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Abstract–This paper proposes a new approach of Fast Finite Time Terminal Adaptive Sliding Mode (FFTASM) 

control for perturbed Dual-Feed Induction Generators (DFIG)-based wind turbines which are exposed to unbounded 

modeling uncertainties and external disturbances. Two separate FFTASM controllers are designed for both turbine and 

generator sections. The proposed approach can control the maximum power at low wind speeds in Zone II of the Wind 

Energy Conversion System (WECS), as well as the generated power in the presence of unknown unbounded 

perturbation in Zone III. Considering the dependence of the modeling uncertainties and external disturbances on 

respectively the dynamic parameters of the wind turbine and its status, it is assumed that the upper bounds of the sum of 

the uncertainties and disturbances are unknown nonlinear functions of the wind turbine state variables. These unknown 

functions are estimated using stable adaptive rules. The fast finite-time stability is proved using Lyapunov's theorem in 

both turbine and generator sections. Numerical simulations at the end of the paper confirm the correctness of the 

designed control approached. 
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1. INTRODUCTION 

1. 1.literature review 

The benefit of renewable energy sources is reducing 

dependence on fossil fuels, increasing network reliability, 

and solving environmental problems [1]. Wind energy is 

widely used around the world to generate clean energy. It is 

one of the renewable energies that is transformed into 

mechanical and electrical power using the Wind Energy 

Conversion System (WECS) [2-3]. Wind turbines which are 

based on the DFIG, are used more than other kinds of 

turbines due to their higher electrical energy generation and 

their more appropriate controllability [4]. In DFIGs, when 

the electronic power equipment can withstand only 20% to 

30% of the total system power, the stability of the power 

grid is guaranteed [5-6]. In [7-8], the range of operation of 

WECS is divided into four areas: The first Zone (Zone I) 

indicates when the wind speed is insufficient to move the 

wind turbine and thus generate energy. In Zone II, by 

increasing wind speed, the wind turbine output power 

increases. The output power is controlled using the 

Maximum Power Point Tracking (MPPT) algorithm. When 

the wind speed exceeds the nominal value, the pitch angle 

will be controlled so that the electrical power of the turbine 

output is around the nominal value (Zone III). When the 

wind speed passes the allowable limit, the Turbine shuts 

down to prevent possible damage to the mechanical 

components of the turbine system (Zone IV). This paper 

focuses on Zone II and Zone III. Therefore, the control 

problem is divided into two part:1) DFIG control for 

maximizing the produced power and 2) Pitch angle control 

for adjusting the output power. Among the control methods 

used to control the DFIG section in the research literature, 

we can mention Filed Oriented Control (FOC), Neuro- fuzzy 

sliding mode control [7], Predictive pitch control [8], 

Adaptive control [9], Fuzzy second order integral terminal 

sliding mode [10], Optimal control [11-12] and robust 

control [13-15]. It should also be noted that classical linear 

controllers cannot guarantee system stability because of the 

highly nonlinear nature of the wind turbine system [16-18]. 

Not only for the DFIG section but also typically, for 
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controlling the angle of inclination of the wind turbine 

blades, the desired rotor speed is compared to the calculated 

rotor speed. Since the relationship between pitch angle, wind 

speed, rotor speed, and aerodynamic power is nonlinear, 

linear approaches cannot adequately control the nonlinear 

wind turbine system over a wide operational range [19-21]. 

This is while the performance of WECS firstly changes 

under the influence of natural phenomena such as 

temperature, saturation, and skin effect [22]. Secondly, the 

DFIG section and the turbine part are exposed to modeling 

uncertainties, external disturbances, and unknown dynamics. 

As a result, for controlling WECS, we need a robust 

nonlinear controller. One of the most popular methods of 

robust nonlinear control is sliding mode control (SMC) 

which is robust to parametric uncertainty, internal and 

external disturbances, and modeling error. [23-26]. In [24], a 

sliding mode controller is used to achieve maximum output 

power with the help of load reduction to control an actuator 

train. In [25], using a sliding mode controller and observer, 

the generator parametric uncertainty and wind speed changes 

are estimated, and the wind turbine has a resistant 

performance against these disturbances. The problem of 

classic sliding modes is the high-frequency, low-amplitude 

oscillations called chattering. Various methods have been 

proposed to reduce the chattering, including using the 

saturation function instead of the sign function, applying 

high-order sliding mode, and so on. In [27-28], a fractional 

order sliding mode for direct power control of grid-

connected DFIG is designed, which is responsible for 

controlling the reactive power of the wind turbine. The 

authors in [28] compared the classical sliding mode 

controller to the fractional-order sliding mode controller 

(FOSMC). They concluded that, although the fractional 

order controller is more efficient due to the nonlinear nature 

of the system, the adjustment of the parameter is difficult, 

and the convergence time to the desired value is also infinite. 

In controlling the wind turbine system, it is necessary to 

achieve two goals: improving the maximum output power 

and tracking the turbine speed. The classic SMC controllers 

only can guarantee asymptotic stability for systems in which 

the convergence time of error to zero is theoretically infinite 

[29-30]. In high-accuracy controllers, we achieve fast 

convergence only by applying a considerable control input 

that is not desirable in practice. Terminal sliding Mode 

(TSM) control is a solution to achieve finite time 

convergence in wind turbine systems [31]. TSM sliding 

mode is performed using recursive nonlinear differential 

equations and has more accuracy and tracking speed than 

SMC. In the last two or three years, the control engineers 

have proposed the use of the TSM control method in wind 

turbines for various purposes (TSM control for voltage sag 

mitigation in wind turbines [32], Non-singular TSM control  

using feedback of  power and load in [33] and speed control 

of turbine using TSM control in [34]), however, this problem 

becomes very complicated and challenging when the system 

is simultaneously subject to perturbations with  unknown 

upper bands in the form of a nonlinear function with 

unknown coefficients. Solving this problem is the main 

innovation of this paper. 

1.2. The Main Contribution of this paper 

The novelty of this paper and main contribution to the 

literature can be summarized in three part. 

1.2.1. Unknown nonlinear functional upper bound of 

perturbations 

In real applications, the dynamic parameters of wind 

turbine systems, such as inertial, radius, density, power 

coefficient, inductance, resistance, and so on, are all 

supposed to uncertainties. On the other hand, the strong 

nonlinearity of the WECS system makes these uncertainties 

to be dependent on the system states including rotor speed 

or DFIG currents. 

Also, the effect of wind (as the primary disturbance) on the 

wind turbine, depends on its attitude, the length of the 

blades, or the pitch angle. The same is true about the effect 

of disturbances governing the DFIG. As a result, the 

disturbances in the model are also dependent on WECS 

state variables. 

