

1

Journal of Optimization of Soft Computing (JOSC)

Vol. 3, Issue 1, pp: (1-23), Spring-2025

Journal homepage: https://sanad.iau.ir/journal/josc

Paper Type (Research paper)

Variational Graph Autoencoder for Unsupervised Community

Detection in Attributed Social Networks

Omid Rashnodi 1, Maryam Rastegarpour*2, Azadeh Zamanifar1,

 Parham Moradi3

1. Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.

2. Department of Computer, College of Engineering, Saveh Branch, Islamic Azad University, Saveh, Iran.

3. School of engineering, RMIT University Melbourne, Australia

Article Info Abstract

Article History:
Received: 2025/02/21

Revised: 2025/03/08

Accepted: 2025/04/12

DOI:

This paper introduces a novel approach named VGAEE (Variational Graph

AutoEncoder Embedding), an innovative deep-learning framework for

detecting communities in attributed social networks. By synergistically

integrating node content with network topology, VGAEE aims to enhance the

quality of community identification. Initially, we computed the modularity

and Markov matrices of the input graph. These matrices were then

concatenated and used as the input for the VGAEE to create a meaningful

representation of the graph. In the decoder component of VGAEE, two layers

of Graph Convolutional Networks (GCN) are employed. Subsequently, a K-

Nearest Neighbors (KNN) algorithm was used for clustering communities

based on the embeddings generated previously. We conducted experiments

on three benchmark datasets—Cora, Citeseer, and PubMed—and compared

the results with various baseline and state-of-the-art methods using Accuracy

(ACC) and Normalized Mutual Information (NMI) as evaluation metrics. The

findings demonstrate that VGAEE significantly improves community

detection performance, achieving an accuracy of 84.5% on Cora , 80.5% on

PubMed, and 75.6% on Citeseer. In terms of NMI, VGAEE reached 70.46%

on Cora, 55.60% on PubMed, and 57.06% on Citeseer, consistently

outperforming existing methods. These results confirm the superiority of

VGAEE in accurately capturing community structures within large, complex

networks, making it a highly effective tool for unsupervised community

detection.

Keywords:
Community Detection,

Attributed Social Networks,

Variational Graph

Autoencoder, Graph

Convolutional Networks, Deep

Learning, Node Embeddings,

Network Topology

Omid Rashnodi
omid.rashnodi@iau.ac.ir

* Maryam Rastegarpour
m.rastgarpour@gmail.com

Azadeh Zamanifar
azamanifar@srbiau.ac.ir

Parham Moradi
p.moradi@uok.ac.ir

mailto:omid.rashnodi@iau.ac.ir
mailto:m.rastgarpour@gmail.com
mailto:azamanifar@srbiau.ac.ir
mailto:p.moradi@uok.ac.ir

O. Rashnodi et al. / Journal of Optimization of Soft Computing (JOSC), 3(1): 1-23, 2025

2

1.introduction

The study of community structures within

networks has advanced significantly since the early

days of sociological research, evolving into a

critical field that employs complex mathematical

tools for large-scale data analysis. Since the

groundbreaking work of Girvan and Newman in

2002, identifying and understanding these

structures has become essential for analyzing the

composition and function of various networks,

with applications spanning diverse fields such as

epidemiology and marketing.

Despite advancements in topological, content-

based, and graph-theoretical approaches to

community detection, existing methods still face

several challenges—especially in the quality of

vector representations for network nodes. Many

current techniques fail to fully capture both the

structural and contextual information of nodes. As

a result, they often struggle with tasks like

clustering and classification and are unable to keep

up with the increasing demands of growing and

more complex networks.

This paper explores the limitations of traditional

community detection methods, particularly when

applied to large-scale or high-dimensional

networks constrained by computational power and

data volume. These challenges significantly hinder

the effectiveness of conventional approaches in

analyzing modern, complex relational data. To

address these issues, this study leverages graph

neural networks (GNNs), a specialized branch of

deep learning tailored for graph data. By reducing

network dimensions and enhancing node

representations, this approach accelerates the

community detection process. Additionally, this

research integrates the modularity matrix with the

Markov matrix to improve detection accuracy,

making the proposed methods more efficient and

suitable for complex network structures. The

contributions and innovations of this study are

summarized as follows:

 Integration of Node Content and

Network Topology: The VGAEE

(Variational Graph AutoEncoder

Embedding) framework uniquely

combines node content with network

topology to enhance community detection

in attributed social networks. This

integration provides a more

comprehensive understanding of both

network structure and content.

 Use of Modularity and Markov

Matrices: The approach introduces an

innovative step by computing modularity

and Markov matrices from the input graph.

These matrices are then concatenated and

used as inputs for VGAEE, enabling a

more nuanced representation of the graph

structure.

 Graph Convolutional Networks in the

Decoder: The application of two layers of

Graph Convolutional Networks (GCN)

within the VGAEE decoder is a novel

feature. This technique leverages GCNs'

capabilities to learn and generate high-

quality embeddings that accurately reflect

the true community structure.

 Community Clustering via KNN: After

generating embeddings, VGAEE utilizes

the K-Nearest Neighbors (KNN) algorithm

for clustering. This innovative step

effectively combines a traditional machine

learning algorithm with a deep learning

framework to improve community

identification.

 Benchmark Dataset Experiments: The

paper conducts extensive experiments

using three widely recognized benchmark

datasets—Cora, Citeseer, and PubMed.

These rigorous tests validate the model's

effectiveness and provide a strong basis for

comparison with baseline and state-of-the-

art methods.

 Superior Performance Metrics: The

VGAEE framework outperforms existing

algorithms in both accuracy and

Normalized Mutual Information (NMI),

demonstrating its superior ability to

identify and differentiate community

structures in complex networks.

Community detection is widely recognized as an

NP-hard problem that presents a range of

computational challenges. This paper addresses

these issues by focusing on both computational

efficiency and detection accuracy in attributed

social networks. By utilizing GNNs, the study

introduces innovative embedding techniques and

improved graph representation learning strategies,

ultimately providing a more effective approach to

community detection.

We structure the remainder of this paper as follows:

Section 2 surveys the existing literature on graph

convolutional networks and dual embedding

techniques, outlining fundamental advances and

identifying the gaps that our study aims to address.

Section 3 introduces the necessary concepts and

Variational Graph Autoencoder for Unsupervised Community Detection in Attributed Social Networks

3

notations, providing the foundation for

understanding the methodologies discussed later.

Section 4 presents a detailed description of the

proposed algorithm, VGAEE, along with its

pseudocode. Section 5 offers a comprehensive

overview of the datasets used for testing, explains

the evaluation metrics employed to assess

performance, and describes the chosen parameters

and experimental setup. Finally, Section 6 presents

the conclusion and discusses directions for future

work.

2. Literature review

With recent advances in information technology

and the digital world, complex network theory has

found applications in various fields, including

social networks, biological networks, and internet

networks. One of the key challenges in complex

network research is community detection, which

aims to identify the structural properties of

networks. Communities in a network are formed by

groups of nodes that have stronger internal

connections and fewer connections with external

nodes. Early community detection methods

primarily relied on the topological characteristics

of networks, and numerous approaches have been

proposed based on different criteria for similarity

and proximity among groups. Before the

development of deep learning techniques,

community detection methods were broadly

categorized into two main groups: Hierarchical

methods and Partitioning methods. Hierarchical

methods begin with either a partition where each

node is considered an independent cluster or a

partition where all nodes belong to a single

community. Clusters are then iteratively merged or

divided based on a quality measurement criterion,

forming a hierarchical structure. While hierarchical

methods do not require prior knowledge of the

number of communities, they do depend on a

specific criterion to determine meaningful

partitions.

On the contrary, partitioning methods identify

clusters through iterative member allocation. These

methods assess the quality of partitions by

optimizing one or more objective functions. Some

commonly used partitioning techniques include

finding the largest number of cliques in a graph [1],

modularity maximization [2], matrix

decomposition [3], seed expansion [4], linear

sparse coding [5], sparse linear coding [5], and

evolutionary algorithms [1]. Both hierarchical and

partitioning methods involve high computational

costs, making them inefficient for large-scale

networks. In other words, these approaches

struggle to find optimal solutions within a

reasonable timeframe. To address this issue, more

adaptive local methods have been introduced to

detect separate and overlapping communities more

efficiently [6]. One such example is label

propagation-based methods, which use the local

expansion of node labels to identify communities

in linear time [7].

Deep learning (DL) techniques are widely applied

in various fields, including computer and social

sciences, economics, agriculture, healthcare, and

medicine [8]. Network representation learning

(NRL) converts complex network structure data

into a low-dimensional, manageable space, making

it useful across these diverse applications. This

approach includes learning network

representations [9], network embedding [10], and

graph embedding [11], all designed to preserve the

network’s typological structure, vertex content,

and auxiliary information.

These advanced learning methods have

transformed the way complex classification,

clustering, and prediction models are constructed

through effective graph data representation. They

simplify the execution of analytical tasks that

would traditionally require more complex models.

Network Representation Learning (NRL)

techniques focus on reducing the dimensionality of

network vertices representations while preserving

essential topological and content features of the

network [9]. These representations are then utilized

as vector inputs for machine learning tasks such as

node classification and link prediction, fostering

the creation of more refined and effective NRL

strategies for complex networks [10]. Methods for

graph representation learning are generally divided

into three main categories: probabilistic models,

deep learning-based algorithms, and matrix

decomposition algorithms. Each category will be

further discussed to highlight their unique

approaches and applications.

Probabilistic Models: Techniques such as LINE

[12] and Node2vec [13] are designed to extract

varied graph patterns to enhance embedding

learning. Node2vec efficiently maps nodes into a

vector space, which significantly boosts the

performance of link prediction and node

classification tasks. LINE is notable for its large-

scale application, utilizing edge sampling strategies

to address the typical challenges associated with

stochastic gradient descent. This adaptation

improves the graph embedding process while

maintaining high efficiency.

O. Rashnodi et al. / Journal of Optimization of Soft Computing (JOSC), 3(1): 1-23, 2025

4

Deep Learning-Based Algorithms: DeepWalk

[14] is a prime example of integrating deep

learning with graph theory. It excels at encoding

the complete structural information of graphs by

leveraging the local structural information of

vertices and incorporating the Skip-Gram model

within the framework of random walks. This

approach has been particularly successful in social

networks for tasks like multilabel classification.

Deep learning models capture the nonlinear

dynamics of complex, extensive networks by

analyzing various relational data, including nodes,

neighbors, edges, subgraphs, and community

features. These models are particularly effective in

handling sparse networks and excel in

unsupervised learning contexts. Algorithms like

DNGR, SNDE, and ANRL [15] use deep

autoencoder models for representing high-

dimensional data. Conversely, end-to-end

network-based methods like SNE [16] and

DeepGL [17] blend structural and attribute data to

enhance graph representation learning.

