as equation (4): 

𝑚𝑎𝑥 ∅ = 𝑚𝑎𝑥 𝑇𝑟(𝛹𝑇𝐵𝛹)               (4) 

Where 𝛹 = [𝜓𝑖𝑗] ∈ 𝑅𝑛∗𝑝 is the matrix that hints at 

membership in the community, and Tr (0) is the 

trace function. The solution is to obtain p of the 

most significant specific vector of modularity 

matrix B. In addition, the solution space allows Ψ 

reconstruction of network topology from a 

community structure viewpoint. Therefore, any 

row of the Ψ matrix can be assumed to be a good 

representation of the corresponding node in the 

hidden space to detect the community. 

3.4.2-Normalize cut model:  

This model calculates the ratio of external edges to 

internal edges, providing a measure of community 

separation. To compute a normalized cut, the cut 

between clusters A and B, denoted as Cut (A, B), 

represents the total number of edges that connect 

nodes in different clusters. The volume of cluster 

AA, represented as Vol (A), is the sum of the 

degrees of all nodes within cluster A [52]. These 

values are determined using equations (5) and (6): 

𝑐𝑢𝑡(𝐴, 𝐵) = ∑ 𝑤𝑖𝑗𝑖∈𝐴,𝑗∈𝐵                                    (5) 

𝑉𝑜𝑙(𝐴) = ∑ 𝑘𝑖𝑖∈𝐴                                                (6) 

Given equations (5) and (6), the objective 

function of the normalized cut for two clusters, A 

and B, will be equation (7) or equation (8) when 

there are k clusters C1, C2 … Ck. 

𝑁𝑐𝑢𝑡(𝐴, 𝐵) =
𝑐𝑢𝑡(𝐴,𝐵)

𝑣𝑜𝑙(𝐴)
+

𝑐𝑢𝑡(𝐴,𝐵)

𝑣𝑜𝑙(𝐵)
                 (7) 

𝑁𝑐𝑢𝑡(𝐶1, 𝐶2, … , 𝐶𝑘) = ∑
𝑙𝑖𝑛𝑘(𝐶𝑡,𝐶�̅�)

𝑣𝑜𝑙(𝐶𝑡)
𝑘
𝑡=1        (8) 

Where 𝑙𝑖𝑛𝑘(𝐶𝑡, 𝐶�̅�) =
1

2
∑ 𝑆𝑖𝑗𝑖∈𝐶𝑡,𝑗∈𝐶𝑡̅̅ ̅   is the total 

connection from nodes in Ct to all nodes in 𝐶�̅� (not 

in𝐶𝑡) and 𝑣𝑜𝑙(𝐶𝑡) = ∑ 𝑑𝑖𝑖∈𝐶𝑡
  is the total internal 

connection in 𝐶𝑡. 

To achieve the minimum objective function, the 

normalized cut is wrapped in an optimization 

problem as per Equation (9), where L is the 

Laplacian graph matrix of similarity and its 

normalized form  𝐷−1𝐿 = 𝐷−1(𝐷 − 𝑆) = 𝐼 − 𝐷−1𝑆 is 

the identity matrix (I). Equation (10) is known as 

the Markov matrix: 

𝑚𝑖𝑛   𝑇𝑟(∅𝑇𝐿∅) 

∅ ∈ 𝑅𝑛∗𝑘 

S.t     L=D-S 

D= 𝑑𝑖𝑎𝑔(𝑑1, 𝑑2, … , 𝑑𝑛)                         (9) 

∅𝑖𝑗 = {

1

√𝑣𝑜𝑙(𝐶𝑗)

  if 𝑣𝑖 ∈ 𝐶𝑗

0              otherwise

 

 

M=𝐷−1𝑆                                          (10)    

 In the case of this problem, the solution matrix ∅ 

of the specific vectors of k is the minimum nonzero 

particular value of the normalized Laplacian 

matrix 𝐷−1𝐿. In other words, k is the most 

significant specific value M covers, representing 

the solution in the hidden space. More importantly, 

the solution matrix Φ provides a perfect 

representation for obtaining the clustering. 

Given the above, a higher modularity leads to a 

better partition structure; conversely, a lower 

normalized cut value enhances the two critical 

principles of graph classification, namely 

maximum integrity and minimum connection. 

3.5. Graph embedding:  

Let G= (V, E, X), where 𝑉 = {𝑣𝑖} 𝑖 = 1,2, . . , 𝑛 is 

formed of a set of graph nodes and 𝑒𝑖𝑗 =< 𝑣𝑖, 𝑣𝑗 >

∈ 𝐸 represents a connection between the nodes. 

The topological structure of graph G is illustrated 

by adjacency matrix A, where 𝐴𝑖𝑗 = 1  if eij ∈ E 

and otherwise 𝐴𝑖𝑗 = 0.  𝑋 ∈ 𝑅𝑛∗𝑑 is the node 

attribute matrix, and d is the number of attributes. 

In addition, 𝑥𝑖 ∈ 𝑋 shows the attributes of the 

content of each node 𝑣𝑖 . The objective of the 

embedding problem is to map nodes 𝑣𝑖 ∈ 𝑉 to low-

dimensional vectors  𝑧𝑖 ⃗⃗⃗⃗⃗⃗ ∈ 𝑅𝑑, with a formal 

format 𝑓: (𝐴, 𝑋) → 𝑍, where 𝑧𝑖
𝑇 is the-i row of the 

𝑍 ∈ 𝑅𝑛∗𝑑 matrix (n is the number of nodes, and d 

is the packing dimension). We assume that Z is the 

packing matrix, so the packings should preserve A's 

topology and content information, X. 