According to the above two paragraphs and by calling the 

sum of the uncertainties and disturbances as system 

perturbations, in this paper, unlike other previous research 

(where the upper bound of perturbations is a constant 

known value in the most conservative mode), it is assumed 

that the upper bound of perturbations is an unbounded non-

linear function with unknown coefficients of WECS state 

variables. By solving the problem with this assumption the 

wind turbine control problem is solved: 1- In both the 

turbine and generator parts, 2- Without any knowledge of 

perturbations and their upper bounds, and 3-Even in the 

presence of unbounded perturbations. The unknown 

coefficients of the perturbation upper bound function will 

be estimated by designing stable adaptive laws. 

1.2.2.Finite Time stability in the presence of 

perturbations with unknown upper bunds 

The stability proof of finite-time convergence of the errors 

in the whole WECS system is not simply obtained when the 

unknown coefficients of the functional upper bound of 
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perturbations are estimated by adaptive rules. Lyapunov 

stability proof in the presence of these adaptive laws is the 

main challenge of this problem. This is the next significant 

achievement which is obtained and solved in this paper. 

1.2.3. Usability of designed FFTASM approach for a 

wide range of dynamic systems 

In the current paper for the generator section: DFIG 

perturbed model is controlled by input voltage control for 

achieving the maximum aerodynamic power from the 

changes in wind speed in Zone II. For turbine section: The 

wind turbine perturbed model is controlled by pitch angle 

control so that the output speed of the wind turbine tracks a 

desired value in Zone III.  

In this paper, the generator model is deliberately rewritten 

as a nonlinear first-order equation subject to perturbations 

and the turbine model is rewritten as a second-order 

nonlinear model subject to perturbations. Therefore, the 

FFTAM control ideas designed in this paper can be easily 

applied to a wide range of different types of nonlinear high-

order dynamic systems. The method presented in this paper 

can be used for the finite-time stabilization of many 

systems subject to unlimited and unknown disturbances and 

uncertainties. 

To the best of the authors’ knowledge, considering the 

above three items in the control problem of WECS systems 

has not been done in the previous research and will be 

discussed in this paper. In this paper, the nonlinear 

functions with unknown coefficients are assigned to the 

upper bounds of the perturbations in a DFIG-based wind 

turbine for Zones II and III. Two separate FFTASM 

controllers one for DFIG section and one for wind turbine 

section are then proposed for stabilizing the WECS system. 

Using the Lyapunov stability and its finite time 

lemma,finite time stability of the whole WECS system to 

achieve the maximum power is proven, and this limited 

time is accurately calculated. In addition, the unknown 

coefficients of the nonlinear functions assigned to the upper 

bounds of uncertainties and disturbances are also estimated 

by designing some stable adaptive laws. 

The rest of this paper is organized into six sections: 

Section 2 deals with some required definitions and lemmas 

as preliminaries and also WECS system modeling. Problem 

formulation is presented in Section 3. In Section 4 design of 

the proposed FFTASM approaches, along with their 

stability proofs and finite time stability computations, is 

presented.  Section 5 examines the correctness of the 

performance of the designed control approaches with some 

numerical simulations. The closed loop system behavior, in 

the presence of unknown perturbations, is also evaluated in 

this section. Finally, the conclusion, and some suggestions 

for further work, is expressed in Section 6. 

2.PRELIMINARIES 

One definition and two lemmas are presented here as 

preliminaries. 

Definition1: Consider a nonlinear system with the 

following formula: 

0x = f(x,u) , f(0,0) = 0 , x = 0ɺ    (1) 

where
nx R∈ , mu R∈ and : n m nf R R× → . If there is an 

SFC (state feedback control) law in the form of u = Φ(x)

withΦ(0)= 0 , then, the system origin of (1) is finite-time 

stable if the origin of the closed loop system x = f(x,Φ(x))ɺ  

is in a finite-time stable equilibrium state. 

To obtain the main result of the paper, the following 

lemmas from [35] are also needed. 

Lemma1: Assume that ( )V x  is a candidate Lyapunov 

function and (2) 

( ) ( ) ( ) 0V x V x V x
γα β+ + ≤ɺ , , 0α β >    (2) 

and 0 1γ< < . Then, the Lyapunov function ( )V x  

converges to zero in finite time (3) 

0

(1 )1 1 1(1 ) ln(1 )
k

T V
γα γ αβ −− − −≤ − +     (3) 

Here 0V indicates the initial condition of the Lyapunov 

function [36]. 

Lemma2: If we have the following two nonlinear 

differential relations  

0

t

t

x+ β x ×sign(x)= 0 

x+αx+ β x ×sign(x)= 0

γ

γ

−∫

ɺ

ɺ

 (4) 

where, x R∈ , , 0α β > , and 0 1γ< < . Then, for each 

initial condition 00x( )= x , the state of the system 

approaches the point 0x = in the limited time kT , which 

is respectively obtained as follows for the first and second 

systems in (4) 

1

(0)

1

(0)

k

k

1
Τ = ζ

β(1-γ)

α ζ +β1
 Τ ln

α(1-γ) β

γ

γ

−

−

=

 (5) 

for all kt T> [37]. 
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3. PROBLEM FORMULATION 

3.1 WECS SYSTEM MODELING 

3.1.1 Wind turbine model 

In wind turbines, kinetic energy is converted into electrical 

energy by an electrical generator. The wind moves the 

turbine blades and creates rotational force. The wind 

turbine consists of tower, rotor, and blades. The rotation of 

the blades moves the rotor, and thus causes the gearbox to 

move. The gearbox increases the rotation speed, and 

eventually the generator converts the rotary energy to 

electrical energy [7]. 

Wind speed ( ( )v t ) and power factor of wind turbines 

( ( , )pC λ β ) are two essential components influencing the 

behavior of aerodynamic power of wind turbines, which 

behavior of turbine output's power factor depends on the 

changes of two terms of blade pitch ( β ) and the Tip Speed 

Ratio (TSR)of the blade (λ). 

The aerodynamic power of a wind turbine is denoted as 

follows [38-39]: 

2 31
( , ) ( )

2
a p

P R C v tρπ λ β= ×  (6) 

where R  is the wind turbine rotor radius component and 

ρ  is the air density in equation (6). The tip speed ratio is 

r
ω R

λ =
v

    (7) 

where rω  stands for the rotor angular speed. Using (8), 

one can calculate the torque generated by a wind turbine: 

2 3a

a a p

r r

P 1
T =  , T = ρπR C (λ, β)v

ω 2ω
    (8) 

The power coefficient ( , )pC λ β  has the following 

equations 

5

1 2 3 4 6

3

p

c
C (λ, β) = c (c Γ - c β - c )× e + c λ ,

1 0.035
 Γ = -

λ + 0.8β β + 1

− Γ

   
   
   

    (9) 

where the constant parameters are 1c =0.5175, 2c =116.1, 3c

=0.41, 4c =5, 5c =21 and 6c =0.0069 . 