Additionally, MGAE [18] utilizes a single-layer

autoencoder, simplifying clustering tasks, while

HNE [19] merges deep autoencoder neural

networks with convolutional networks to process

adjacent vectors and images.

Matrix Decomposition Algorithms: This

category includes techniques like M-NMF [20] and

TADW [21], which are focused on matrix

decomposition to effectively learn node

representations. These methods are crucial for

untangling complex network structures, enabling

deeper insights into network dynamics and

interactions.

Together, these methods establish a solid

framework for managing and analyzing complex

networks across diverse domains, accommodating

a broad spectrum of applications from theoretical

research to practical, real-world problem-solving.

This comprehensive approach ensures that insights

derived from graph theory and network analysis are

not only theoretically sound but also applicable in

solving actual challenges in fields such as social

networking, bioinformatics, and

telecommunications.

Wang et al. [22] effectively utilized a graph

autoencoder to achieve deep representations, which

were then applied in a spectral clustering algorithm

to enhance graph clustering. In a similar vein, He

et al. [23] developed a nonlinear restructuring

approach for modularity matrices using deep neural

networks, which they further adapted into a semi-

supervised community detection algorithm by

incorporating constraints on paired graph nodes.

Both approaches address significant challenges

associated with high computational demands and

the need for extensive parameter tuning, such as

determining the number of clusters, which often

remains undefined in large and heterogeneous

networks globally. More recently, advancements in

graph neural networks (GNNs), including graph

convolutional networks (GCNs), have been

introduced to address community detection issues

[24, 25]. GCNs amalgamate the information from

neighboring nodes through deep convolutional

layers in graphs, employing convolutional

operations similar to those used in convolutional

neural networks to extract and represent complex

community features based on network topology

and node characteristics [26].

Originally, Graph Convolutional Networks

(GCNs) were not designed with community

detection in mind, meaning they did not

specifically target community structures during

node embedding learning, nor did they impose

constraints on the structural relationships between

communities and nodes. Addressing this limitation,

Jin et al. [27] introduced a semi-supervised

community detection model named MRFasGCN.

This model integrates a GCN with the Markov

Random Fields (MRF) statistical model to enhance

community detection capabilities. The innovation

lies in extending the Markov Random Field into a

new convolutional layer within the GCN

framework, thereby allowing MRFasGCN to

effectively oversee and refine the overall outcomes

of the GCN's community detection efforts.

Sun et al. [28] developed a framework to enhance

network embedding for clustering nodes in

attributed graphs. This innovative framework

concurrently learns graph-based and cluster-

oriented representations. It consists of three key

components: a graph autoencoder module, a soft

modularity maximization module, and a self-

clustering module. The graph autoencoder module

is tasked with learning node embeddings that

incorporate both the topological structure and the

node properties.

Jin et al. [29] introduced an unsupervised model for

community detection using GCN embedding,

employing the GCN as the primary structure of the

encoder to reconcile two types of information:

topology and property. This model utilizes a dual

encoder setup to extract distinct embeddings from

these two data sources.

Luo et al. [30] presented a deep-learning model that

aims to simultaneously identify communities and

structural holes using a GCN-based encoder. This

Variational Graph Autoencoder for Unsupervised Community Detection in Attributed Social Networks

5

approach leverages the GCN's ability to integrate

network topology and node properties for

community detection. However, the model faces

challenges as it (1) learns representations through

encoding topological features and node properties

without considering community-specific features,

resulting in embeddings that are not community-

centric, and (2) operates as a semi-supervised

rather than a fully unsupervised model.

Wang et al. [31, 32] proposed a novel approach

involving nonnegative matrix decomposition,

introducing a community membership matrix and a

community characteristic matrix. They also

developed several efficient updating rules that

ensure convergence. This method enhances

community detection by incorporating node

attributes, which also provide a semantic

interpretation of the communities.

Efforts have also been made to develop semi-

supervised methods for community detection by

integrating network representations with data

labels through graph-based regulation to identify

unlabeled nodes. Young et al. [33] utilized node

representations to predict network backgrounds

and applied node labels to facilitate various transfer

and inductive learning strategies. Recent

advancements include the introduction of graph

convolutional networks for network analysis, with

GCN-based methods enhancing both network

topology and attribute data analysis. Unlike most

semi-supervised approaches that predominantly

focus on network structure, these methods require

a substantial number of node labels to classify

unlabeled nodes. Sun et al. also introduced a graph

convolutional autoencoder framework for

clustering nodes, and several unsupervised

methods have been recently proposed to advance

this field.

In [34], a supervised model within the CNN

framework was introduced for typological defect

networks. This model incorporates two CNN layers

with max-pooling operators to represent the

network structure and a fully connected DNN layer

dedicated to community detection. The

convolutional layers are designed to capture the

local attributes of each node from multiple

perspectives. Testing on Topological Interference

Networks (TINs), with a configuration of 10%

labeled nodes and 90% unlabeled nodes, this model

achieved an impressive 80% accuracy in

community detection, highlighting that

incorporating high-order neighbor representation

can significantly enhance the accuracy of detecting

communities.

In [35], a model named the Linear Graph Neural

Network (LGNN) was proposed to enhance the

efficiency of the Stochastic Block Model (SBM) in

community detection while also reducing

computational costs. The LGNN effectively learns

the represented attributes of nodes in directed

networks by employing a combination of non-

backtracking operators and messaging rules,

streamlining the process and optimizing

performance.

In [36], the CommDGI model was introduced,

which optimizes graph representation and

clustering concurrently through mutual

information on nodes and communities while

aiming to maximize graph modularity. This

approach utilizes k-means clustering to

strategically align nodes with cluster centers,

enhancing the clarity and effectiveness of

community detection.

Additionally, while Spectral GCNs adeptly reveal

all hidden attributes of a node's neighborhood, they

can lead to over-smoothing, which may obscure

distinct community structures. To counter this

effect, graph convolutional ladder-shaped

networks have been developed as a novel GCN

architecture. Inspired by the U-Net model in the

CNN domain, this unsupervised community

detection approach [37] aims to mitigate the over-

smoothing issue, ensuring more distinct and

actionable community detection outcomes.

In scenarios where various types of links are treated

as simple edges, GCNs typically represent each

link separately and then aggregate them, which can

lead to redundancy in representation. To address

this, IPGDN [38] introduces a methodology that

segments neighborhoods into different sections and

autonomously identifies independent hidden

attributes of a graph. This approach simplifies the

process of community detection. The IPGDN

model is enhanced by the use of the Hilbert–

Schmidt independence criterion in neighborhood

routing, facilitating more precise and effective

community detection. Moreover, adaptive graph

convolution has been developed to identify

communities within attributed graphs. This

technique relies on both structural data and

representational features, categorizing neighboring

nodes and nodes with similar attributes into the

same community cluster. In this process, two graph

signals are combined, necessitating the filtering of

high-frequency noise, which is achieved through

the design of a low-pass graph filter with a specific

frequency response function.

O. Rashnodi et al. / Journal of Optimization of Soft Computing (JOSC), 3(1): 1-23, 2025

6

In [39], a sophisticated method using Cayley

polynomials was introduced to achieve high-order

approximations within the spectral convolutional

framework of graph neural networks. Although the

exploration of GCN filters is relatively limited,

CayleyNets are distinguished by their use of low-

pass filters that effectively utilize extensive

community data for precise community

identification.

In [40], challenges associated with graph

convolutional neural networks in processing

complex relational graphs, such as excessive

smoothing during node classification, are

addressed. The newly developed SM-GCN model

strives to enhance node categorization accuracy by

reducing dependency on individual node features

and incorporating scattering embeddings. This

innovation is specifically designed to mitigate the

over-smoothing effect, ensuring more distinct and

accurate node classifications in complex network

structures.

In [41], a new model known as the Graph

Convolutional Fusion Model (GCFM) was

introduced for enhancing community detection in

multiplex networks, which are composed of

multiple layers, each representing a different type

of relationship among the same set of nodes. The

GCFM utilizes a graph convolutional autoencoder

for each layer to capture and encode the structural

features specific to each layer while considering

the connections between neighboring nodes. This

approach allows for a more nuanced and accurate

detection of communities across the complex

interlayer dynamics of multiplex networks.

In [42], the Temporal Attributed Network

Matrix Factorization (TANMF) algorithm was

developed to detect dynamic modules within

cancer temporal-attributed networks, incorporating

both genomic data and temporal network changes.

The experimental results showed that TANMF not

only surpasses existing methods in accuracy but

also enriches identified modules with known

biological pathways and demonstrates correlations

with patient survival outcomes, providing valuable

insights into cancer progression.

In [43], the Joint Learning Dynamic Edge

Community (jLDEC) algorithm was proposed for

identifying dynamic communities within temporal

networks. This algorithm integrates graph

representation learning with community detection

and the dynamics of network edges into a unified

framework, significantly enhancing the precision

of community detection. The jLDEC algorithm has

been shown to perform better than traditional

methods, particularly in accurately capturing the

changing dynamics of community structures within

temporal networks.

In [44], the Network Embedding to Nonnegative

Matrix Factorization (NE2NMF) algorithm

addresses the challenge of detecting dynamic

communities by combining network embedding

with nonnegative matrix factorization. It

incorporates a third-order smoothness strategy that

accounts for previous, current, and subsequent

network snapshots, thereby providing a more

comprehensive characterization of community

dynamics. Experimental validations confirm that

NE2NMF not only improves accuracy but also

enhances the robustness of community detection

compared to conventional approaches, making it

particularly effective in dynamic network

environments.

In [45], the Joint Learning of Multidimensional

Clustering (jLMDC) algorithm was presented for

dynamic community detection in temporal

networks. This approach integrates feature

extraction and clustering into a single framework,

significantly enhancing both the accuracy and

efficiency of detecting dynamic communities.

Compared to traditional methods, jLMDC shows

marked improvements in computational speed and

accuracy, making it highly effective for managing

large-scale networks and their complex community

dynamics.

In [46], the Deep Autoencoder-like Nonnegative

Matrix Factorization for Multi-View Learning

(DANMF-MRL) was introduced, employing a

deep encoding process to create a representation

matrix. This matrix is subsequently decoded to

reconstruct the original data. Utilizing the DANMF

framework, the method addresses the challenges of

maintaining consistency and complementarity in

multi-view data, greatly enriching the depth and

comprehensiveness of data representations.

In [47], a Nonnegative Matrix Factorization-based

Multi-View Learning (MRL) framework was

proposed, which considers two critical

components: an exclusivity term to leverage

diverse intra-view information and a consistency

term to ensure unified representations across

multiple views. Additionally, a local manifold

component is included to preserve the local

geometric structure of the data. An alternating

optimization algorithm based on multiplicative

updates was introduced to solve this problem, with

proven convergence.