3.6. Notations:  
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Table 1 consolidates the essential symbols used 

throughout this paper, encompassing various 

matrices, graph properties, and representation 

details relevant to the discussed methods. This 

table serves as a reference for understanding the 

notations and mathematical formulations 

employed in our approach. 

4. The proposed method: VGAEE 

Our proposed model is designed to detect 

communities within attributed social networks by 

utilizing a parallel dual graph convolutional neural 

network (GCN) for an efficient and interpretable 

embedding process. The model is structured into 

four distinct phases: 

1. Graph Filtering: This initial phase filters 

the graph to prepare it for further 

processing, enhancing the clarity of the 

underlying structures within the network. 

2. Modularity and Markov Matrices 

Calculation: The second phase calculates 

modularity and Markov matrices, which 

are crucial for understanding the 

community structure and the transition 

probabilities between nodes. 

3. Network Embedding: During the third 

phase, a Variational Graph AutoEncoder 

is employed to generate a new and 

meaningful representation of the network. 

This step is pivotal for capturing the 

essence of community structures in a 

lower-dimensional space. 

4. Clustering: The final phase involves 

clustering the embedded representations 

to identify distinct communities within 

the network. This step categorizes nodes 

into groups based on the learned 

embeddings. 

The output from each phase is meticulously 

designed to feed into the subsequent phase as input, 

ensuring a smooth transition and integration of data 

throughout the model. Fig. 1 provides a detailed 

schematic of the proposed method, visually 

outlining each phase and their interconnections. 

The upcoming sections will explore the intricacies 

and functionalities of each phase in greater detail, 

offering a comprehensive understanding of our 

approach. 

 

4.1. Graph Filtering 

By implementing the k-core algorithm, we 

strategically streamline the graph by removing 

nodes of lesser significance, typically those with 

low degrees. This method significantly reduces the 

graph’s size and complexity, enhancing the 

efficiency of community detection algorithms 

applied thereafter. The k-core algorithm highlights 

the graph’s most prominent regions, facilitating 

more focused and faster computations. Essentially, 

a k-core represents a maximal subset of a graph’s 

nodes where each node maintains at least k 

connections within that subset. For inclusion in the 

k-core, a node’s degree within the subset must be 

no less than k. The process involves calculating the 

k-core by first removing nodes with degrees less 

than k, then recalculating the degrees, and 

iteratively repeating this removal process until all 

nodes satisfy the k-core condition. Each iteration 

carries a computational complexity of O(E), where 

E denotes the total number of edges.  

Through successive iterations, the graph is 

methodically reduced by excluding nodes lacking 

sufficient connectivity, ultimately yielding a 

simplified core that depicts the most interconnected 

nodes. As delineated in this section, the k-core 

algorithm inherently defines a community based on 

its density, thereby reducing the overall graph 

size—this accelerates the community detection 

process in subsequent phases and bolsters the 

community-centric focus of graph neural networks. 

The choice of k in this algorithm is contingent upon 

the specific dataset being analyzed; in this study, a 

k-value of 3 was selected based on a trial-and-error 

method to optimize the balance between 

simplification and structural integrity. 

4.2. Calculation of the modularity matrix and 

normalized cut matrix 

This section details the calculation of the 

modularity matrix (Matrix B) and the Markov 

matrix (Matrix M) for the filtered graph, a product 

of applying the 3-core algorithm. These 

calculations are fundamental for understanding the 

structural and transitional properties of the graph 

and are crucial for subsequent analyses, such as 

community detection or dynamic behavior studies.
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Table 1: List of notations used in this paper 

Descriptions Symbols Descriptions Symbols 

A similarity matrix S Graph adjacency matrix A 

)j; vivThe modularity value of ( ijB Graph attribute matrix X 

The modularity evaluation metric Q Number of nodes in the graph N 

The pairwise node similarity 

)j; vivvalue of ( 

ijS Representations of nodes Z 

A degree matrix D Hidden dimensions H 

A Laplacian matrix L Reconstructed graph adjacency matrix �̅� 

A modularity matrix B Number of communities in the graph K 

A Markov matrix M Feature representation at layer i+1 𝐻[𝑖+1] 

Feature representation at layer i 𝐻𝑖 The  Activation function 𝜎(0) 

Based on layer i 𝑏𝑖 Weight at layer i 𝑊𝑖 

 

 

Fig. 1: Flowchart of the proposed method VGAEE 
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4.3. Network embedding 

The learning phase aims to achieve a robust 

embedding of the data graph G= (V, E, A, X). To 

accomplish this, we employ a Variational Graph 

Autoencoder (VGA), which processes the entire 

graph to learn an effective embedding. As depicted 

in Figure 2, the workflow for this processing 

method involves two primary components: the 

encoder and the decoder. 