The expression of the dynamics for the turbine can also be 

simplified as the following simplified model, which is an 

equation on wind turbine speed 

( )r a t r g

t

1
ω = × T - K ω -T

J

 
 
 

ɺ   (10) 

where 
gT , tJ , and tK are respectively the generator 

electromagnetic torque, total inertia and external damping. 

3.1.2. Pitch actuator model 

The structure of the pitch actuator is composed of two parts: 

mechanical and hydraulic parts. The pitch actuator has to 

rotate the blades along their horizontal axis. The actuator 

dynamic can be modeled, as a first-order system, as follows 

[40]: 

min max

min max

,τ β + β = U  , β β β

dβ dβ dβ

dt dt dt

β β ≤ ≤

   ≤ ≤   
   

ɺ

   (11) 

where βτ , and U β  are time constants associated with 

the pitch actuator, and the actuator control input. [37] 

depicts the pitch actuator block diagram. We use the 

saturation term due to the high-frequency components of 

the pitch demand spectrum [41]. 

 

3.1.3 The DFIG Generator model 

DFIG-based wind turbines are capable of four-quadrant 

active, reactive power, and variable speed performance of 

about 33% of synchronous speed. The losses of DFIG-

based wind turbines are much lower compared to a system 

based on a fully powered synchronous generator with a full 

converter, it also reduces the cost of the converter (24% of 

the total power) and requires less maintenance [5-6]. 

One can write the electrical equations of the DFIG for the 

rotor and the stator as follows [42]: 

Voltage equations (12): 

sd
sd s sd s sd

sq

sq s sq s sd

rd
rd s rd r rq

rq

rq r rq r rd

d
v = R I + - ω

dt

d
v = R I + +ω

dt

d
v = R I + - ω

dt

d
 v = R I + +ω

dt

φ
φ

φ
φ

φ
φ

φ
φ

 
(12) 

Flux equations (13):  
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, ,

,

sd s sd rd sq s sq rq rd

r rd sd rq r rq sq

L I MI L I MI

L I MI L I MI

φ φ φ

φ

= + = + =

+ = +
 (13) 

The electromagnetic torque formula is then (14) 

em sq rq sdrdT = pM(I I - I I )  (14) 

where r
R , s

R , r
ω , and s

ω , respectively, are rotor resistance, 

stator resistance, rotor pulsation, and stator pulsation. Also

r
L , s

L , and M are rotor, stator and mutual inductances, 

respectively. pdenotes number of pole pairs of DFIG. 

For simplicity, the stator resistance is ignored; and it is 

assumed that the q-axis is aligned with the stator voltage. 

Then, we have [42]: 

2

1
( )

1
( )

1

rd sd

rd r rd s r rq

r s

rq

rq r rq s r rd s sd

r s

s r

em sd rq

s

dI dM
v R I gw L I

dt L L dt

dI M
v R I gw L I gw

dt L L

M

L L

M
T p I

L

ϕ
σ

σ

σ ϕ
σ

σ

ϕ

= − + −

= − − −

= −

= −

 

(15) 

where r s
g ω ω= and sd s s

vφ ω=  denotes the leakage 

coefficient of generator. 

In general, for more efficiency, wind turbines are designed 

to produce maximum power in different regions II and III 

of a WECS. According to the four working Zones of the 

wind turbine, the control objectives are as follows: 

3.2. DFIG control objective 

The components of the DFIG are controlled for obtaining 

the maximum output power according to the changes in 

wind speed in Zone II. 

The maximum power point trackingin Zone II and zero 

active power is achieved by tracking the reference 

electromagnetic torque and keeping the turbine speed 

constant at its nominal speed in the third control Zone. 

The DFIG stator-side reactive power equation is 

s s

s rd

s s

V V
Q = ( - MI )

L ω
 (16) 

If we set the reactive power to zero, then the rotor reference 

current will be equal to: 

s

rd ref

s

V
I =

ω M
−

 (17) 

To achieve a unity power factor operation of the wind 

turbine 0s refQ − = , we must have to set or force the optimal 

reactive power to zero. Thus, the optimal active power 

s refP −  is written with neglecting losses as 
s ref a optP P− −≈ . 

Also, assuming that the reference power is equal to the 

reference electromagnetic torque, we have: 

s

rq ref ref

sd

L
I T

PM
= -

φ−  (18) 

Therefore, the aim of controlling a DFIG is to optimize the 

captured wind energy. It is done when the currents in (15) 

converge to their references in (17) -(18). 

3.3 Speed control objective  

For speed controlling, high wind speeds are considered. 

When the generator speed reaches the nominal speed, the 

turbine enters the third Zone. Now, if the speed of the 

generator increases by increasing the wind speed, then the 

controller adjusts it to the optimal value by regulating the 

pitch angle and control input. So, the received energy from 

the wind speed is reduced. The power coefficient is 

dependent on β andλ . Therefore, to obtain the maximum 

value of
pC , according to 

optβ and
optλ . The changes of 

r optω −  is dependent on the changes of the wind speed as 

maxp opt opt p r opt optC (λ ,β )= C , ω = λ v R− −  (19) 

To show the direct effect between two components β  and 

r
ω , first, insert a

T  from (8) into the turbine model in (10) 

and assume 
g ref optT T T= = . This will Result: 

2 2 3p

r t r opt r

t r

A.C1 1
ω = - K ω - K ω , A = ( ρπR V )

J ω 2

  
  

  
ɺ  (20) 

Then according to (8) and to appear βɺ  in (20), it is 

necessary to derivate from (20) as in below 

2

p p

r r t r opt r r

t r r

AC AC1
ω = - ω - K ω - 2K ω ω

J ω ω

  
     

ɺ

ɺɺ ɺ ɺ ɺ  (21) 

Given that
pC , which is known as the power factor in the 

equations, is dependent on λ  (blade tip velocity ratio) and 

β  (blade angle) and λ  itself is dependent on r
ω and v , 

therefore, the derivative of the turbine's output power factor 

(
pC ) is calculated as 
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p p p

p r

r

.C .C .C
C = .β + .ω + .v

β ω v

∂ ∂ ∂

∂ ∂ ∂
ɺɺ ɺ ɺ  (22) 

Now, substituting βɺ  from (11) into (22), it can be 

simplified as 

( ) p

p

p p

r

r

CG
C = H + U - β + v,

τ v

C C
H = ω , G =

ω β

β
β

∂

∂

∂ ∂

∂ ∂

ɺ ɺ

ɺ

 (23) 

Where 

( )
p

p p

p r

r

C

C Cβ
C = ω + U - β + v

ω τ V
β

β

∂
∂ ∂∂
∂ ∂

ɺ ɺ ɺ  
(24) 

Finally, substituting (23) into (21) results in 

r pω = a+bu + ∆Cβɺɺ  (25) 

where 

2

.1
. . . 2 . .