Review studies have shown that graph embedding

methods can substantially improve efficiency and

Variational Graph Autoencoder for Unsupervised Community Detection in Attributed Social Networks

7

reduce the time needed for community detection in

social networks. Variational Graph AutoEncoder

(VGE), a deep learning-based embedding

technique, is utilized for network representation

learning. However, a significant challenge with

GCNs is their lack of inherent community

orientation, which can result in node

representations that may not be sufficiently precise

for effective community detection. To address this,

the k-core algorithm is used first to filter the graph

and eliminate less significant nodes, thereby

reducing the graph's size and enhancing the

distinctiveness of its communities. Subsequently,

the modularity matrix and the Markov matrix,

which represent the graph's structure and content

respectively, are concatenated and used as input for

the VGE. The VGE encoder processes this input

through two layers of the graph convolution

network, producing a reduced-dimensional

representation for each node. This representation is

then normalized and utilized as the input for the k-

nearest neighbors clustering algorithm to identify

communities.

3. Preliminaries and Notation

This section provides a concise introduction to the

foundational concepts, including essential

notations and the formal problem statement. These

preliminaries establish the groundwork necessary

for understanding the proposed approach.

3.1. Attributed graph

Suppose that 𝐺 = (𝑉, 𝐸, 𝐴, 𝑋) is an attributed

network where V is a set of vertices
{𝑣1, 𝑣2, … , 𝑣𝑛}, 𝐸 is a set of edges between nodes,

A is the adjacency matrix, and X is the attribute

matrix where an element 𝑋𝑖𝑝 represents the value

of the p-th attribute for the vertex 𝑣𝑖. In adjacency

matrix A, if there is an edge between the two

vertices of 𝑣𝑖 and 𝑣𝑗 then 𝑎𝑖𝑗 > 0. For weightless

networks, if there is an edge, 𝑎𝑖𝑗 =

1; otherwise, 𝑎𝑖𝑗 = 0. if the network is not direct,

𝑎𝑖𝑗 = 𝑎𝑗𝑖 also holds [50].

3.2. Community and community detection

Consider that we have the community set 𝐶 =
{𝐶1, 𝐶2, … , 𝐶𝑟}. Each community is a network

partition with regional structures and shared cluster

attributes. The node 𝑣𝑖 that is clustered in the

community 𝐶𝑖 It should meet the condition that the

internal degree of every node is greater than its

external degree. In this paper, community detection

is considered in the attributed graph. The graph has

G attributes and the number of r communities. This

paper aims to find the function 𝑓: 𝑣 → {1,2,3,… , 𝑟}
such that r is true for all 𝑓(𝑣𝑖) = 𝑟 nodes of the r

community. Function partitions should follow the

following principles: (1) Nodes of a group are

connected, while the nodes are not connected in

different groups. (2) Nodes in the same community

tend to have similar attribute values, while those

from different communities may vary relatively,

even if they are neighbors at the graph level. (3)

The function can adequately maintain the attributed

graph's node attributes and structural information.

Finally, we can find the groups separate from the

nodes and their inductive subnodes, i.e.,

communities.

3.3. Decomposition k-core:

Assume a graph G = (V, E) of |V | = n vertices and

|E| = e edges; a k-core is defined as follows: A

subgraph H = (C, E|C) induced by the set C ⊆ V is

a k-core or a core of order k iff ∀ v ∈ C: degree H

(v) ≥ k, and H is the maximum subgraph with this

property. Therefore, a k-core of G can be obtained

by recursively removing all the vertices of degrees

less than k until all vertices in the remaining graph

have at least degree k.

3.4. Modularity and normalization cut:

Assume that network G = (A, S) is undirected and

attributed to n nodes, where 𝐴 = [𝑎𝑖𝑗] ∈ 𝑅𝑛∗𝑛 is

the adjacency matrix. In this matrix 𝑎𝑖𝑗 = 1 if there

is an edge between nodes i and j; otherwise, 𝑎𝑖𝑗 =

0. Here, 𝛽𝑖 = ∑ 𝑎𝑖𝑗𝑗 is the degree of node i, and

𝑚 =
1

2
∑ 𝛽𝑖𝑖 is the total number of network edges.

𝑆 = [𝑠𝑖𝑗] ∈ 𝑅𝑛∗𝑛 is a similarity matrix in which 𝑠𝑖𝑗

is the cosine similarity value between the

corresponding content vectors of nodes i and j.

According to these explanations, the normalized

cut and modularity models are defined as follows:

3.4.1. Modularity Model:

The modularity function Q was first introduced by

Newman and Girvan in [51] and is widely

recognized as one of the most prominent quality

functions for community detection. Due to its

effectiveness, optimizing Q-modularity has

become a fundamental approach in community

detection. Equation (1) formally defines this

function for two communities:

∅ =
1

4𝑚
∑ (𝑎𝑖𝑗 −

𝛽𝑖𝛽𝑗

2𝑚
)𝑖𝑗 (𝜓𝑖𝜓𝑗) (1)

Where 𝜓𝑖 is equal to 1 (or -1) if node 𝑣𝑖 Belongs to

community 1 (or 2). Modularity can be easily

optimized using specific vectors and values by

defining a modularity matrix, as shown in equation

(2):

O. Rashnodi et al. / Journal of Optimization of Soft Computing (JOSC), 3(1): 1-23, 2025

8

𝐵 = [𝑏𝑖𝑗] ∈ 𝑅𝑛∗𝑛, with entries 𝑏𝑖𝑗 = 𝑎𝑖𝑗 −
𝛽𝑖𝛽𝑗

2𝑚
 (2)

Therefore, the modularity ∅ can be rewritten as

equation (3):

∅ =
1

4𝑚
𝜓𝑇𝐵𝜓 (3)

Where 𝜓 = [𝜓𝑖] ∈ {−1,1}𝑛represents

membership in a community node. However,

maximizing modularity is an NP-hard problem. By

simplifying the problem and allowing variables 𝜓𝑖

to take any integer value, the problem can be easily

solved as equation (4):

𝑚𝑎𝑥 ∅ = 𝑚𝑎𝑥 𝑇𝑟(𝛹𝑇𝐵𝛹) (4)

Where 𝛹 = [𝜓𝑖𝑗] ∈ 𝑅𝑛∗𝑝 is the matrix that hints at

membership in the community, and Tr (0) is the

trace function. The solution is to obtain p of the

most significant specific vector of modularity

matrix B. In addition, the solution space allows Ψ

reconstruction of network topology from a

community structure viewpoint. Therefore, any

row of the Ψ matrix can be assumed to be a good

representation of the corresponding node in the

hidden space to detect the community.

3.4.2-Normalize cut model:

This model calculates the ratio of external edges to

internal edges, providing a measure of community

separation. To compute a normalized cut, the cut

between clusters A and B, denoted as Cut (A, B),

represents the total number of edges that connect

nodes in different clusters. The volume of cluster

AA, represented as Vol (A), is the sum of the

degrees of all nodes within cluster A [52]. These

values are determined using equations (5) and (6):

𝑐𝑢𝑡(𝐴, 𝐵) = ∑ 𝑤𝑖𝑗𝑖∈𝐴,𝑗∈𝐵 (5)

𝑉𝑜𝑙(𝐴) = ∑ 𝑘𝑖𝑖∈𝐴 (6)

Given equations (5) and (6), the objective

function of the normalized cut for two clusters, A

and B, will be equation (7) or equation (8) when

there are k clusters C1, C2 … Ck.

𝑁𝑐𝑢𝑡(𝐴, 𝐵) =
𝑐𝑢𝑡(𝐴,𝐵)

𝑣𝑜𝑙(𝐴)
+

𝑐𝑢𝑡(𝐴,𝐵)

𝑣𝑜𝑙(𝐵)
 (7)

𝑁𝑐𝑢𝑡(𝐶1, 𝐶2, … , 𝐶𝑘) = ∑
𝑙𝑖𝑛𝑘(𝐶𝑡,𝐶�̅�)

𝑣𝑜𝑙(𝐶𝑡)
𝑘
𝑡=1 (8)

Where 𝑙𝑖𝑛𝑘(𝐶𝑡, 𝐶�̅�) =
1

2
∑ 𝑆𝑖𝑗𝑖∈𝐶𝑡,𝑗∈𝐶𝑡̅̅ ̅ is the total

connection from nodes in Ct to all nodes in 𝐶�̅� (not

in𝐶𝑡) and 𝑣𝑜𝑙(𝐶𝑡) = ∑ 𝑑𝑖𝑖∈𝐶𝑡
 is the total internal

connection in 𝐶𝑡.

To achieve the minimum objective function, the

normalized cut is wrapped in an optimization

problem as per Equation (9), where L is the

Laplacian graph matrix of similarity and its

normalized form 𝐷−1𝐿 = 𝐷−1(𝐷 − 𝑆) = 𝐼 − 𝐷−1𝑆 is

the identity matrix (I). Equation (10) is known as

the Markov matrix:

𝑚𝑖𝑛 𝑇𝑟(∅𝑇𝐿∅)

∅ ∈ 𝑅𝑛∗𝑘

S.t L=D-S

D= 𝑑𝑖𝑎𝑔(𝑑1, 𝑑2, … , 𝑑𝑛) (9)

∅𝑖𝑗 = {

1

√𝑣𝑜𝑙(𝐶𝑗)

 if 𝑣𝑖 ∈ 𝐶𝑗

0 otherwise

M=𝐷−1𝑆 (10)

 In the case of this problem, the solution matrix ∅

of the specific vectors of k is the minimum nonzero

particular value of the normalized Laplacian

matrix 𝐷−1𝐿. In other words, k is the most

significant specific value M covers, representing

the solution in the hidden space. More importantly,

the solution matrix Φ provides a perfect

representation for obtaining the clustering.

Given the above, a higher modularity leads to a

better partition structure; conversely, a lower

normalized cut value enhances the two critical

principles of graph classification, namely

maximum integrity and minimum connection.

3.5. Graph embedding:

Let G= (V, E, X), where 𝑉 = {𝑣𝑖} 𝑖 = 1,2, . . , 𝑛 is

formed of a set of graph nodes and 𝑒𝑖𝑗 =< 𝑣𝑖, 𝑣𝑗 >

∈ 𝐸 represents a connection between the nodes.

The topological structure of graph G is illustrated

by adjacency matrix A, where 𝐴𝑖𝑗 = 1 if eij ∈ E

and otherwise 𝐴𝑖𝑗 = 0. 𝑋 ∈ 𝑅𝑛∗𝑑 is the node

attribute matrix, and d is the number of attributes.