Encoder: In a Variational Graph Autoencoder, the 

encoder's role is pivotal. It takes two inputs: the 

adjacency matrix A, representing the graph's 

structure, and the node features matrix X. The 

encoder's task is to map this high-dimensional 

input data into a lower-dimensional latent 

representation Z. This latent space Z captures the 

essential features of the nodes while preserving the 

structural and feature-based relationships inherent 

in the graph. Typically, the encoder uses layers of 

graph convolution to aggregate and transform the 

input data into this compact representation. This 

step is crucial as it determines how well the encoder 

can identify and encode community-specific 

features into the latent space. 

Decoder: Following the encoding process, the 

decoder takes the latent representation Z and aims 

to reconstruct the original graph's structure. The 

primary objective of the decoder is to validate the 

effectiveness of the learned embeddings by 

attempting to regenerate the adjacency matrix A 

from Z. This process tests the encoder's ability to 

embed nodes in such a way that the original graph 

structure can be predicted from the embeddings. A 

successful reconstruction indicates that the latent 

space Z contains meaningful and comprehensive 

information about the graph's structure and node 

interactions. 

The Variational Graph Autoencoder's effectiveness 

hinges on its ability to reduce the dimensionality of 

the graph data while retaining significant structural 

and feature-related information. This capability is 

crucial for tasks such as community detection, 

where the goal is to cluster similar nodes more 

effectively. By embedding nodes into a lower-

dimensional space that emphasizes community-

specific features, the Variational Graph 

Autoencoder facilitates more accurate and efficient 

community clustering. This method not only 

streamlines computations but also enhances the 

interpretability of the results, allowing for clearer 

insights into the underlying community structure of 

the graph. 

4.3.1. Encoder Model 

The encoder (inference model) of VGAE consists 

of graph convolutional networks (GCNs) [51]. It 

takes an adjacency matrix A and a feature 

matrix X as inputs and generates the latent 

variable Z as output. The first GCN layer 

transforms the feature matrix into a lower-

dimensional form as defined by Equation 11:   

 

  �̅� = 𝐺𝐶𝑁(𝑋, 𝐴) = 𝑅𝑒𝐿𝑈(𝐴 ̃𝑋𝑊0)     (11) 
                                                                           

𝐴 ̃ = 𝐷−
1

2 𝐴 𝐷 −
1

2  

A-tilde is the symmetrically normalized adjacency 

matrix. The second GCN layer generates μ and 

logσ², which are defined by Equation 12: 

𝜇 = 𝐺𝐶𝑁𝜇(𝑋, 𝐴) = 𝐴 ̃�̅�𝑊1            (12)  

 logσ² = 𝐺𝐶𝑁𝜎(𝑋, 𝐴) = 𝐴 ̃�̅�𝑊1 

Now if we combine the math of two-layer GCN as 

defined in Equation 13, yields: 

𝐺𝐶𝑁(𝑋, 𝐴) = 𝐴 ̃𝑅𝑒𝐿𝑈(𝐴 ̃𝑋𝑊0)𝑊1          (13) 

Which generates μ and logσ². Subsequently, Z can 

be determined using the parameterization trick, as 

specified in Equation 14:  

𝑍 = 𝜇 + 𝞼 ∗ Ɛ      Where ε ~ N (0, 1).     (14) 

4.3.2. Decoder Model 

The decoder (generative model) is defined by an 

inner product between latent variable Z. The output 

of our decoder is a reconstructed adjacency 

matrix A-hat, which is defined as Equation 15: 

�̂� = 𝜎(𝑧𝑧𝑇)                                        (15) 

Where σ(•) is the logistic sigmoid function. In 

summary, the encoder is represented as Equation 

16: 

𝑞(𝑧𝑖|𝑋, 𝐴) = 𝑁(𝑧𝑖|𝜇𝑖 , 𝑑𝑖𝑎𝑔(𝜎2))         (16)

(13) 

 

      (14)    

 

          (16) 

 

https://tkipf.github.io/graph-convolutional-networks/
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Fig. 2: The workflow scheme of the Variational graph autoencoder in the proposed method 

 

 

Fig. 3: The VGAEE Framework for Community Detection in Attributed Social Networks. 

The decoder is represented in Equation 17: 

𝑝(𝐴𝑖𝑗 = 1|𝑧𝑖, 𝑧𝑗) = 𝜎(𝑧𝑖
𝑇𝑧𝑗)               (17) 

In this paper, the encoder, a linear combination of 

the matrices Q and M is initially computed, which 

can be considered as the new input feature matrix 

Xnew: 

Xnew Q M                                  (18) 

Where α and β are coefficients for the combination. 

This Xnew is then fed into Graph Convolutional 

Networks (GCN): The first GCN layer produces a 

lower-dimensional feature representation: 

0( ) ( )1 ,new newX GCN X A ReLU AX W  

where A is the symmetrically normalized 

adjacency matrix. 

The second GCN layer generates the values μ and 
2log : 1( , )GCN X A AX W     

𝑙𝑜𝑔𝜎2 = 𝐺𝐶𝑁𝜎(𝑋, 𝐴) = 𝐴 ̃𝑋 ̅ 𝑊1 

The decoder then uses these parameters to 

reconstruct the adjacency matrix:  

2( )A sigmoid AX W  Where W  are the 

weights associated with the decoder. Using the 

reparameterization trick: Z    (0,1)Nò  

is a random variable from the standard normal 

distribution. These adjustments ensure that the 

combined inputs are accurately reflected in the 

model, allowing for more precise and complex 

community structure identification. 