1 1
.

1
.

p

t r r opt r r

t r r

t r

p

p

t r

ACA G
a H K K

J

A
b G

J

CA
C V

J V

β

β

β ω ω ω ω
ω τ ω

ω τ

ω

       
= − + − −                

    
=           

∂   
∆ =    ∂  

ɺ ɺ ɺ

ɺ

 

(26) 

The goal of our new control approach in this section is 

to stabilize the rotor angular speed ( r
ω ) of the turbine in 

order to tracks a desired reference value −r refω  by 

controlling the blade pitch angle ( β ) and to achieve the 

maximum aerodynamic power ( a
P ) from the changes in 

wind speed. That means the control input in (25) is ( )u tβ  

(the pitch angle input), which should be designed so that 

output ( )
r

tω tracks the desired speed −r refω . 

3.4. Problem statement 

Term ∆ pC in the wind turbine model in (25) includes the 

wind velocity and its derivatives which can be totally 

considered as model uncertainties.  To deal with 

uncertainties, at first, we rewrite the model in (25) in a 

more compact model as follows: 

Nr + K(r,r) = χɺɺ ɺ  (27) 

where ( )= rr tω  is the posture variable of system, 

( )= u tβχ is input and we have 

where  a, b  and ∆C p  are nonlinear functions of system 

variables defined as in (26). 

Now, in order to make the problem more applicable, 

assume that other dynamic parameters in turbine model in 

(26) including ,  ,  tA J H , and so on are unknown for the 

designer due to modeling uncertainties. This makes both 

terms N  and K(r,r)ɺ  to be exposed to uncertainties. 

 By rewriting the wind turbine model in (27) as follows 

Nr + F(r,r) = χɺɺ ɺ  (29) 

One can easily combine all the unknown terms of N  and 

K(r,r)ɺ  in a new defined function ( , )ɺF r r  as follows  

F(r,r) = [N - N]r + K(r,r)ɺ ɺɺ ɺ  (30) 

where  N  is an arbitrary constant positive value. 

It is emphasized again that in reality wind turbine system 

modeling involves parametric uncertainties, unmodeled 

dynamics, and external disturbances. The dynamic 

parameters of a turbine system, including the inertial, air 

density, rotor radius, tip speed ratio, and so on, are 

supposed to be uncertainties.  

 On the other hand, external effects such as the collision of 

foreign objects and the wind should be modeled as external 

disturbances. A new term ( )d t  must add to turbine model in 

(29) to denote the mentioned external disturbances like 

noise or effect of any other unknown external force on the 

wind turbine blades. 

Thus, considering both the external disturbances and 

parameters uncertainties, the more accurate and applicable 

model of the wind turbine system in (30) is obtained as 

Nr + F(r,r)+ ∆F(r,r)+ d(t)= χɺɺ ɺ ɺ  (31) 

where ( , )ɺF r r  indicates the known nominal parts, 

( , )∆ ɺF r r illustrates the term that includes all of the model 

uncertainties (such as term ∆ pC b in (28)). Sum of noises, 

bounded external disturbances, and unmodeled dynamics is 

indicated as ( )d t . By considering parametric uncertainty 

and external perturbations as an aggregated vector, equation 

(31) can be simplified as follows: 

Nr + F(r,r)+ E(r,r,t)= χɺɺ ɺ ɺ  (32) 

where 

E(r,r,t) = ∆F(r,r)+ d(t)ɺ ɺ  (33) 

p∆C-a 1
K(r,r) = - , N =

b b b
ɺ  

(28) 
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Remark 1. ( , )∆ ɺF r r  (Modeling uncertainties) is dependent 

on the wind turbine system states. Also, the external 

disturbances are depended on the status of the wind turbine 

system. The fact, that is neglected and ignored in the 

previous research for simplicity, is that the effect of wind, 

depends on the speed of the turbine, its attitude and its 

blade pitch angle.  

On the other hand, in most cases, it is assumed that wind 

speed or at least its upper bound is known for the control 

designer. This is while, the awareness of the wind’s speed 

or its upper bound and its derivative are not possible in all 

cases. 

Therefore, in this paper and for the first time, we want to 

assume that the upper bound of the summation of modeling 

uncertainties and external disturbances in (33) which is 

denoted by ( , , )ɺE r r t , is not a known or constant value, but 

an unknown nonlinear function of wind turbine state 

variables. Moreover, to make this assumption more  

( , ) ( , )F r r h r rσ∆ ≤ + ∂ɺ ɺ  (34) 

realistic and applicable, it is also assumed that the 

coefficients of this function are unknown and would be 

calculated via some designed adaptive laws. 

To do that, inspired by the assumptions on the 

uncertainties and disturbances presented in [42], the upper 

bounds of the modeling uncertainties and disturbances in 

(33) are assumed to be like (34)and (35) 

( ) ( , )d t g r rυ ς≤ +ɺ  (35) 

So, the upper bound of ( , , )ɺE r r t in (33) can be calculated 

as 

E(r,r,t) ∆F(r,r) + d(t)

σh(r,r)+ + g(r,r)+ς

≤ ≤

∂ υ

ɺ ɺ

ɺ ɺ

 (36) 

where ,  ,  ∂σ υ  and ς  are scalar values, and ( , )ɺh r r  and 

( , )ɺg r r  are nonlinear functions. with simplification of (36) 

one can write: 

E(r,r,t) δm(r,r)+γ≤ɺ ɺ  (37) 

where ( , )ɺm r r  in a nonlinear function and  γ  and δ  are 

two unknown real constants. 

Dealing with the uncertainties and disturbances was not the 

only aim of this paper. Instead, the objective is to achieve 

maximum power in the two main areas of the wind turbine 

within a finite time. Designing a finite time sliding mode 

control law is not simple when the upper bounds of 

disturbances and uncertainties are considered as unknown 

nonlinear functions where the unknown coefficients of 

these functions are obtained by adaptive laws; because it 

poses a challenge to prove stability through Lyapunov. This 

will be discussed in the next section. 

The problem formulation for DFIG control part is the 

same as what is presented here for speed control part which 

is presented along with the proposed controller design in 

next section. 

 

4. FFTASM CONTROLLER DESIGN 

4.1.Turbine Speed controller design (Pitch control 

technique) 

To design the FFTASM controller, at first the wind turbine 

tracking error is considered as = −ɶ dr r r where ( )= rr tω . 