In addition, 𝑥𝑖 ∈ 𝑋 shows the attributes of the

content of each node 𝑣𝑖 . The objective of the

embedding problem is to map nodes 𝑣𝑖 ∈ 𝑉 to low-

dimensional vectors 𝑧𝑖 ⃗⃗⃗⃗⃗⃗ ∈ 𝑅𝑑, with a formal

format 𝑓: (𝐴, 𝑋) → 𝑍, where 𝑧𝑖
𝑇 is the-i row of the

𝑍 ∈ 𝑅𝑛∗𝑑 matrix (n is the number of nodes, and d

is the packing dimension). We assume that Z is the

packing matrix, so the packings should preserve A's

topology and content information, X.

3.6. Notations:

Variational Graph Autoencoder for Unsupervised Community Detection in Attributed Social Networks

9

Table 1 consolidates the essential symbols used

throughout this paper, encompassing various

matrices, graph properties, and representation

details relevant to the discussed methods. This

table serves as a reference for understanding the

notations and mathematical formulations

employed in our approach.

4. The proposed method: VGAEE

Our proposed model is designed to detect

communities within attributed social networks by

utilizing a parallel dual graph convolutional neural

network (GCN) for an efficient and interpretable

embedding process. The model is structured into

four distinct phases:

1. Graph Filtering: This initial phase filters

the graph to prepare it for further

processing, enhancing the clarity of the

underlying structures within the network.

2. Modularity and Markov Matrices

Calculation: The second phase calculates

modularity and Markov matrices, which

are crucial for understanding the

community structure and the transition

probabilities between nodes.

3. Network Embedding: During the third

phase, a Variational Graph AutoEncoder

is employed to generate a new and

meaningful representation of the network.

This step is pivotal for capturing the

essence of community structures in a

lower-dimensional space.

4. Clustering: The final phase involves

clustering the embedded representations

to identify distinct communities within

the network. This step categorizes nodes

into groups based on the learned

embeddings.

The output from each phase is meticulously

designed to feed into the subsequent phase as input,

ensuring a smooth transition and integration of data

throughout the model. Fig. 1 provides a detailed

schematic of the proposed method, visually

outlining each phase and their interconnections.

The upcoming sections will explore the intricacies

and functionalities of each phase in greater detail,

offering a comprehensive understanding of our

approach.

4.1. Graph Filtering

By implementing the k-core algorithm, we

strategically streamline the graph by removing

nodes of lesser significance, typically those with

low degrees. This method significantly reduces the

graph’s size and complexity, enhancing the

efficiency of community detection algorithms

applied thereafter. The k-core algorithm highlights

the graph’s most prominent regions, facilitating

more focused and faster computations. Essentially,

a k-core represents a maximal subset of a graph’s

nodes where each node maintains at least k

connections within that subset. For inclusion in the

k-core, a node’s degree within the subset must be

no less than k. The process involves calculating the

k-core by first removing nodes with degrees less

than k, then recalculating the degrees, and

iteratively repeating this removal process until all

nodes satisfy the k-core condition. Each iteration

carries a computational complexity of O(E), where

E denotes the total number of edges.

Through successive iterations, the graph is

methodically reduced by excluding nodes lacking

sufficient connectivity, ultimately yielding a

simplified core that depicts the most interconnected

nodes. As delineated in this section, the k-core

algorithm inherently defines a community based on

its density, thereby reducing the overall graph

size—this accelerates the community detection

process in subsequent phases and bolsters the

community-centric focus of graph neural networks.

The choice of k in this algorithm is contingent upon

the specific dataset being analyzed; in this study, a

k-value of 3 was selected based on a trial-and-error

method to optimize the balance between

simplification and structural integrity.

4.2. Calculation of the modularity matrix and

normalized cut matrix

This section details the calculation of the

modularity matrix (Matrix B) and the Markov

matrix (Matrix M) for the filtered graph, a product

of applying the 3-core algorithm. These

calculations are fundamental for understanding the

structural and transitional properties of the graph

and are crucial for subsequent analyses, such as

community detection or dynamic behavior studies.

O. Rashnodi et al. / Journal of Optimization of Soft Computing (JOSC), 3(1): 1-23, 2025

10

Table 1: List of notations used in this paper

Descriptions Symbols Descriptions Symbols

A similarity matrix S Graph adjacency matrix A

)j; vivThe modularity value of (ijB Graph attribute matrix X

The modularity evaluation metric Q Number of nodes in the graph N

The pairwise node similarity

)j; vivvalue of (

ijS Representations of nodes Z

A degree matrix D Hidden dimensions H

A Laplacian matrix L Reconstructed graph adjacency matrix �̅�

A modularity matrix B Number of communities in the graph K

A Markov matrix M Feature representation at layer i+1 𝐻[𝑖+1]

Feature representation at layer i 𝐻𝑖 The Activation function 𝜎(0)

Based on layer i 𝑏𝑖 Weight at layer i 𝑊𝑖

Fig. 1: Flowchart of the proposed method VGAEE

O. Rashnodi et al. / Journal of Optimization of Soft Computing (JOSC), 3(1): 1-23, 2025

11

4.3. Network embedding

The learning phase aims to achieve a robust

embedding of the data graph G= (V, E, A, X). To

accomplish this, we employ a Variational Graph

Autoencoder (VGA), which processes the entire

graph to learn an effective embedding. As depicted

in Figure 2, the workflow for this processing

method involves two primary components: the

encoder and the decoder.

Encoder: In a Variational Graph Autoencoder, the

encoder's role is pivotal. It takes two inputs: the

adjacency matrix A, representing the graph's

structure, and the node features matrix X. The

encoder's task is to map this high-dimensional

input data into a lower-dimensional latent

representation Z. This latent space Z captures the

essential features of the nodes while preserving the

structural and feature-based relationships inherent

in the graph. Typically, the encoder uses layers of

graph convolution to aggregate and transform the

input data into this compact representation. This

step is crucial as it determines how well the encoder

can identify and encode community-specific

features into the latent space.

Decoder: Following the encoding process, the

decoder takes the latent representation Z and aims

to reconstruct the original graph's structure. The

primary objective of the decoder is to validate the

effectiveness of the learned embeddings by

attempting to regenerate the adjacency matrix A

from Z. This process tests the encoder's ability to

embed nodes in such a way that the original graph

structure can be predicted from the embeddings. A

successful reconstruction indicates that the latent

space Z contains meaningful and comprehensive

information about the graph's structure and node

interactions.

The Variational Graph Autoencoder's effectiveness

hinges on its ability to reduce the dimensionality of

the graph data while retaining significant structural

and feature-related information. This capability is

crucial for tasks such as community detection,

where the goal is to cluster similar nodes more

effectively. By embedding nodes into a lower-

dimensional space that emphasizes community-

specific features, the Variational Graph

Autoencoder facilitates more accurate and efficient

community clustering. This method not only

streamlines computations but also enhances the

interpretability of the results, allowing for clearer

insights into the underlying community structure of

the graph.

4.3.1. Encoder Model

The encoder (inference model) of VGAE consists

of graph convolutional networks (GCNs) [51]. It

takes an adjacency matrix A and a feature

matrix X as inputs and generates the latent

variable Z as output. The first GCN layer

transforms the feature matrix into a lower-

dimensional form as defined by Equation 11:

 �̅� = 𝐺𝐶𝑁(𝑋, 𝐴) = 𝑅𝑒𝐿𝑈(𝐴 ̃𝑋𝑊0) (11)

𝐴 ̃ = 𝐷−
1

2 𝐴 𝐷 −
1

2

A-tilde is the symmetrically normalized adjacency

matrix. The second GCN layer generates μ and

logσ², which are defined by Equation 12:

𝜇 = 𝐺𝐶𝑁𝜇(𝑋, 𝐴) = 𝐴 ̃�̅�𝑊1 (12)

 logσ² = 𝐺𝐶𝑁𝜎(𝑋, 𝐴) = 𝐴 ̃�̅�𝑊1

Now if we combine the math of two-layer GCN as

defined in Equation 13, yields:

𝐺𝐶𝑁(𝑋, 𝐴) = 𝐴 ̃𝑅𝑒𝐿𝑈(𝐴 ̃𝑋𝑊0)𝑊1 (13)

Which generates μ and logσ². Subsequently, Z can

be determined using the parameterization trick, as

specified in Equation 14:

𝑍 = 𝜇 + 𝞼 ∗ Ɛ Where ε ~ N (0, 1). (14)

4.3.2. Decoder Model

The decoder (generative model) is defined by an

inner product between latent variable Z. The output

of our decoder is a reconstructed adjacency

matrix A-hat, which is defined as Equation 15:

�̂� = 𝜎(𝑧𝑧𝑇) (15)

Where σ(•) is the logistic sigmoid function. In

summary, the encoder is represented as Equation

16:

𝑞(𝑧𝑖|𝑋, 𝐴) = 𝑁(𝑧𝑖|𝜇𝑖 , 𝑑𝑖𝑎𝑔(𝜎2)) (16)

(13)

 (14)

 (16)

https://tkipf.github.io/graph-convolutional-networks/

O. Rashnodi et al. / Journal of Optimization of Soft Computing (JOSC), 3(1): 1-23, 2025

12

Fig. 2: The workflow scheme of the Variational graph autoencoder in the proposed method

Fig. 3: The VGAEE Framework for Community Detection in Attributed Social Networks.

The decoder is represented in Equation 17:

𝑝(𝐴𝑖𝑗 = 1|𝑧𝑖, 𝑧𝑗) = 𝜎(𝑧𝑖
𝑇𝑧𝑗) (17)

In this paper, the encoder, a linear combination of

the matrices Q and M is initially computed, which

can be considered as the new input feature matrix

Xnew:

Xnew Q M   (18)

Where α and β are coefficients for the combination.

This Xnew is then fed into Graph Convolutional

Networks (GCN): The first GCN layer produces a

lower-dimensional feature representation:

0() ()1 ,new newX GCN X A ReLU AX W  

where A is the symmetrically normalized

adjacency matrix.

The second GCN layer generates the values μ and
2log : 1(,)GCN X A AX W   

𝑙𝑜𝑔𝜎2 = 𝐺𝐶𝑁𝜎(𝑋, 𝐴) = 𝐴 ̃𝑋 ̅ 𝑊1

The decoder then uses these parameters to

reconstruct the adjacency matrix:

2()A sigmoid AX W  Where W are the

weights associated with the decoder. Using the

reparameterization trick: Z    (0,1)Nò

is a random variable from the standard normal

distribution. These adjustments ensure that the

combined inputs are accurately reflected in the

model, allowing for more precise and complex

community structure identification.

4.3.3. Loss function and Optimization

The loss function for the Variational Graph

Autoencoder remains largely unchanged and is

defined in Equation 18. It comprises primarily of

the reconstruction loss between the input adjacency

matrix and the reconstructed adjacency matrix.