4.3.3. Loss function and Optimization 

The loss function for the Variational Graph 

Autoencoder remains largely unchanged and is 

defined in Equation 18. It comprises primarily of 

the reconstruction loss between the input adjacency 

matrix and the reconstructed adjacency matrix. 
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More specifically, this involves the binary cross-

entropy between the target (A) and the output (A′) 

logits. The second part is the KL divergence 

between q(Z | X, A) and p (Z), where p (Z) = N (0, 

1). It measures how closely our q(Z | X, A) matches 

p (Z). 

After we get the latent variable Z, we want to find 

a way to learn the similarity of each row in the 

latent variable (because one row represents one 

vertex) to generate the output adjacency matrix. 

The inner product could calculate the cosine 

similarity of two vectors, which is useful when we 

want a distance measure that is invariant to the 

magnitude of the vectors. Therefore, by applying 

the inner product on the latent variable Z and Z^T, 

we can learn the similarity of each node inside Z to 

predict our adjacency matrix. 

𝐿 = 𝐸𝑞(𝑍|𝑋, 𝐴)[𝑙𝑜𝑔𝑝(𝐴|𝑍)] − 𝐾𝐿[𝑞(𝑍|𝑋, 𝐴)||𝑝(𝑍)] 

The proposed decoding model is used to 

reconstruct graph data. We can reconstruct a graph 

structure, content information X, or both. Here, 

reconstruction of the graph structure is 

recommended, which gives us a higher level of 

flexibility so our algorithm preserves its 

functionality even if content information X is 

unavailable. Decoder 𝑝(�̂�|𝑍) predicts whether 

there is a connection between the two nodes of a 

connection. Specifically, we trained a connection 

prediction layer based on graph embedding as per 

Equation 19 and Equation 20. 

𝑝(�̂�|𝑍) = ∏ ∏ 𝑝(�̂�𝑖𝑗 |𝑧𝑖 ,𝑧𝑗 )
𝑛
𝑗=1

𝑛
𝑖=1          (19)               

𝑝(�̂� 𝑖𝑗 = 1|𝑧𝑖 ,𝑧𝑗 ) = 𝑠𝑖𝑔𝑚𝑜𝑑(𝑧𝑖 
𝑇 , 𝑧𝑗 )  (20) 

The embedding of Z and �̂� Reconstructed graphs 

are given in Equation 21:  

�̂� = 𝑠𝑖𝑔𝑚𝑜𝑑(𝑍𝑍𝑇), ℎ𝑒𝑟𝑒 𝑍 = 𝑞(𝑍|𝑋, 𝐴)         (21) 

                            

The graph data reconstruction error for a self-

encoder graph is minimized using Equation 22. 

ℒ0 = 𝐸𝑞(𝑍|(𝑥,𝐴))[𝑙𝑜𝑔𝑝(�̂�|𝑍)              (22) 

4.4. Node clustering:  

In this phase of processing, min-max scaling is 

applied to normalize the Z_final feature vectors 

that were obtained in the previous phase. This 

normalization technique adjusts the data values so 

that they range between zero and one. The 

objective of using min-max scaling in this context 

is to standardize the range of the feature vectors, 

thus ensuring that no single feature dominates due 

to its scale. This uniform scaling across all features 

is essential for several reasons: 

1. Enhanced Algorithm Performance: 

Uniformity in feature scale helps machine 

learning algorithms converge more 

quickly. This is particularly important for 

algorithms like K-nearest neighbors 

(KNN), which rely on distance 

calculations between points. If the scales 

are not uniform, features with larger ranges 

could disproportionately influence the 

outcome, leading to biased results. 

2. Improved Stability: Algorithms that 

depend on distance measurements or 

gradients are less likely to exhibit erratic 

behavior during learning when all features 

contribute equally. Stability in algorithm 

performance leads to more reliable and 

reproducible results. 

3. Optimized Learning Efficiency: When all 

features are scaled uniformly, each feature 

has an equal opportunity to influence the 

learning process, potentially increasing the 

efficiency and effectiveness of the model. 

Applying min-max scaling to the Z_final feature 

vectors ensures that the subsequent steps, 

especially those involving algorithms like KNN for 

clustering or classification, operate under optimal 

conditions. This preprocessing step is crucial for 

achieving accurate and efficient outcomes in the 

analysis of data, particularly in complex machine-

learning tasks that involve large and diverse 

datasets. The decoder is represented in Equation 

17: 

𝑝(𝐴𝑖𝑗 = 1|𝑧𝑖, 𝑧𝑗) = 𝜎(𝑧𝑖
𝑇𝑧𝑗)               (17) 

Fig. 4 illustrates the architecture of our proposed 

community detection model using VGAEE. 

5. Experiment 

In this section, we describe the comprehensive 

experiments conducted to evaluate the 

performance of the Variational Graph Autoencoder 

Embedding Enhancer (VGAEE) against state-of-

the-art methods in real-world scenarios using valid 

datasets. These experiments are designed to 

provide a fair and rigorous comparison, focusing 

on several critical aspects:



O. Rashnodi et al. / Journal of Optimization of Soft Computing (JOSC), 3(1): 1-23, 2025 

14 

 

 

5.1. Experimental settings 

  5.1.1. Datasets 

In our study, we utilized datasets derived from 

real-world applications to test our community 

detection methods, ensuring a thorough evaluation. 