By applying Lemma2, the sliding mode manifold is defined 

as (33): 

0

t

s = r +ζr +k sig(r)ε∫ɺɶ ɶ ɶ  
(38) 

where ( ) ( )=ɶ ɶ ɶsig r r sign r
εε

with 0 1< <ε  and ,k Rζ +∈

.  

In order to assign the sliding manifold to converge to zero, 

a reaching law is considered as follows [36]: 

s = -ρs - µsig(s)λɺ  (39) 

where ρ  and µ   are constant positive values and 

0 1λ< < . 

By calculating the first-order derivative of s (38), and 

considering the right hand side of equation (39), The first 

proposed FFTASM control law for wind turbine model in 

(31) in the presence of uncertainties and disturbances is 

designed as 

χ = Nu + F(r,r)ɺ  (40) 

whereu is as follows  

( )1 1ˆˆ

du = r + ksig(r) + ζr + ρs+ µsig(s) +

ηsign(s)+ γ N +δ N m(r,r) sign(s)

ε λ

− −

ɶɺɺ ɶ ɺ

ɺ

 

(41) 

where γ̂  and δ̂  are estimation of unknown parameters  γ  

and δ  which are obtained from the following adaptive 

laws 

1
2

1
1

ˆˆ T

T

γ = k s N sign(s),δ =

k s N sign(s)m(r,r)

−

−

ɺɺ

ɺ

 

  

(42) 

where 1 2, , , , , , +∈k k k N Rµ ρ ζ  (adaptive gains and 

controller parameters) are arbitrary positive values, and

0 , 1< <ε λ . The following theorem is the main result of 

this section. 

Theorem 1. Consider the wind turbine model in (29)-(30) 
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that is exposed to external disturbances and modeling 

uncertainties with unknown functional upper bounds as in 

(32). Then, using the FFTASM controller in (40)-(42), 

where 1 2, , , , , , +∈k k k N Rµ ρ ζ  and 0 , 1< <ε λ , the 

rotor speed ( ) ( )= rr t tω  converges to the desired 

reference value ( ) ( )−=d r refr t tω in a finite time. 

Proof. By replacing the relation (40) in (32) and using the 

multiplication of the sides in 1−N , one can write  

( )1 1 1ˆˆ

r + ksig(r) + ζr + ρs+ µsig(s) + ηsign(s)..

..+ γ N + δ N m(r,r) sign(s) - N E = 0

ε λ

− − −

ɺɺ ɺɶ ɶ ɶ

ɺ

 

(43) 

Now, a Lyapunov's candidate function is selected in the 

following form: 

1 2

2 21 1 1

2 2 2

TV s s
k k

δ γ= + +ɶ ɶ  
(44) 

where ˆδ δ δ= −ɶ and ˆ= −ɶγ γ γ . Using the first-order 

derivative of V and considering relations (38) and (43), 

and using ˆδ δ=
ɺɺɶ , ˆ= ɺɺɶγ γ , we have: 

{
( ) }1 1

1 1

1ˆˆ

ˆ ˆ

T

T T

V = s -ρs - µsig(s) - ηsign(s) -

 γ N +δ N m(r,r) sign(s)+ N E

+(δ - δ)s N sign(s)m(r,r)+(γ - γ)s N sign(s)

λ

− −

− −

−

ɺ

ɺ

ɺ

 

(45) 

By simplifying (45) and considering
1

( )
+

=T
s sig s s

λλ
,

2
=T

s s s  and ( ) =Ts sign s s , one can obtain: 

2 1

1 1 1

V = -ρ s - µ s -

η s - δ s N m(r,r) - γ s N + sN E

λ+

− − −

ɺ

ɺ

 

(46) 

Now, by the fact that 
1 1− −≤sN E s N E and using upper 

bound of  E  as in (37), one can write (46) as in below 

( )

2 1 1 1

2 11

V -ρ s - µ s - η s - δ s N m(r,r) - γ s N +

s N δm(θ,θ)+ γ = -ρ s - µ s - η s

λ

λ

+ − −

+−

≤ɺ ɺ

ɺ

 

(47) 

According to (47), it is proved that the derivative of 

Lyapunov's candidate function is a negative semi-definite, 

and therefore the condition of stability is established 

according to the Barbalat’s Lemma. 

Using Lyapunov theory and Lemma 2, we know that if 

( )s t  tends to zero, naturally the error ɶr  will converge to 

zero in the follow finite time (48)  
1

0

r

ζ z + k1
T = ln .

ζ(1 - ε) k

α−

ɶ
 

(48) 

This time is not the total finite time of error convergence to 

zero. This only shows that after converging of system to the 

sliding surface it takes  
rT
ɶ
 seconds for error to become 

zero. We have to also compute the convergence time of 

sliding surface to zero by applying the proposed controller 

in (41)-(43) (we name this time as 
sT ). Actually, the total 

convergence time of error to zero is equal to the sum of 
sT  

and 
rT
ɶ
( fin a l r sT T T= +

ɶ ).  

For this purpose, we must define a new Lyapunov 

candidate function as follows:  

T

s

1
V = s s

2
 

(49) 

Differentiating 
sV  and using (38) and (43), results in 

{
) }1 1 1

2 1

1 1 1

ˆˆ

ˆ ˆ

T

sV = s -ρs - µsig(s) - ηsign(s)- 

γ N +δ N m(r,r) sign(s)+ N E

-ρ s - µ s - η s -

δ s N m(r,r) - γ s N + s N E

λ

λ

− − −

+

− − −

≤

ɺ

ɺ

ɺ

 

 

(50) 

By considering (37), the upper bound of ɺsV  is estimated 

as: 

( )

2 1

1 1

1

ˆ ˆ

sV -ρ s - µ s - η s -

δ s N m(r,r) - γ s N +

s N δm(θ,θ)+ γ

λ+

− −

−

≤ɺ

ɺ

ɺ

 

(51) 

Therefore 
2 1

1 1

sV -ρ s - µ s - η s -

δ s N m(r,r) - γ s M

λ+

− −

≤ɺ

ɶ ɺ ɶ

 
(52) 

Given the relations (42), (44), and (52) and according to the 

adaptive laws and theory of Lyapunov, one can conclude 

that: , ≤ɶδ δ and ≤ɶγ γ , where δ  and γ  are real 

constants , and positive bounded. Thus, equation (52). is 

rewritten as follows: 

2 1 1

sV -ρ s - µ s - η s - δm(θ,θ)+ γ s N
λ+ −≤ ɺɺ  (53) 

Now, given that ( , )m θ θɺ  and 1−N  are bounded known 

values, and
-1δm(θ,θ)+γ N ξ≤ɺ  yields, so  

2 1

sV -ρ s - µ s - η s +ξ s
λ+≤ɺ  

(54) 