Variational Graph Autoencoder for Unsupervised Community Detection in Attributed Social Networks

13

More specifically, this involves the binary cross-

entropy between the target (A) and the output (A′)

logits. The second part is the KL divergence

between q(Z | X, A) and p (Z), where p (Z) = N (0,

1). It measures how closely our q(Z | X, A) matches

p (Z).

After we get the latent variable Z, we want to find

a way to learn the similarity of each row in the

latent variable (because one row represents one

vertex) to generate the output adjacency matrix.

The inner product could calculate the cosine

similarity of two vectors, which is useful when we

want a distance measure that is invariant to the

magnitude of the vectors. Therefore, by applying

the inner product on the latent variable Z and Z^T,

we can learn the similarity of each node inside Z to

predict our adjacency matrix.

𝐿 = 𝐸𝑞(𝑍|𝑋, 𝐴)[𝑙𝑜𝑔𝑝(𝐴|𝑍)] − 𝐾𝐿[𝑞(𝑍|𝑋, 𝐴)||𝑝(𝑍)]

The proposed decoding model is used to

reconstruct graph data. We can reconstruct a graph

structure, content information X, or both. Here,

reconstruction of the graph structure is

recommended, which gives us a higher level of

flexibility so our algorithm preserves its

functionality even if content information X is

unavailable. Decoder 𝑝(�̂�|𝑍) predicts whether

there is a connection between the two nodes of a

connection. Specifically, we trained a connection

prediction layer based on graph embedding as per

Equation 19 and Equation 20.

𝑝(�̂�|𝑍) = ∏ ∏ 𝑝(�̂�𝑖𝑗 |𝑧𝑖 ,𝑧𝑗)
𝑛
𝑗=1

𝑛
𝑖=1 (19)

𝑝(�̂� 𝑖𝑗 = 1|𝑧𝑖 ,𝑧𝑗) = 𝑠𝑖𝑔𝑚𝑜𝑑(𝑧𝑖
𝑇 , 𝑧𝑗) (20)

The embedding of Z and �̂� Reconstructed graphs

are given in Equation 21:

�̂� = 𝑠𝑖𝑔𝑚𝑜𝑑(𝑍𝑍𝑇), ℎ𝑒𝑟𝑒 𝑍 = 𝑞(𝑍|𝑋, 𝐴) (21)

The graph data reconstruction error for a self-

encoder graph is minimized using Equation 22.

ℒ0 = 𝐸𝑞(𝑍|(𝑥,𝐴))[𝑙𝑜𝑔𝑝(�̂�|𝑍) (22)

4.4. Node clustering:

In this phase of processing, min-max scaling is

applied to normalize the Z_final feature vectors

that were obtained in the previous phase. This

normalization technique adjusts the data values so

that they range between zero and one. The

objective of using min-max scaling in this context

is to standardize the range of the feature vectors,

thus ensuring that no single feature dominates due

to its scale. This uniform scaling across all features

is essential for several reasons:

1. Enhanced Algorithm Performance:

Uniformity in feature scale helps machine

learning algorithms converge more

quickly. This is particularly important for

algorithms like K-nearest neighbors

(KNN), which rely on distance

calculations between points. If the scales

are not uniform, features with larger ranges

could disproportionately influence the

outcome, leading to biased results.

2. Improved Stability: Algorithms that

depend on distance measurements or

gradients are less likely to exhibit erratic

behavior during learning when all features

contribute equally. Stability in algorithm

performance leads to more reliable and

reproducible results.

3. Optimized Learning Efficiency: When all

features are scaled uniformly, each feature

has an equal opportunity to influence the

learning process, potentially increasing the

efficiency and effectiveness of the model.

Applying min-max scaling to the Z_final feature

vectors ensures that the subsequent steps,

especially those involving algorithms like KNN for

clustering or classification, operate under optimal

conditions. This preprocessing step is crucial for

achieving accurate and efficient outcomes in the

analysis of data, particularly in complex machine-

learning tasks that involve large and diverse

datasets. The decoder is represented in Equation

17:

𝑝(𝐴𝑖𝑗 = 1|𝑧𝑖, 𝑧𝑗) = 𝜎(𝑧𝑖
𝑇𝑧𝑗) (17)

Fig. 4 illustrates the architecture of our proposed

community detection model using VGAEE.

5. Experiment

In this section, we describe the comprehensive

experiments conducted to evaluate the

performance of the Variational Graph Autoencoder

Embedding Enhancer (VGAEE) against state-of-

the-art methods in real-world scenarios using valid

datasets. These experiments are designed to

provide a fair and rigorous comparison, focusing

on several critical aspects:

O. Rashnodi et al. / Journal of Optimization of Soft Computing (JOSC), 3(1): 1-23, 2025

14

5.1. Experimental settings

 5.1.1. Datasets

In our study, we utilized datasets derived from

real-world applications to test our community

detection methods, ensuring a thorough evaluation.

Statistical information about the three datasets

employed is presented in Table 4, reference [57].

These datasets comprise citation networks where

the nodes symbolize papers and the edges denote

the citations between them. Each node is associated

with attributes that represent word packet

summaries of the paper abstracts, while the labels

indicate the topics of the papers.

 5.1.2. Evaluation metrics

This section presents various qualitative metrics for

evaluating community detection approaches,

classified into performance and goodness

measures. Performance measures assess the quality

of the communities identified by the algorithm

relative to real-world communities. Additionally,

goodness measures focus on the structural

characteristics of the communities that have been

detected [60]. Our evaluation of the proposed

method utilized two key metrics: normalized

mutual information and accuracy. Higher values in

these metrics signify better performance.

Subsequent sections will provide a detailed

discussion of these measures.

-Normalized Mutual Information

The normalized mutual information, calculated

using equation (26), measures the similarity

between the community set identified by the

proposed algorithm and the actual community [60].

𝑁𝑀𝐼 =
∑ ∑ 𝑛𝑖𝑗𝑙𝑛 (𝑛𝑖𝑗

𝑘
𝑗=1

𝑘
𝑖=1 .𝑛/𝑛𝑖

𝑐.𝑛𝑗
𝑐)

√(∑ 𝑛𝑖
𝑐 𝑙𝑛(

𝑛𝑖
𝑐

𝑛
)𝑘

𝑖=1)(∑ 𝑛𝑗
�́�𝑘

𝑗=1 𝑙𝑛 (𝑛𝑗
�́�/𝑛))

 (26)

Where k is the number of communities, n is the

number of nodes, nij is the number of nodes in the

optimized community set i such that the proposed

community set is in community j, 𝑛𝑖
𝑐 is the number

of nodes in the community i, which is in the

optimized community set, and 𝑛𝑗
𝑐 is the number of

nodes in community j.

-Accuracy

It assesses the authenticity of the community

structure. Similar to NMI, computing this measure

necessitates the use of an optimal community

setting, as outlined in equation (27) [60].

ACC =
∑ 𝑘𝑛

𝑖=1 (𝐶𝑖,𝑃𝑀(�́�𝑖))

𝑛
 (27)

Where n is the number of groups, and for a specific

group, i and 𝐶𝑖 ،�́�𝑖 are the communities of node i in

optimum and recommended community settings.

K(x, y) is a function equal to 1 when x=y and 0

otherwise.

5.1.3. Parameter Settings:

For our study, we structured the training set by

selecting 20 nodes from each class, resulting in a

total of 500 nodes for the validation set and 1,000

nodes for the test set. Our experiments were

conducted using a two-layer Graph Convolutional

Network (GCN) setup. The initial layer included 64

neurons, with each subsequent layer in the

contracting path halving the neuron count from the

previous layer. The training was facilitated using

the Adam optimizer, a popular choice due to its

efficiency, and the experiments were carried out

using both TensorFlow and PyTorch frameworks.

The learning rate was initially set at 0.01, adjusted

dynamically by a scheduler that reduced the rate

upon encountering a loss plateau, which helped

achieve more stable convergence. We implemented

a dropout rate of 0.5 to prevent overfitting and

capped the training at a maximum of 200 epochs.

The Relu activation function was applied following

each graph convolutional operation. Training was

halted if there was no decrease in the loss function

over 10 consecutive epochs.

Initialization of the initial weights for the two GCN

layers was done randomly, selected from a uniform

distribution. To ensure the robustness of our

results, each experiment was repeated ten times,

with the average scores reported subsequently.

Detailed parameter settings for these experiments

are summarized in Table 5, which includes

parameter names and their respective values.

5.1.4. Experimental results and analysis

This subsection presents the experimental results

analyzed from various evaluation angles to validate

the efficiency of our proposed model. We

conducted experiments using medium-scale

datasets including Cora, Citeseer, and PubMed,

and compared our model against three established

baseline categories to provide a thorough analysis.

The comparison categories are detailed as follows:

1. Node Feature-Based Methods: This

category focuses on the unique attributes

Variational Graph Autoencoder for Unsupervised Community Detection in Attributed Social Networks

15

or characteristics of individual nodes.

Methods such as k-means and spectral

clustering, referred to here as spectral_f,

are prominent in this category. These

methods construct a similarity matrix

primarily using a linear kernel based on

node features.

2. Graph Structure-Based Methods: This

category emphasizes the intrinsic structure

of the graph. Techniques like spectral

clustering (Spectral_g) utilize the node

adjacency matrix to build the similarity

matrix. Notable methods in this group

include DeepWalk [14], which excels in

learning graph embeddings, and DNGR

[62], which merges spectral graph

clustering with deep neural networks for

complex graph representation.

Additionally, vGraph [63] is a probabilistic

generative model that learns community

membership and node representation

collaboratively, while Graph Encoder [64]

focuses on learning graph embedding for

spectral graph clustering.

3. Hybrid Methods: These methods

integrate both node attributes and graph

structure, typically resulting in enhanced

community detection outcomes despite

increased computational complexity.

Various graph autoencoder variants fall

within this category, including:

o GAE [65]: Utilizes neural networks

for learning graph representations.

o VGAE [65]: Advances GAE by

implementing a Variational

inference framework.

o MGAE [18]: Enhances

representation by marginalizing

specific graph properties.

o ARGA [66] and ARVGA [66]:

Employ adversarial and vibrational

regularization, respectively, to

refine graph embeddings.

o DAEGC [67]: Uses deep

autoencoders to reconstruct the

graph's adjacency matrix.

o AGE [56]: Enhances graph-based

learning tasks through a two-stage

process.
o AGC [55]: Leverages high-order graph

convolution to effectively understand a

graph's global structure.

o DBGAN [68] and GALA [69]: New

approaches using graph neural networks

for clustering and embedding node

features.

o CommDGI [11] and GC-VGE [70]:

Optimize the simultaneous learning of

node embeddings and cluster assignments.

o TADW [71]: Employs matrix

factorization for network representation

learning.

o RMSC [72] and RTM [72]: Focus on

robust multi-view spectral clustering and

learning topic distributions from text and

citations, respectively.

o GMIM [73]: Utilizes a mutual information

maximization approach for node

embedding.

o DGVAE [74]: Introduces a graph

Variational generative model with

Dirichlet distributions as priors on latent

variables.

o BernNet GCN [75] and WC-GCN [76]:

Utilize graph convolutional network

frameworks, with the former based on

Bernstein polynomial approximation.

o LGNN [35] and MRFasGCN [27]:

Specialized neural network models for

graph data, with MRFasGCN combining

GCN with a Markov random field model

for community detection.