Statistical information about the three datasets 

employed is presented in Table 4, reference [57]. 

These datasets comprise citation networks where 

the nodes symbolize papers and the edges denote 

the citations between them. Each node is associated 

with attributes that represent word packet 

summaries of the paper abstracts, while the labels 

indicate the topics of the papers. 

 5.1.2. Evaluation metrics 

This section presents various qualitative metrics for 

evaluating community detection approaches, 

classified into performance and goodness 

measures. Performance measures assess the quality 

of the communities identified by the algorithm 

relative to real-world communities. Additionally, 

goodness measures focus on the structural 

characteristics of the communities that have been 

detected [60]. Our evaluation of the proposed 

method utilized two key metrics: normalized 

mutual information and accuracy. Higher values in 

these metrics signify better performance. 

Subsequent sections will provide a detailed 

discussion of these measures. 

-Normalized Mutual Information 

The normalized mutual information, calculated 

using equation (26), measures the similarity 

between the community set identified by the 

proposed algorithm and the actual community [60]. 

𝑁𝑀𝐼 =
∑ ∑ 𝑛𝑖𝑗𝑙𝑛 (𝑛𝑖𝑗

𝑘
𝑗=1

𝑘
𝑖=1 .𝑛/𝑛𝑖

𝑐.𝑛𝑗
𝑐)

√(∑ 𝑛𝑖
𝑐 𝑙𝑛(

𝑛𝑖
𝑐

𝑛
)𝑘

𝑖=1 )(∑ 𝑛𝑗
�́�𝑘

𝑗=1  𝑙𝑛 (𝑛𝑗
�́�/𝑛))

                   (26) 

             

Where k is the number of communities, n is the 

number of nodes, nij is the number of nodes in the 

optimized community set i such that the proposed 

community set is in community j, 𝑛𝑖
𝑐 is the number 

of nodes in the community i, which is in the 

optimized community set, and 𝑛𝑗
𝑐 is the number of 

nodes in community j. 

-Accuracy 

It assesses the authenticity of the community 

structure. Similar to NMI, computing this measure 

necessitates the use of an optimal community 

setting, as outlined in equation (27) [60]. 

ACC = 
∑ 𝑘𝑛

𝑖=1 (𝐶𝑖,𝑃𝑀(�́�𝑖))

𝑛
                    (27) 

Where n is the number of groups, and for a specific 

group, i and 𝐶𝑖 ،�́�𝑖 are the communities of node i in 

optimum and recommended community settings. 

K(x, y) is a function equal to 1 when x=y and 0 

otherwise. 

5.1.3. Parameter Settings: 

For our study, we structured the training set by 

selecting 20 nodes from each class, resulting in a 

total of 500 nodes for the validation set and 1,000 

nodes for the test set. Our experiments were 

conducted using a two-layer Graph Convolutional 

Network (GCN) setup. The initial layer included 64 

neurons, with each subsequent layer in the 

contracting path halving the neuron count from the 

previous layer. The training was facilitated using 

the Adam optimizer, a popular choice due to its 

efficiency, and the experiments were carried out 

using both TensorFlow and PyTorch frameworks. 

The learning rate was initially set at 0.01, adjusted 

dynamically by a scheduler that reduced the rate 

upon encountering a loss plateau, which helped 

achieve more stable convergence. We implemented 

a dropout rate of 0.5 to prevent overfitting and 

capped the training at a maximum of 200 epochs. 

The Relu activation function was applied following 

each graph convolutional operation. Training was 

halted if there was no decrease in the loss function 

over 10 consecutive epochs. 

Initialization of the initial weights for the two GCN 

layers was done randomly, selected from a uniform 

distribution. To ensure the robustness of our 

results, each experiment was repeated ten times, 

with the average scores reported subsequently. 

Detailed parameter settings for these experiments 

are summarized in Table 5, which includes 

parameter names and their respective values. 

5.1.4. Experimental results and analysis 

This subsection presents the experimental results 

analyzed from various evaluation angles to validate 

the efficiency of our proposed model. We 

conducted experiments using medium-scale 

datasets including Cora, Citeseer, and PubMed, 

and compared our model against three established 

baseline categories to provide a thorough analysis. 

The comparison categories are detailed as follows: 

1. Node Feature-Based Methods: This 

category focuses on the unique attributes 
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or characteristics of individual nodes. 

Methods such as k-means and spectral 

clustering, referred to here as spectral_f, 

are prominent in this category. These 

methods construct a similarity matrix 

primarily using a linear kernel based on 

node features. 

2. Graph Structure-Based Methods: This 

category emphasizes the intrinsic structure 

of the graph. Techniques like spectral 

clustering (Spectral_g) utilize the node 

adjacency matrix to build the similarity 

matrix. Notable methods in this group 

include DeepWalk [14], which excels in 

learning graph embeddings, and DNGR 

[62], which merges spectral graph 

clustering with deep neural networks for 

complex graph representation. 

Additionally, vGraph [63] is a probabilistic 

generative model that learns community 

membership and node representation 

collaboratively, while Graph Encoder [64] 

focuses on learning graph embedding for 

spectral graph clustering. 

3. Hybrid Methods: These methods 

integrate both node attributes and graph 

structure, typically resulting in enhanced 

community detection outcomes despite 

increased computational complexity. 