Now, selecting >η ξ   and defining 0= − >nρ η ζ , (54) 

can be rewritten as 

2 1+λ 2 1+λ

s nV -ρ s - µ s - ρ s -ρ s - µ s≤ ≤ɺ  
(55) 
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By substituting s
s = 2V  in (55) and according to (49), 

one can conclude that 

1 1
2 22 2s s sV V V

λ λ
ρ µ

+ +
≤ − −ɺ  

(56) 

Using Lemma 1 and based on the Lyapunov function in 

(49), the stability condition is established. The sliding 

surface converges to the origin in the following finite time: 

(2 )

4
0

(2 )

4

s

2ρ.V1
T Ln 1+

ρ(1- λ)
2 .µ

λ

λ

+

+

 
 

≤  
 
 

 

(57) 

This means that the finite time convergence of error to zero 

and the finite time convergence of sliding surface to zero 

(the reaching time) are met. Therefore, the tracking error ɶr  

converges to zero in the following finite time 

( fin a l r sT T T= +
ɶ )(58): 

1

0

(2 )

4

(2 )

4

0

final

ζ r + k.1
T = Ln +

ζ ×(1- ε) k.

2 ρV
1

Ln 1+ .
ρ×(1- λ)

2 µ

ε

λ

λ

−

+

+

  
  
  
 
 
 
 

ɶ

 

(58) 

Remark 2. The SIGN function in the FFTASM in (40)-(42) 

causes high-frequency fluctuations called chattering in the 

control signal. This phenomenon occurs due to the 

discontinuous sign function in the control law. Chattering 

damages the mechanical parts of the wind turbine. So far, 

several solutions have been used to reduce chattering, 

including utilizing a saturation or hyperbolic tangent 

function instead of a sign function. However, such 

replacements reduce the optimal performance of the 

controller in the closed loop system. To solve this problem, 

a continuous approximation for the sign function in [44] is 

proposed. Similar to what was proposed in [44], we also 

suggest an idea in this regard: Consider the following 

approximation for the term sgn( ),  0Sρ ρ > . 

2

sgn( )
(t)

s
s

s

ρ
ρ

ρ σ
≅

+
 

(59) 

where (t)σ  is a bounded positive function, that means 

(t) 0σ >  and
0

(t)
∞

<∞∫ dtσ . Consider the following function 

as an example of (t) 0σ > :  

n

1
σ(t)= , n 2

1+t
≥  

(60) 

It is worth mentioning that using the approximation in 

(59), firstly the discontinuous sign function will turn into a 

continuous function. Secondly, this approximation will 

immediately converge to the sign function itself by 

maintaining continuity and consumedly the performance of 

system does not decrease. 

4.2. DFIG controller Design(Current control 

technique) 

The assumptions to achieve finite time stability, 

considering unknown functional upper bound of 

modeling uncertainties and external disturbances, 

which were considered in the previous section, are 

also valid for the DFIG control part. The only 

difference is that the dynamic model of DFIG part in 

(12) was of order one, while the wind turbine model 

in the previous section in (30) was second order. 

DFIG model in (12) can be simplified as follow 

. , .
rd rd rd rq rq rq

I n h v I n h v= + = +ɺ ɺ  (61) 

where 

( )rd r rd s r rq

rq r rq s r rd s

r s

r

r

1
n = × -R .I + S.ω .σ.L .I

σ.L

1 M
n = × -R .I + g.ω .σ.L .I - g.ω . .φ

σ.L L

1
,h =

σ.L

 
 
 

   
         

 
 
 

 

(62) 

 

To prevent repetition, the generator currents rd
I and 

rqI are 

controlled separately to achieve the maximum power, we 

write both equations in (61) in an identical format as in 

below. The stabilizing controller that will be designed later 

also has the same form for both of these equations: 

I = n + h.vɺ  (63) 

Considering ( )=r I t  as posture variable of the DFIG 

system and = vχ  as input, similar to (29)-(30), the DFIG 

model in (62) can also be written as follows 

Nr + F(r) = cɺ  (64) 

where N is an arbitrary constant positive value and 

2 2d d-n 1 1 -n
K(r)= - , N =  , F(r)= [ - N]r + -

h h h h h h
ɺ  

(65) 

The dynamic model of DFIG in (63) is exposed to 

perturbations such as uncertainties in dynamic parameters 

like ,  ,
r r

R L ,  g σ , and so on or also external disturbances 

like noise, unknown currents, or even undesirable changes 

in stator speed. Therefore, the more accurate and applicable 

model of DFIG in (64) should be written by the following 

equation: 

Nr + F(r)+ ∆F(r)+ d(t)= χɺ   

(66) 
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where ∆F(r) is model uncertainty and d(t)  denotes 

external disturbance. Similar to (32), the DFIG model can 

also be stated as 

Nr + F(r)+ E(r,t) = χɺ  (67) 

where 

E(r,t) = ∆F(r)+ d(t)..  (68) 

Note 1. A comparison of equations in (32) and (67) shows 

that the turbine model and DFIG model can be written 

similarly and in the same format, with only one-degree 

difference. 

Now, using Remark 1, let us consider the upper bound of 

external disturbances, and parameter uncertainties in the 

DFIG system as a nonlinear function of DFIG variables 

with unknown coefficients as: 

E(r,t) δm(r)+γ≤  (69) 

where ( )m r is a known nonlinear function and γ  and δ  

are unknown real constants. 

Considering the tracking error as = −ɶ dr r r where

{ , }− −=d rd ref rq refr I I is desired values in (17)-(18), and the 

sliding mode manifold for the DFIG system based on 

Lemma 2, is selected as: 

0

t

s = r +k sig(r)ε∫ɶ ɶ  (70) 

where ε  and k  are the same as for (43). Now, similar 

to what is done for pitch control in the previous part, the 

fast terminal adaptive SMC for maximizing the produced 

power in DFIG is suggested as follows: 

χ = Nu + F(r)  (71) 

whereu is as follows 

( )1 1ˆˆ

du = r + ksig(r) + ρs+ µsig(s) +

ηsign(s)+ γ N +δ N m(r) sign(s)

ε λ

− −

ɺ ɶ

 (72) 

In result 
χ

(73) 

( )1 1

2

ˆˆ

dr + ksig(r) + ρs + µsig(s) + ηsign(s)
χ = N ×

    + γ N + δ N m(r) sign(s)

d1 -n
+[ - N]r + -

h h h

ε λ

− −

 
 
 
  

ɺ ɶ

ɺ

 

(73) 

where γ̂  and δ̂  are obtained from 

1

1

2

1

ˆ

ˆ

T

T

γ = k .s N sign(s)  ,  

δ = k .s N sign(s)m(r)

−

−

ɺ

ɺ
 (74) 

where 
2 1., . +∈k k R are arbitrary positive definite values. 