These methods provide a broad spectrum of

approaches for analyzing and detecting community

structures within networks, facilitating a

comprehensive comparison against our proposed

model.

Tables 6-8 comprehensively compare the proposed

method with baseline community detection

methods based on their performance metrics. These

metrics include accuracy (ACC %) and normalized

mutual information (NMI %). The compared

approaches are often categorized into three groups

based on the type of learning: supervised, semi-

supervised, and unsupervised. Furthermore, these

strategies are classified into three groups based on

the input type: Features, graph topology, or a

hybrid of both.

Table 6 presents a comprehensive comparison of

various graph-based learning methods used for

community detection in the Cora dataset,

highlighting their performance in terms of accuracy

(ACC %) and normalized mutual information

(NMI %). Among the methods listed, the proposed

VGAEE stands out with the highest performance

metrics, achieving an ACC% of 84.5 and an NMI%

of 70.46. This represents a significant improvement

over both supervised and unsupervised approaches.

For instance, the closest competitors, MRFasGCN

O. Rashnodi et al. / Journal of Optimization of Soft Computing (JOSC), 3(1): 1-23, 2025

16

and AGE, which are also unsupervised, recorded

ACC% of 84.3 and 76.8 and NMI% of 66.2 and

60.7, respectively. VGAEE's superior performance

suggests that its methodology for integrating graph

topology in an unsupervised learning framework

effectively captures the nuanced structures within

the community more accurately than other

methods. Furthermore, the results from VGAEE

are particularly notable when compared to

supervised methods such as LGNN and WC-GCN,

which, despite their structured learning paradigms,

do not achieve the same level of ACC or NMI.

Overall, the data underscores the efficacy of

VGAEE in community detection, setting a new

benchmark for future studies in this area.

To make a fair comparison with other related

works, we repeated the experiments on two

different datasets, the PubMed dataset and the

Citeseer dataset. We present the results and figures

of this new evaluation in Tables 7 and 8,

respectively.

In Table 7, the proposed VGAEE method outshines

both unsupervised and supervised learning

algorithms for the PubMed dataset, registering an

ACC% of 80.50 and an NMI% of 55.60. This

significantly distances it from traditional

unsupervised methods like K-means, Spectral-F,

and Spectral-G, which show considerable

variability in their results. When comparing

VGAEE with other advanced graph-based

methods, it still maintains a leading position. For

example, the semi-supervised MRFasGCN

achieves a higher NMI% at 40.7 but falls short in

ACC%, illustrating that while it effectively

captures mutual information within the data, it does

not necessarily translate to outright accuracy.

Similarly, the supervised BernNet GCN scores an

impressive NMI% of 51.40 but with a lower

ACC% of 61.25, indicating potential overfitting to

mutual information at the cost of general accuracy.

Among unsupervised competitors, AGE and

GMIM perform well, with AGE reaching an

ACC% of 71.1 and GMIM peaking at 70.87, yet

neither approaches the combined performance

metrics of VGAEE. Additionally, methods like

AGC and CommDGI, while competitive, do not

achieve the same balance between ACC and NMI,

suggesting that VGAEE's method of integrating

features and graph topology potentially offers a

more robust model for understanding complex

network structures. Overall, the superiority of

VGAEE in this dataset underscores its

effectiveness in handling the nuances of

community detection in large, complex networks.

Its ability to outperform existing algorithms,

particularly in unsupervised settings, sets a new

benchmark and indicates promising directions for

future research and application in social network

analysis and beyond.

Based on the analysis presented in Table 8, the

table showcases the performance of the VGAEE

method relative to other community detection

algorithms across various learning paradigms for

the Citeseer dataset. VGAEE, an unsupervised

method, stands out with an ACC% of 75.60 and an

NMI% of 57.06. Notably, VGAEE surpasses

popular unsupervised algorithms like K-means,

Spectral-F, and DeepWalk, which present

considerably lower metrics in both accuracy and

mutual information. Even when compared to the

semi-supervised MRFasGCN and supervised

methods such as BernNet GCN and WC-GCN,

VGAEE demonstrates competitive or superior

performance, particularly in accuracy. This

highlights VGAEE's efficacy in effectively

capturing and preserving the intrinsic community

structures in complex networks without requiring

labeled data. Positioned as a robust tool in the

unsupervised learning landscape for graph-based

community detection, VGAEE excels in handling

unlabeled and complex datasets while maintaining

a balance between accuracy and information

preservation.

The proposed VGAEE method demonstrated

outstanding results across all three datasets: Cora,

PubMed, and Citeseer, with its performance being

particularly notable on the Citeseer dataset. On

Citeseer, it achieved the highest accuracy and NMI

percentages among all methods evaluated, with

scores of 75.60% and 57.06% respectively. While

it also ranked among the top performers on the

Cora and PubMed datasets, with accuracies of

84.5% and 80.5% respectively, the Citeseer results

highlight its superior capability in community

detection within various network analyses. This

underscores the VGAEE method's robust

adaptability and effectiveness across diverse and

complex datasets, marking it as a potent tool for

intricate network analysis tasks. Figures 4, 5, and 6

illustrate the performance of the proposed method

on the Cora, PubMed, and Citeseer datasets,

respectively, based on the ACC (classification

accuracy) and NMI (normalized mutual

information) metrics, compared to baseline

methods. In all three figures, the ACC and NMI

values for the proposed method are highlighted in

bold above the corresponding bars to clearly

demonstrate its superiority over other methods.

O. Rashnodi et al. / Journal of Optimization of Soft Computing (JOSC), 3(1): 1-23, 2025

17

 Table 4: Summary of real-world benchmarks on datasets.

Table 5: Detailed parameter setting

Datasets Training

Epoch

Learning

rate

Activation

Function

Weight

Decay

Optimizer GCN

layers

Dropout

rate

#Train/Validation

/Test Node

Cora 200 0.01 Relu 5e-3 Adam 64/32 0.5 140/500/1000

Citeseer 200 0.01 Relu 5e-3 Adam 64/32 0.5 120/500/1000

PubMed 200 0.01 Relu 5e-3 Adam 64/32 0.5 60/500/1000

Table 6: Performance comparison of different community detection methods on the Cora dataset; the best results are in bold.

Name of methods Learning type Input ACC% NMI%

K-means Unsupervised Feature 49.2 32.1

Spectral-F [77] Unsupervised Feature 34.7 14.7

Spectral-G [77] Unsupervised Graph 31.46 9.69

DeepWalk [14] Unsupervised Graph 56.20 39.87

Graph Encoder [78] Unsupervised Graph 32.5 10.9

vGraph[63] Unsupervised Graph 28.7 34.5

TADW [71] Unsupervised Feature & Graph 55.00 36.59

VGAE [65] Unsupervised Feature & Graph 63.56 47.45

MGAE [18] Unsupervised Feature & Graph 63.43 45.57

ARGE [66] Unsupervised Feature & Graph 60.84 42.21

ARVGA [66] Unsupervised Feature & Graph 62.83 45.93

DGVAE [74] Unsupervised Feature & Graph 64.42 47.64

AGC [55] Unsupervised Feature & Graph 68.92 53.68

CommDGI [11] Unsupervised Feature & Graph 69.8 57.9

DAEGC [67] Unsupervised Feature & Graph 70.4 52.8

GC-VGE [70] Unsupervised Feature & Graph 70.67 53.57

GALA [69] Unsupervised Feature & Graph 72.42 53.96

DBGAN [68] Unsupervised Feature & Graph 74.6 57.7

GMIM [73] Unsupervised Feature & Graph 74.8 56.0

AGE[56] Unsupervised Feature & Graph 76.8 60.7

MRFasGCN[27] Semi-supervised Feature & Graph 84.3 66.2

BernNet GCN[75] Supervised Feature & Graph 41.06 68.78

LGNN[35] Supervised Feature & Graph 79.04 -

WC-GCN[76] Supervised Feature & Graph 79.39 -

VGAEE(proposed method) Unsupervised

Feature & Graph 84.5 70.46

Num. of Communities #Node Attributes #Edges #Nodes Dataset

7 1,433 5,429 2,708 Cora [58]

6 3,703 4,715 3,312 Citeseer [58]

3 500 44,338 19,717 PubMed [59]

O. Rashnodi et al. / Journal of Optimization of Soft Computing (JOSC), 3(1): 1-23, 2025

18

Table 7: Performance comparison of different community detection methods on the PubMed dataset; the best results are in

bold.

Name of methods Learning type Input ACC% NMI%

K-means Unsupervised Feature 55.59 24.34

Spectral-F [77] Unsupervised Feature 60.20 30.90

Spectral-G [77] Unsupervised Graph 37.98 10.30

DeepWalk [14] Unsupervised Graph 64.98 26.44

Graph Encoder[11] Unsupervised Graph 53.1 20.9

DNGR [62] Unsupervised Graph 25.53 20.11

vGraph [79] Unsupervised Graph 26.00 22.40

TADW [71] Unsupervised Feature & Graph 46.82 9.47

GAE [65] Unsupervised Feature & Graph 64.43 24.85

VGAE [65] Unsupervised Feature & Graph 64.67 23.94

MGAE [18] Unsupervised Feature & Graph 43.88 8.16

ARGA [66] Unsupervised Feature & Graph 65.07 29.23

ARVGA [66] Unsupervised Feature & Graph 62.01 26.62

DGVAE [74] Unsupervised Feature & Graph 67.56 28.72

AGC [55] Unsupervised Feature & Graph 69.78 31.59

CommDGI [11] Unsupervised Feature & Graph 69.90 35.70

DAEGC [67] Unsupervised Feature & Graph 67.10 26.60

GC-VGE [70] Unsupervised Feature & Graph 68.18 29.70

GALA [69] Unsupervised Feature & Graph 69.39 32.73

DBGAN [68] Unsupervised Feature & Graph 69.40 32.40

GMIM [73] Unsupervised Feature & Graph 70.87 32.43

AGE[56] Unsupervised Feature & Graph 71.1 31.6

MRFasGCN[27] Semi-supervised Feature & Graph 79.6 40.7

BernNet GCN[75] Supervised Feature & Graph 61.25 51.40

LGNN[35] Supervised Feature & Graph 72.64 -

WC-GC[76] Supervised Feature & Graph 79.41 -

VGAEE(proposed method) Unsupervised Feature & Graph 80.50 55.60

Table 8: Performance comparison of different community detection methods on the Citeseer dataset. The best results are in

bold.