Various graph autoencoder variants fall 

within this category, including: 

o GAE [65]: Utilizes neural networks 

for learning graph representations. 

o VGAE [65]: Advances GAE by 

implementing a Variational 

inference framework. 

o MGAE [18]: Enhances 

representation by marginalizing 

specific graph properties. 

o ARGA [66] and ARVGA [66]: 

Employ adversarial and vibrational 

regularization, respectively, to 

refine graph embeddings. 

o DAEGC [67]: Uses deep 

autoencoders to reconstruct the 

graph's adjacency matrix. 

o AGE [56]: Enhances graph-based 

learning tasks through a two-stage 

process. 
o AGC [55]: Leverages high-order graph 

convolution to effectively understand a 

graph's global structure. 

o DBGAN [68] and GALA [69]: New 

approaches using graph neural networks 

for clustering and embedding node 

features. 

o CommDGI [11] and GC-VGE [70]: 

Optimize the simultaneous learning of 

node embeddings and cluster assignments. 

o TADW [71]: Employs matrix 

factorization for network representation 

learning. 

o RMSC [72] and RTM [72]: Focus on 

robust multi-view spectral clustering and 

learning topic distributions from text and 

citations, respectively. 

o GMIM [73]: Utilizes a mutual information 

maximization approach for node 

embedding. 

o DGVAE [74]: Introduces a graph 

Variational generative model with 

Dirichlet distributions as priors on latent 

variables. 

o BernNet GCN [75] and WC-GCN [76]: 

Utilize graph convolutional network 

frameworks, with the former based on 

Bernstein polynomial approximation. 

o LGNN [35] and MRFasGCN [27]: 

Specialized neural network models for 

graph data, with MRFasGCN combining 

GCN with a Markov random field model 

for community detection. 

These methods provide a broad spectrum of 

approaches for analyzing and detecting community 

structures within networks, facilitating a 

comprehensive comparison against our proposed 

model. 

 

Tables 6-8 comprehensively compare the proposed 

method with baseline community detection 

methods based on their performance metrics. These 

metrics include accuracy (ACC %) and normalized 

mutual information (NMI %). The compared 

approaches are often categorized into three groups 

based on the type of learning: supervised, semi-

supervised, and unsupervised. Furthermore, these 

strategies are classified into three groups based on 

the input type: Features, graph topology, or a 

hybrid of both. 

Table 6 presents a comprehensive comparison of 

various graph-based learning methods used for 

community detection in the Cora dataset, 

highlighting their performance in terms of accuracy 

(ACC %) and normalized mutual information 

(NMI %). Among the methods listed, the proposed 

VGAEE stands out with the highest performance 

metrics, achieving an ACC% of 84.5 and an NMI% 

of 70.46. This represents a significant improvement 

over both supervised and unsupervised approaches. 

For instance, the closest competitors, MRFasGCN 
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and AGE, which are also unsupervised, recorded 

ACC% of 84.3 and 76.8 and NMI% of 66.2 and 

60.7, respectively. VGAEE's superior performance 

suggests that its methodology for integrating graph 

topology in an unsupervised learning framework 

effectively captures the nuanced structures within 

the community more accurately than other 

methods. Furthermore, the results from VGAEE 

are particularly notable when compared to 

supervised methods such as LGNN and WC-GCN, 

which, despite their structured learning paradigms, 

do not achieve the same level of ACC or NMI. 

Overall, the data underscores the efficacy of 

VGAEE in community detection, setting a new 

benchmark for future studies in this area. 

To make a fair comparison with other related 

works, we repeated the experiments on two 

different datasets, the PubMed dataset and the 

Citeseer dataset. We present the results and figures 

of this new evaluation in Tables 7 and 8, 

respectively.  

In Table 7, the proposed VGAEE method outshines 

both unsupervised and supervised learning 

algorithms for the PubMed dataset, registering an 

ACC% of 80.50 and an NMI% of 55.60. This 

significantly distances it from traditional 

unsupervised methods like K-means, Spectral-F, 

and Spectral-G, which show considerable 

variability in their results. When comparing 

VGAEE with other advanced graph-based 

methods, it still maintains a leading position. For 

example, the semi-supervised MRFasGCN 

achieves a higher NMI% at 40.7 but falls short in 

ACC%, illustrating that while it effectively 

captures mutual information within the data, it does 

not necessarily translate to outright accuracy. 

Similarly, the supervised BernNet GCN scores an 

impressive NMI% of 51.40 but with a lower 

ACC% of 61.25, indicating potential overfitting to 

mutual information at the cost of general accuracy. 

Among unsupervised competitors, AGE and 

GMIM perform well, with AGE reaching an 

ACC% of 71.1 and GMIM peaking at 70.87, yet 

neither approaches the combined performance 

metrics of VGAEE. Additionally, methods like 

AGC and CommDGI, while competitive, do not 

achieve the same balance between ACC and NMI, 

suggesting that VGAEE's method of integrating 

features and graph topology potentially offers a 

more robust model for understanding complex 

network structures. Overall, the superiority of 

VGAEE in this dataset underscores its 

effectiveness in handling the nuances of 

community detection in large, complex networks. 