By replacing the relation (67) in (71) and using the 

multiplication of the sides in 1−
N , one can write 

( )1 1 1ˆˆ

r + ksig(r) + ζr + ρs + µsig(s) + ηsign(s)+

γ N + δ N m(r) sign(s) - N E = 0

ε λ

− − −

ɺɶ ɶ ɶ

 (75) 

Theorem 2: Given the DFIG model for both rd refI − and 

rq re fI − as in (64), where the upper bound of disturbances 

and uncertainties is an unknown nonlinear function as in 

(70). Now, applying the FFTASM controller in (71)-(73), 

where 1 2, , , ,k k k Rµ ρ +∈  and 0 , 1< <ε λ , the 

reactive power converges to zero and MPPT is achieved in 

finite time. 

Proof: At first it should be said that converging the DFIG 

currents to their desired values as in (17) -(18) in finite 

time, is equivalent to zeroing the reactive power and 

achieving MPPT in the second control Zone of the wind 

turbine in finite time. The rest of the proof is similar to 

Theorem 1 and for the sake of brevity is omitted here. 

Remark 3. The wind turbine and the DFIG models in (27) 

and (64) respectively, have been written in a general form 

to show that the FFTASM controller can be easily used for 

other high-order models including all rigid body dynamic 

models such as robot systems. 

Note 2. It is worth to mention that the adaptive rules in 

equations (42) in Theorem 1, and (74) in Theorem 2, are 

not only some simple estimations of some parameters ( γ̂  

and δ̂ ) which are  used in the control rules (41) in 

Theorem 1, and (73) in Theorem 2. These adaptive rules are 

instead the estimations of the unknown coefficients of the 

functional upper bounds of modelling uncertainties and 

external disturbances in (37) and (69). In other words, the 

adaptive rules in (42) estimate the unknown coefficients of 

the functional upper bound of the wind turbine 

perturbations in (37) and the adaptive rules in (74) also 

estimate the unknown coefficients of the functional upper 

bound of the DFIG perturbations in (69). This is another 

difference between our work and what is presented in 

previous researches. 

 

5.  SIMULATION RESULTS 

This section investigates the performance of the proposed 

controllers. The designed controller is implemented in 

MATLAB / Simulink environment. The pitch angle and a 

double-fed induction generator (DFIG) are controlled by 

applying the FFTASM algorithm. 

The parameters of the wind turbine and the DFIG are 

reported in Table .1. During the simulation, we use the 

following functions for external disturbance and parameter 
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uncertainties in (33) and (69): 

 

∆F(r,r)= af(r,r)+ 2.1 r + 2.6 r

d(t)= 0.6sin(0.2t)+ 2a

ɺ ɺ ɺɺ
 (76) 

where ( , )∆ ɺF r r illustrates model uncertainties (which 

includes term ∆ pC b in (28)). The 
p

C∆ and ( )d t  are 

plotted in Fig.1(c) and Fig.1(b). where a is a random value 

between 0 and 1. Fig.1(a), demonstrated the wind speed 

behavioral variation slopes at different times. The 

validation of the proposed controller performs under 

different wind speeds, which vary between 7 to 10 m/s. 

Model of the wind is obtained via the following equation  

w h tV = µ + v (t).a  (77) 

where hµ  is the average wind speed and (t)tv represents 

its instantaneous velocity (instantaneous wind turbulence). 

The instantaneous velocity of the wind is usually expressed 

by a first-order filter along with the Gaussian white noise as 

follows. 

t t t

1
v (t) = - .v (t)+ a

T
ɺ  (78) 

where T  and ta are the time constant and the white 

Gaussian noise with zero mean and a specific variance, 

respectively. 

 
Table 1: Parameters of Turbine and DFIG 

VALUE PARAMETERS DESCRIPTION 

4.4533E5 

KG.M2 
tJ
 

Moment of 

inertia 

1.226 KG/M3 ρ
 Air Density 

3 M R  Rotor radius. 

0.081 H 

rL  
Rotor inductance 

0.084 H 
S

L  Stator inductance 

0.62 Ω  
r

R Rotor resistance 

0.084 H 
sL  Stator inductance 

0.087 H M  Mutual 

inductance 

0.1 σ  Constant value 

5.4 g  Constant value 

 

 

 

 
Fig. 1.behavior of wind speed variation slopes at different times(a), 

The external disturbance(b) and The ∆��(c). 

 

To validate the FFTASM control strategy, we used three 

tests such as step dynamic signal 

(�����	, ������	, 
����	), stair sequential dynamic signal 

(�����	, ������	, 
����	) and sinusoidal dynamic signal 

(�����	, ������	, 
����	) . We use Theorems 1 and 2 to 

select control parameters as follows: 

1 2
µ = 0.2, ρ = 3.1, k = 0.2, k = 0.3,

k = 22, ε = 0.8, η = 0.1, K = 0.11
 (79) 

The simulations results are shown in Fig.2- Fig.7. Fig.2(a) 

and Fig.2(b) show the rotor angular speed and the active 

power, respectively. The angular speed of a wind turbine 

rotor and the active power output of the generator converge 

to their reference values for different reference profiles in 

finite time. From Fig.2(a) and Fig.2(b), it is easy to see that, 

using the FFTASM in (40), the rotor speed converges to its 

optimum value =ref optV Rω λ  in different profiles 

(Fig.1(a)). Also, the rotor speed is robust against external 

disturbance and parameter uncertainty in (33). Figs. 2(e) 

and 2(f) depicts the electromagnetic torque ( emT ) along 

with reference torque ( −em refT ) in different profiles. 

After 0.3 seconds (transition phase), the amount of reactive 

power becomes zero and remains at this value. That means 

imposing a unity power factor (Fig.3). Figs.2(c),2(d) and 

Fig.3 clearly show that with disturbances and uncertainties, 

with large amounts dependent on system modes, DFIG 

control in different profiles (Fig.1(a)) is well done. Reactive 

power is zero, and active power is converged to its 

reference value. 

As expected, these torques converge on each other. It 

should be emphasized that only in the initial phase, due to 

significant fluctuations, the electromagnetic torque is not 

produced commensurate to the captured power, and there is 

no such problem during the reference change. 
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In addition, it should be noted that the outputs of the control 

system which is pitch angle and DFIG voltages are all 

shown in Figs.4(a) and 4(b). As it is shown, the control 

efforts are also bounded in both wind turbine and generator 

control systems.  

 

 

 
Fig. 2.Rotor angular speed based on step dynamic signal 

profile(a)&step sequence dynamic signal profile(b) , The active power 

based on step dynamic signal profile(c) & (b) and step sequence dynamic 

signal profile(d) and The electromagnetic torque based on step dynamic 

signal profile(e)&step sequence dynamic signal profile(f) 

 
 

 
Fig. 3.The reactive power. 