Name of methods Learning type Input ACC% NMI%

K-means Unsupervised Feature 54.0 30.5

Spectral-F [77] Unsupervised Feature 23.9 5.6

DeepWalk [14] Unsupervised Graph 32.7 8.8

Graph Encoder[11] Unsupervised Graph 22.5 3.3

DNGR [62] Unsupervised Graph 32.6 18.0

RTM [72] Unsupervised Graph 45.1 23.9

RMSC [72] Unsupervised Graph 29.5 13.9

TADW [71] Unsupervised Feature & Graph 45.5 29.1

GAE [65] Unsupervised Feature & Graph 40.8 17.6

VGAE [65] Unsupervised Feature & Graph 34.4 15.6

MGAE [18] Unsupervised Feature & Graph 43.88 8.16

ARGA [66] Unsupervised Feature & Graph 57.3 35.0

ARVGA [66] Unsupervised Feature & Graph 54.4 26.1

Variational Graph Autoencoder for Unsupervised Community Detection in Attributed Social Networks

19

AGE[56] Unsupervised Feature & Graph 70.2 44.8

MRFasGCN[27] Semi-supervised Feature & Graph 73.2 46.3

BernNet GCN[75] Supervised Feature & Graph 72.32 58.01

LGNN[35] Supervised Feature & Graph 73.15 -

 Supervised Feature & Graph 73.2 46.3

WC-GCN[76] Supervised Feature & Graph 75.18 -

VGAEE

(proposed method)

Unsupervised Feature & Graph 75.60 57.06

Fig. 4. Performance comparison of different community detection methods on the Cora dataset

Fig. 5. Performance comparison of different community detection methods on the PubMed dataset

O. Rashnodi et al. / Journal of Optimization of Soft Computing (JOSC), 3(1): 1-23, 2025

20

Fig. 6. Performance comparison of different community detection methods on the Citeseer dataset

6. Conclusion and future work

This study introduced VGAEE, an innovative

unsupervised approach leveraging Variational

Graph AutoEncoders to enhance community

detection in attributed social networks. By

integrating node content with network topology,

VGAEE effectively captures complex community

structures, achieving superior performance metrics

across diverse datasets like Cora, Citeseer, and

PubMed. Notably, VGAEE consistently

outperformed both traditional and state-of-the-art

methods, demonstrating its robustness and

efficiency in handling large-scale network data

without the necessity for pre-labeled information.

The effectiveness of VGAEE was particularly

evident in its ability to maintain high accuracy and

mutual information scores, thereby providing a

more nuanced understanding of community

dynamics within large and complex networks.

Looking forward, several avenues could further

refine and expand the capabilities of the VGAEE

framework. First, exploring the integration of semi-

supervised learning protocols could potentially

enhance the model's accuracy and applicability to

even broader network types, including those with

sparse or incomplete labeling. Additionally,

adapting the model to dynamically evolving

networks where community structures change over

time would significantly increase its practical

utility in real-world scenarios. Another promising

direction involves enhancing the model's

scalability and efficiency through the incorporation

of more advanced graph neural network

architectures or optimization techniques. Lastly,

applying the VGAEE framework to other types of

data, such as multimodal networks or those with

highly heterogeneous attributes, could open new

research areas and applications, further cementing

its utility and impact in network analysis and

beyond.

References

1. Wen, X., et al.) 2016). A maximal clique based

multiobjective evolutionary algorithm for

overlapping community detection. IEEE

Transactions on Evolutionary Computation. 21(3):

p. 363-377. doi.org/10.1109/TEVC.2016.2622695

2. Lu, X., et al. (2018). Adaptive modularity

maximization via edge weighting scheme.

Information Sciences. 424: p. 55-68 .

doi.org/10.1016/j.ins.2017.09.040

3. Wu, W., et al. (2018). Nonnegative matrix

factorization with mixed hypergraph

regularization for community detection.

Information Sciences. 435: p. 263-281.
doi.org/10.1016/j.ins.2017.12.017

4. Altinoz, O.T., K. Deb, and A.E. Yilmaz. (2018).

Evaluation of the migrated solutions for

distributing reference point-based multi-objective

optimization algorithms. Information Sciences.

467: p. 750-765.
doi.org/10.1016/j.ins.2018.07.062

5. Whang, J.J., D.F. Gleich, and I.S. Dhillon. (2016).

Overlapping community detection using

https://doi.org/10.1109/TEVC.2016.2622695
https://doi.org/10.1016/j.ins.2017.09.040
https://doi.org/10.1016/j.ins.2017.09.040
https://doi.org/10.1016/j.ins.2017.12.017
https://doi.org/10.1016/j.ins.2018.07.062

Variational Graph Autoencoder for Unsupervised Community Detection in Attributed Social Networks

21

neighborhood-inflated seed expansion. IEEE

Transactions on Knowledge and Data Engineering.

28(5): p. 1272-1284.
doi.org/10.1109/TKDE.2016.2528240

6. Fortunato, S. and D. Hric. (2016).Community

detection in networks: A user guide. Physics

reports. 2016. 659: p. 1-44.

doi.org/10.1016/j.physrep.2016.09.002

7. Garza, S.E. and S.E. Schaeffer. (2019). Community

detection with the label propagation algorithm: a

survey. Physica A: Statistical Mechanics and its

Applications. 534: p. 122058.
doi.org/10.1016/j.physa.2019.122058.

8. Cao, J., et al.(2018). Incorporating network

structure with node contents for community

detection on large networks using deep learning.

Neurocomputing. 297: p. 71-81.
doi.org/10.1016/j.neucom.2018.02.072

9. He, C., et al.(2019). Community detection method

based on robust semi-supervised nonnegative

matrix factorization. Physica A: Statistical

Mechanics and its Applications. 523: p. 279-291.
doi.org/10.1016/j.physa.2019.02.010

10. Zhengdao Chen, X.L., Joan Bruna. (2020).

Supervised Community Detection with Line Graph

Neural Networks. International Conference on

Learning Representations. p. 1-

24.openreview.net/forum?id=H1g0ZpA9FQ

11. Zhang, T., et al., CommDGI: Community

Detection Oriented Deep Graph Infomax.

2020. p. 1843-1852.
doi.org/10.1145/3340531.3412042

12. Tang, J., et al. (2015). Line: Large-scale

information network embedding. the 24th

international conference on world wide web.
doi.org/10.1145/2736277.2741093

13. Grover, A. and J. Leskovec. (2016). node2vec:

Scalable Feature Learning for Networks.

p.855-864. doi.org/10.1145/2939672.2939754

14. Perozzi, B., R. Al-Rfou, and S. Skiena. (2014).

Deepwalk: Online learning of social

representations. in Proceedings of the 20th ACM

SIGKDD international conference on Knowledge

discovery and data mining.
doi:10.1145/2623330.2623732

15. Chen, S. and W. Guo. (2023). Auto-encoders in

deep learning—a review with new perspectives.

Mathematics. 11(8): p. 1777.
doi:10.3390/math11081777

16. Zhao, S., et al. (2021). Hierarchical representation

learning for attributed networks. IEEE

Transactions on Knowledge and Data Engineering.

35(3): p. 2641-2656.
doi:10.1109/TKDE.2021.3111539

17. Lu, H.-Y., et al. (2024). Visual analytics of

multivariate networks with representation learning

and composite variable construction. IEEE

Transactions on Visualization and Computer

Graphics. doi:10.1109/TVCG.2024.3372078

18. Wang, C., et al. (2017). Mgae: Marginalized graph

autoencoder for graph clustering. Conference on

Information and Knowledge Management.

doi:10.1145/3132847.3132967

19. Li, B., et al. (2020). Multi-source information

fusion based heterogeneous network embedding.

Information Sciences. 534: p. 53-71.
doi:10.1016/j.ins.2020.05.017

20. He, C ,.et al. (2021). Boosting nonnegative matrix

factorization based community detection with

graph attention auto-encoder. IEEE Transactions

on Big Data. 8(4): p. 968-981.
doi:10.1109/TBDATA.2021.3074253

21. Yang, C., et al. (2021). Network Embedding for

Graphs with Node Attributes, in Network

Embedding: Theories, Methods, and Applications.

p. 29-38. doi:10.1007/978-981-16-2637-9_3

22. Zhang, Y., et al. (2022(. Spectral–spatial feature

extraction with dual graph autoencoder for

hyperspectral image clustering. IEEE

Transactions on Circuits and Systems for Video

Technology. 32(12): p. 8500-8511.
doi:10.1109/TCSVT.2022.3171421

23. Jin, D., et al. (2021). A survey of community

detection approaches: From statistical modeling

to deep learning. IEEE Transactions on

Knowledge and Data Engineering. 35(2): p. 1149-

1170. doi:10.1109/TKDE.2021.3124888

24. Liu, F., et al. (2020). Deep learning for community

detection: progress, challenges and opportunities.

arXiv preprint arXiv:2005.08225.
doi:10.48550/arXiv.2005.08225

25. Zhou, J., et al. (2020). Graph neural networks: A

review of methods and applications. AI Open. p.

57-81. doi:10.1016/j.aiopen.2021.01.001

26. Su, X., et al. (2022). A comprehensive survey on

community detection with deep learning. IEEE

Transactions on Neural Networks and Learning

Systems. doi:10.1109/TNNLS.2022.3145142

27. Jin, D., et al. (2019). Graph Convolutional

Networks Meet Markov Random Fields: Semi-

Supervised Community Detection in Attribute

Networks. the AAAI Conference on Artificial

Intelligence. 33(01): p. 152-159.
doi:10.1609/aaai.v33i01.3301152

28. Sun, H., et al. (2020). Network embedding for

community detection in attributed networks. ACM

Transactions on Knowledge Discovery from Data

(TKDD). 14(3): p. 1-25. doi:10.1145/3385414

29. Jin ,D., et al. (2019). Community detection via joint

graph convolutional network embedding in

attribute network. in International Conference on

Artificial Neural Networks. doi:10.1007/978-3-

030-30493-5_42

30. Luo, J. and Y. Du. (2020). Detecting community

structure and structural hole spanner

simultaneously by using graph convolutional

network based Auto-Encoder. Neurocomputing.