Its ability to outperform existing algorithms, 

particularly in unsupervised settings, sets a new 

benchmark and indicates promising directions for 

future research and application in social network 

analysis and beyond. 

Based on the analysis presented in Table 8, the 

table showcases the performance of the VGAEE 

method relative to other community detection 

algorithms across various learning paradigms for 

the Citeseer dataset. VGAEE, an unsupervised 

method, stands out with an ACC% of 75.60 and an 

NMI% of 57.06. Notably, VGAEE surpasses 

popular unsupervised algorithms like K-means, 

Spectral-F, and DeepWalk, which present 

considerably lower metrics in both accuracy and 

mutual information. Even when compared to the 

semi-supervised MRFasGCN and supervised 

methods such as BernNet GCN and WC-GCN, 

VGAEE demonstrates competitive or superior 

performance, particularly in accuracy. This 

highlights VGAEE's efficacy in effectively 

capturing and preserving the intrinsic community 

structures in complex networks without requiring 

labeled data. Positioned as a robust tool in the 

unsupervised learning landscape for graph-based 

community detection, VGAEE excels in handling 

unlabeled and complex datasets while maintaining 

a balance between accuracy and information 

preservation. 

The proposed VGAEE method demonstrated 

outstanding results across all three datasets: Cora, 

PubMed, and Citeseer, with its performance being 

particularly notable on the Citeseer dataset. On 

Citeseer, it achieved the highest accuracy and NMI 

percentages among all methods evaluated, with 

scores of 75.60% and 57.06% respectively. While 

it also ranked among the top performers on the 

Cora and PubMed datasets, with accuracies of 

84.5% and 80.5% respectively, the Citeseer results 

highlight its superior capability in community 

detection within various network analyses. This 

underscores the VGAEE method's robust 

adaptability and effectiveness across diverse and 

complex datasets, marking it as a potent tool for 

intricate network analysis tasks. Figures 4, 5, and 6 

illustrate the performance of the proposed method 

on the Cora, PubMed, and Citeseer datasets, 

respectively, based on the ACC (classification 

accuracy) and NMI (normalized mutual 

information) metrics, compared to baseline 

methods. In all three figures, the ACC and NMI 

values for the proposed method are highlighted in 

bold above the corresponding bars to clearly 

demonstrate its superiority over other methods.
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  Table 4: Summary of real-world benchmarks on datasets. 

 

 

 

 

 

 

 
 

Table 5: Detailed parameter setting 

Datasets Training 

Epoch 

Learning 

rate 

Activation 

Function 

Weight 

Decay 

Optimizer GCN 

layers 

Dropout 

rate  

#Train/Validation  

/Test Node  

Cora 200 0.01 Relu 5e-3 Adam 64/32 0.5 140/500/1000 

Citeseer 200 0.01 Relu 5e-3 Adam 64/32 0.5 120/500/1000 

PubMed 200 0.01 Relu 5e-3 Adam 64/32 0.5 60/500/1000 

 

Table 6: Performance comparison of different community detection methods on the Cora dataset; the best results are in bold. 

Name of methods Learning type Input ACC% NMI% 

K-means Unsupervised Feature 49.2 32.1 

Spectral-F [77] Unsupervised Feature 34.7 14.7 

Spectral-G [77] Unsupervised Graph 31.46 9.69 

DeepWalk [14] Unsupervised Graph 56.20 39.87 

Graph Encoder [78] Unsupervised Graph 32.5 10.9 

vGraph[63] Unsupervised Graph 28.7 34.5 

TADW [71] Unsupervised Feature & Graph 55.00 36.59 

VGAE [65] Unsupervised Feature & Graph 63.56 47.45 

MGAE [18] Unsupervised Feature & Graph 63.43 45.57 

ARGE [66] Unsupervised Feature & Graph 60.84 42.21 

ARVGA [66] Unsupervised Feature & Graph 62.83 45.93 

DGVAE [74] Unsupervised Feature & Graph 64.42 47.64 

AGC [55] Unsupervised Feature & Graph 68.92 53.68 

CommDGI [11] Unsupervised Feature & Graph 69.8 57.9 

DAEGC [67] Unsupervised Feature & Graph 70.4 52.8 

GC-VGE [70] Unsupervised Feature & Graph 70.67 53.57 

GALA [69] Unsupervised Feature & Graph 72.42 53.96 

DBGAN [68] Unsupervised Feature & Graph 74.6 57.7 

GMIM [73] Unsupervised Feature & Graph 74.8 56.0 

AGE[56] Unsupervised Feature & Graph 76.8 60.7 

MRFasGCN[27] Semi-supervised Feature & Graph 84.3 66.2 

BernNet GCN[75] Supervised Feature & Graph 41.06 68.78 

LGNN[35] Supervised Feature & Graph 79.04 - 

WC-GCN[76] Supervised Feature & Graph 79.39 - 

VGAEE(proposed method) Unsupervised 

 

Feature & Graph 84.5 70.46 

Num. of Communities #Node Attributes #Edges #Nodes Dataset 

7 1,433 5,429 2,708 Cora [58] 

6 3,703  4,715 3,312 Citeseer [58] 

3 500 44,338 19,717 PubMed [59] 
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Table 7: Performance comparison of different community detection methods on the PubMed dataset; the best results are in 

bold. 