 

 

 
Fig. 4.Input signal in both wind turbine (a) and generator sections(b) 

 

 

 
Fig. 5.Rotor speed (a) and DFIG currents (b) convergence error. 

 

The errors related to the convergence of the rotor speed and 

generator currents to the reference values in the rotor and 

generator parts are shown in Fig. 5(a) and Fig.5(b). It is 

cleared that MPPT is achieved by applying the well-

designed control law in (40) - (42) and (71) -(74). Fig.6(a) 

and Fig.6(b) show the behavior of the switching surface of 

the turbine and doubly-fed induction generator (DFIG) 

based on parameters dS ,
qS and 

( )tS . As seen in Fig.6(a) 

and Fig.6(b), the chattering phenomenon has been 

eliminated, and the sliding surfaces have converged to zero 

in a finite time. Also, the convergence time, according to 

Fig.6(a) and Fig.6(b), is less than 0.2 seconds. 
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Fig. 6.The performance of sliding surfaces for DFIG (a) and Turbine 

(b). 

 

Fig. 7 (a, b, and c) shows the adaptive parameters in (42) 

and (74). It is clear from the stability conditions in the 

FFTASM controller, the value of adaptive parameters must 

be limited throughout the simulation. Fig. 7 shows that the 

adaptive parameters have limited values, as expected.   

 
Fig.7.Adaptive parameters, Generator currents (δ�� , γ��)(a), 

Generator currents (δ�� , γ��) (b)and (δ� , γ�)(c). 

 

In examining the results obtained from the simulation, it 

can be seen that the FFTASM control approach has a better 

performance for the turbine rotor speed and the DFIG. Fig.2 

to Fig.7 show that the FFTASM controller increases 

tracking accuracy and performs power adjustment well. In 

addition, the tracking error is tiny and close to zero. 

The simulation results confirm the reliability of the new 

FFTASM control, as the results show consistency, high 

tracking accuracy, and power factor proportional to wind 

speed and specific speed. Active and reactive power 

tracking errors are very small and increase the system's 

robustness. 

 

5.1. A Comparison with a related reference 

Recently in [45], control of wind power based on adaptive 

sliding mode control has been proposed. We compared our 

proposed controller to the designed controller in [45]. The 

authors in [45] have assumed that the upper bound of the 

system perturbations is fixed and known, while we 

considered that the upper bound is not only a nonlinear 

function but also the coefficients of this function are 

unknown. 

In [45], contrary to equation (39), the reaching law has been 

defined as ˆ (s)= − −ɺs s satρ µ , where the parameter is 

obtained via an adaptive law ˆ =ɺ n sµ . The simulation 

results of applying the adaptive sliding mode controller in 

[45] into our wind turbine system with same parameters as 

in Table 1 and external disturbance and model uncertainties 

like (76) are shown in Fig.8- Fig.10.  

 

 
Fig. 8.The behavior of the angular speed of wind turbine rotor based 

on FFTASM target controller approach compared to ASMC controller 

based on step dynamic signal profiles(a)and step sequence dynamic signal 

profile(b) 

 

 
Fig. 9.The error behavior of the speed of wind turbine rotor on 

FFTASM control approach compared to ASMC controller. 

 

 

 
Fig. 10.The behavior of the FFTASM target control approach in the finite 
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time convergence of the switching surface compared to the ASMC 

controller in [45]. 

 

A comparison of Fig. 8, Fig. 9, and Fig. 10, clearly 

shows that in the presence of uncertainties and 

perturbations, the adaptive sliding mode controller designed 

in [45] does not provide an acceptable convergence in 

turbine speed.  In addition, the error in Fig. 8, has a big 

overshoot and is slow to converge to zero. Also, the sliding 

surface in Fig. 10 practically does not converge to origin in 

addition to the existing chattering. All of this indicates a 

lack of convergence in a finite time. 

According to the results of the comparison, the designed 

control approach law based on FFTASM has performed 

much better than the reference controller [45] in the 

convergence of basic parameters such as turbine rotor speed 

error and the tracking of the angular rotor speed with 

respect to different target profiles, as well as achieving fast 

finite-time convergence in the presence of unknown 

unlimited perturbations dependent on the dynamical state 

variables of the model. 

The new control approach (FFTASM) presented in 

Theorems 1 and 2, has been able to lead to an improvement 

in the tracking performance, reducing the chattering effect, 

stability and coping with the unlimited changes of modeling 

uncertainty and external disturbances, and most importantly, 

leads to the convergence of error components in the system 

in a limited time. 

Table 2 shows a comparison of the statistical indicators of 

the FFTASM control approach and the ASMC controller 

such as the values of RMS and NRMS of the rotor angular 

speed error for the proposed controller are 1.8454 and 

0.1528, respectively. The similar results of adaptive 

controller are 2.1457 and 0.2941.  Therefore, the 

suggested controller results are better than the adaptive 

controller in [45] also in the sense of RMS and NRMS 

indicators. 

 
Table 2: FFTASM and ASMC statistical indices 

Descriptio

n 

Paramet

ers 

FFTAS

M 

ASMC In [45] 

Rotor angular 

Speed RMS 
RMS 1.8454 2.1457 

Rotor angular 

Speed NRMS 

NRM

S 
0.1528 0.2941 

Rotor angular 

Speed overshoot 
OSH 0.0207 1.6445 

Rotor angular 

Speed rise Time (s) 
RT 0.0785 0.1129 

Switching 

Surface Time (s) 
SST 0.8s 1.8s 

Error Settling 

Time (s) 
EST 0.9s 3s 

 

6. CONCLUSION 

A fast and robust-adaptive finite-time sliding mode 

controller is proposed in this paper to control a perturbed 

DFIG-based wind turbine, which is exposed to unbounded 

disturbances and uncertainties. To do this, in Zone II of 

WECS, a new robust-adaptive fast finite time SMC 

(FFTASM) is designed for the nonlinear first order model 

of DFIG system to maximize the produced power in the 

presence of modeling uncertainties and external 

disturbances with an unknown functional upper bound. The 

designed control approach has excellent robustness and 

stability against parametric uncertainties and unlimited 

external disturbances.  Also, in Zone III of wind turbine, a 

pitch angle control method is presented using another 

FFTASM controller in order to tracking the desired speed in 

finite time in the presence of mentioned perturbations for 

the nonlinear second order model of pitch angle system.  

At the same time, in both controllers, unknown coefficients 

of the functional upper bound of the perturbations are 

estimated via some stable adaptive laws. A new idea for 

reducing the effect of chattering is also proposed in this 

paper. Finally, the results of simulations and statistical 

indicators are presented to confirm the effectiveness and 

superiority of the proposed FFTASM approach compared to 

some recent references. 
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