410: p. 138-150.
doi:10.1016/j.neucom.2020.06.035

31. Veličković, P., et al. (2017). Graph attention

networks. arXiv preprint arXiv:1710.10903.
doi:10.48550/arXiv.1710.10903

https://doi.org/10.1109/TKDE.2016.2528240
https://doi.org/10.1016/j.physrep.2016.09.002
https://doi.org/10.1016/j.physa.2019.122058
https://doi.org/10.1016/j.neucom.2018.02.072
https://doi.org/10.1016/j.physa.2019.02.010
https://openreview.net/forum?id=H1g0ZpA9FQ
https://doi.org/10.1145/3340531.3412042
https://doi.org/10.1145/2736277.2741093
https://doi.org/10.1145/2939672.2939754

O. Rashnodi et al. / Journal of Optimization of Soft Computing (JOSC), 3(1): 1-23, 2025

22

32. Goodfellow, I., et al. (2020). Generative

adversarial networks. Communications of the

ACM, 63(11): p. 139-144. doi:10.1145/3422622

33. Chen, H., et al. (2019). Exploiting centrality

information with graph convolutions for network

representation learning. International Conference

on Data Engineering.
doi:10.1109/ICDE.2019.00125

34. Xin, X., et al. (2017). Deep community detection

in topologically incomplete networks. Physica A:

Statistical Mechanics and its Applications. 469: p.

342-352. doi:10.1016/j.physa.2016.10.040

35. Cao, S., et al. (2023). LGNN: a novel linear graph

neural network algorithm. Frontiers in

Computational Neuroscience.
doi:10.3389/fncom.2023.1150105

36. Zhang, T., et al. (2020). CommDGI: community

detection oriented deep graph infomax.

International Conference on Information &

Knowledge Management.

doi:10.1145/3340531.3411973

37. Hu, R., et al. (2020). Going deep :Graph

convolutional ladder-shape networks. the AAAI

Conference on Artificial Intelligence.

doi:10.1609/aaai.v34i04.5767

38. Liu, Y., et al. (2020). Independence promoted

graph disentangled networks. AAAI Conference

on Artificial Intelligence.

doi:10.1609/aaai.v34i04.5768

39. Levie, R., et al. (2018). Cayleynets: Graph

convolutional neural networks with complex

rational spectral filters. IEEE Transactions on

Signal Processing. 67(1): p. 97-109.
doi:10.1109/TSP.2018.2879644

40. Geisler, S., D. Zügner, and S. Günnemann. (2020).

Reliable graph neural networks via robust

aggregation. Advances in neural information

processing systems. 33: p. 13272-13284.

doi:10.48550/arXiv.2010.15651

41. Cai, X. and B. Wang. (2023). A graph

convolutional fusion model for community

detection in multiplex networks. Data Mining and

Knowledge Discovery. 37(4): p. 1518-1547.
doi:10.1007/s10618-023-00933-9

42. Li, D., S. Zhang, and X. Ma. (2022). Dynamic

Module Detection in Temporal Attributed

Networks of Cancers. IEEE/ACM Transactions on

Computational Biology and Bioinformatics.

19(4): p. 2219-2230.
doi:10.1109/TCBB.2021.3093196

43. Li, D., Q. Lin, and X. Ma. (2021). Identification of

dynamic community in temporal network via joint

learning graph representation and nonnegative

matrix factorization. Neurocomputing. 435: p.

77-90. doi:10.1016/j.neucom.2021.01.019

44. Li, D., et al. (2021). Detecting dynamic community

by fusing network embedding and nonnegative

matrix factorization. Knowledge-Based Systems.

p. 106961. doi:10.1016/j.knosys.2021.106961

45. Li, D., X. Ma, and M. Gong. (2023). Joint

Learning of Feature Extraction and Clustering for

Large-Scale Temporal Networks. IEEE

Transactions on Cybernetics. 53(3): p. 1653-1666.
doi:10.1109/TCYB.2021.3128221

46. Huang ,-. H., et al. (2023). Diverse Deep Matrix

Factorization With Hypergraph Regularization for

Multi-View Data Representation. IEEE/CAA

Journal of Automatica Sinica.
doi:10.1109/JAS.2023.123203

47. Huang, H., et al. (2023). Exclusivity and

consistency induced NMF for multi-view

representation learning. Knowledge-Based

Systems. 281: p. 111020.
doi:10.1016/j.knosys.2023.111020

48. Huang, H., et al. (2024). Comprehensive Multiview

Representation Learning via Deep Autoencoder-

Like Nonnegative Matrix Factorization. IEEE

Trans Neural Netw Learn Syst. p. 5953-5967.
doi:10.1109/TNNLS.2022.3200905

49. Amirfarhad Farhadi, M.M. (2024). Arash Sharifi,

and Mohammad Teshnelab. Domaina daptation in

reinforcement learning: a comprehensive and

systematic study. Frontiers of Information

Technology & Electronic Engineering.
doi:10.1631/FITEE.2300356

50. Kanatsoulis, C.I., N.D. Sidiropoulos, and A.I.

Claims. (2022). GAGE: Geometry Preserving

Attributed Graph Embeddings. Fifteenth ACM

International Conference on Web Search and Data

Mining. p. 439–448.
doi:10.1145/3488560.3498387

51. Newman, M.E. (2006). Modularity and

community structure in networks. Proceedings of

the national academy of sciences. 103(23): p.

8577-8582. doi:10.1073/pnas.0601602103

52. Jianbo, S. and J. Malik. (2000). Normalized cuts

and image segmentation. IEEE Transactions on

Pattern Analysis and Machine Intelligence. 22(8):

p. 888-905. doi:10.1109/34.868688

53. Liu, L., et al. (2015). Community detection based

on structure and content: A content propagation

perspective. IEEE international conference on

data mining. doi:10.1109/ICDM.2015.153

54. Shchur, O. and S. Günnemann. (2019).

Overlapping Community Detection with Graph

Neural Networks. doi:10.48550/arXiv.1909.12201

55. Zhang, X., et al. (2019). Attributed graph

clustering via adaptive graph convolution. arXiv

preprint arXiv:1906.01210.
doi:10.48550/arXiv.1906.01210

56. Cui, G., et al. (2020). Adaptive Graph Encoder for

Attributed Graph Embedding. p. 976-985.
doi:10.1145/3394486.3403150

57. Huang, W. (2021). Graph Auto-Encoders with

Edge Reweighting. International Journal of

Reconfigurable and Embedded Systems (IJRES).
doi:10.33899/rengj.2021.131549.1102

58. Sen, P., et al. (2008). Collective classification in

network data. AI magazine, 29(3): p. 93-

93doi:10.1609/aimag.v29i3.2157.

59. Namata, G., et al. (2012). Query-driven active

surveying for collective classification. in 10th

International Workshop on Mining and Learning

with Graphs. doi:10.1145/2442476.2442482

Variational Graph Autoencoder for Unsupervised Community Detection in Attributed Social Networks

23

60. Rice, S.A. (1927). The identification of blocs in

small political bodies. American Political Science

Review. 21(3): p. 619-627. doi:10.2307/1945514

61. Zhu, W., X. Wang, and P. Cui, (2020). Deep

learning for learning graph representations, in

Deep learning: concepts and architectures. p. 169-

210. doi:10.1007/978-3-030-31756-0_6

62. Cao, S., W. Lu, and Q. Xu. (2016). Deep neural

networks for learning graph representations.

AAAI Conference on Artificial Intelligence.
doi:10.1609/aaai.v30i1.10105

63. Sun, F.-Y., et al. (2019). vGraph: a generative

model for joint community detection and node

representation learning, in Proceedings of the

33rd International Conference on Neural

Information Processing Systems. Curran

Associates Inc. doi:10.48550/arXiv.1906.07159

64. Tian, F., et al. (2014). Learning Deep

Representations for Graph Clustering.

Proceedings of the AAAI Conference on Artificial

Intelligence. 28(1). doi:10.1609/aaai.v28i1.8889

65. Kipf, T. and M. Welling. (2016). Variational

Graph Auto-Encoders.

doi:10.48550/arXiv.1611.07308

66. Pan ,S., et al. (2019). Learning Graph Embedding

With Adversarial Training Methods. IEEE

Transactions on Cybernetics. p. 1-13.
doi:10.1109/TCYB.2019.2932097

67. Wang, C., et al. (2019). Attributed Graph

Clustering: A Deep Attentional Embedding

Approach. 3670-3676.
doi:10.24963/ijcai.2019/510

68. Zheng, S., et al. (2020). Distribution-Induced

Bidirectional Generative Adversarial Network for

Graph Representation Learning. p. 7222-7231.
doi:10.1109/CVPR42600.2020.00728

69. Park, J., et al. (2019). Symmetric Graph

Convolutional Autoencoder for Unsupervised

Graph Representation Learning.
doi:10.48550/arXiv.1908.02441

70. Guo, L. and Q .Dai. (2021). Graph Clustering via

Variational Graph Embedding. Pattern

Recognition. 122: p. 108334.
doi:10.1016/j.patcog.2021.108334

71. Yang, C., et al.(2015). Network representation

learning with rich text information. in Twenty-

fourth international joint conference on artificial

intelligence. doi:10.5555/2832415.2832492

72. Xia, R., et al. (2014). Robust Multi-View Spectral

Clustering via Low-Rank and Sparse

Decomposition. Proceedings of the AAAI

Conference on Artificial Intelligence. 28(1).
doi:10.1609/aaai.v28i1.8990

73. Ahmadi, M., M. Safayani, and A. Mirzaei. (2022).

Deep Graph Clustering via Mutual Information

Maximization and Mixture Model. arXiv preprint

arXiv:2205.05168.
doi:10.48550/arXiv.2205.05168

74. Li, J., et al. (2020). Dirichlet Graph Variational

Autoencoder. doi:10.48550/arXiv.2005.11578

75. Xie, H. and Y. Ning. (2023). Community detection

based on BernNet graph convolutional neural

network. Journal of the Korean Physical Society.

83(5): p. 386-395. doi:10.1007/s40042-023-

00893-9

76. Deng, L., B. Guo, and W. Zheng. (2024). GCN-

based weakly-supervised community detection

with updated structure centres selection.

Connection Science. 36(1): p. 2291995.
doi:10.1080/09540091.2024.2291995

77. Ng, A., M. Jordan ,and Y. Weiss. (2002). On

Spectral Clustering: Analysis and an algorithm.

Adv. Neural Inf. Process. Syst.
doi:10.5555/2980539.2980649

78. Tian, F., et al. (2014). Learning Deep

Representations for Graph Clustering.

Proceedings of the National Conference on

Artificial Intelligence. p. 1293-1299.
doi:10.1609/aaai.v28i1.8889

79. Sun, F.-Y., et al. (2019). vGraph: A Generative

Model for Joint Community Detection and Node

Representation Learning.

doi:10.48550/arXiv.1906.07159