Name of methods Learning type Input ACC% NMI% 

K-means Unsupervised Feature 55.59 24.34 

Spectral-F [77] Unsupervised Feature 60.20 30.90 

Spectral-G [77] Unsupervised Graph 37.98 10.30 

DeepWalk [14] Unsupervised Graph 64.98 26.44 

Graph Encoder[11] Unsupervised Graph 53.1 20.9 

DNGR [62] Unsupervised Graph 25.53 20.11 

vGraph [79] Unsupervised Graph 26.00 22.40 

TADW [71] Unsupervised Feature & Graph 46.82 9.47 

GAE [65] Unsupervised Feature & Graph 64.43 24.85 

VGAE [65] Unsupervised Feature & Graph 64.67 23.94 

MGAE [18] Unsupervised Feature & Graph 43.88 8.16 

ARGA [66] Unsupervised Feature & Graph 65.07 29.23 

ARVGA [66] Unsupervised Feature & Graph 62.01 26.62 

DGVAE [74] Unsupervised Feature & Graph 67.56 28.72 

AGC [55] Unsupervised Feature & Graph 69.78 31.59 

CommDGI [11] Unsupervised Feature & Graph 69.90 35.70 

DAEGC [67] Unsupervised Feature & Graph 67.10 26.60 

GC-VGE [70] Unsupervised Feature & Graph 68.18 29.70 

GALA [69] Unsupervised Feature & Graph 69.39 32.73 

DBGAN [68] Unsupervised Feature & Graph 69.40 32.40 

GMIM [73] Unsupervised Feature & Graph 70.87 32.43 

AGE[56] Unsupervised Feature & Graph 71.1 31.6 

MRFasGCN[27] Semi-supervised Feature & Graph 79.6 40.7 

BernNet GCN[75] Supervised Feature & Graph 61.25 51.40 

LGNN[35] Supervised Feature & Graph 72.64 - 

WC-GC[76] Supervised Feature & Graph 79.41 - 

VGAEE(proposed method) Unsupervised Feature & Graph 80.50 55.60 

 

Table 8: Performance comparison of different community detection methods on the Citeseer dataset. The best results are in 

bold. 

Name of methods Learning type Input ACC% NMI% 

K-means Unsupervised Feature 54.0 30.5 

Spectral-F [77] Unsupervised Feature 23.9 5.6 

DeepWalk [14] Unsupervised Graph 32.7 8.8 

Graph Encoder[11] Unsupervised Graph 22.5 3.3 

DNGR [62] Unsupervised Graph 32.6 18.0 

RTM [72]  Unsupervised Graph 45.1 23.9 

RMSC [72] Unsupervised Graph 29.5 13.9 

TADW [71] Unsupervised Feature & Graph 45.5 29.1 

GAE [65] Unsupervised Feature & Graph 40.8 17.6 

VGAE [65] Unsupervised Feature & Graph 34.4 15.6 

MGAE [18] Unsupervised Feature & Graph 43.88 8.16 

ARGA [66] Unsupervised Feature & Graph 57.3 35.0 

ARVGA [66] Unsupervised Feature & Graph 54.4 26.1 
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AGE[56] Unsupervised Feature & Graph 70.2 44.8 

MRFasGCN[27] Semi-supervised Feature & Graph 73.2 46.3 

BernNet GCN[75] Supervised Feature & Graph 72.32 58.01 

LGNN[35] Supervised Feature & Graph 73.15 - 

 Supervised Feature & Graph 73.2 46.3 

WC-GCN[76] Supervised Feature & Graph 75.18 - 

VGAEE 

(proposed method) 

Unsupervised Feature & Graph 75.60 57.06 

 

 

Fig. 4. Performance comparison of different community detection methods on the Cora dataset

 

Fig. 5. Performance comparison of different community detection methods on the PubMed dataset 
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Fig. 6. Performance comparison of different community detection methods on the Citeseer dataset

6. Conclusion and future work 

This study introduced VGAEE, an innovative 

unsupervised approach leveraging Variational 

Graph AutoEncoders to enhance community 

detection in attributed social networks. By 

integrating node content with network topology, 

VGAEE effectively captures complex community 

structures, achieving superior performance metrics 

across diverse datasets like Cora, Citeseer, and 

PubMed. Notably, VGAEE consistently 

outperformed both traditional and state-of-the-art 

methods, demonstrating its robustness and 

efficiency in handling large-scale network data 

without the necessity for pre-labeled information. 

The effectiveness of VGAEE was particularly 

evident in its ability to maintain high accuracy and 

mutual information scores, thereby providing a 

more nuanced understanding of community 

dynamics within large and complex networks. 

Looking forward, several avenues could further 

refine and expand the capabilities of the VGAEE 

framework. First, exploring the integration of semi-

supervised learning protocols could potentially 

enhance the model's accuracy and applicability to 

even broader network types, including those with 

sparse or incomplete labeling. Additionally, 

adapting the model to dynamically evolving 

networks where community structures change over 

time would significantly increase its practical 

utility in real-world scenarios. Another promising 

direction involves enhancing the model's 

scalability and efficiency through the incorporation 

of more advanced graph neural network 

architectures or optimization techniques. Lastly, 

applying the VGAEE framework to other types of 

data, such as multimodal networks or those with 

highly heterogeneous attributes, could open new 

research areas and applications, further cementing 

its utility and impact in network analysis and 

beyond. 
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