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Abstract: Rolling stands as a crucial manufacturing technique that offers the
dual benefit of enhancing steel's mechanical characteristics. Given the
substantial time investment and financial burden associated with rolling
experiment setups, implementing predictive models for mechanical properties
can enhance precision while reducing both temporal and monetary costs. This
study conducted hot rolling experiments on CK45 steel across two distinct
environments. The specimens underwent rolling at five different temperature
levels and five varying work-roll rotation speeds, maintaining consistent
reduction percentages. Following the rolling process, the samples were rapidly
cooled in ambient air and cold-water conditions, with hardness measurements
obtained using specialized testing equipment. The research employed the
Adaptive Neuro-Fuzzy Inference approach to forecast hardness values based on
operational parameters. The model utilized rolling temperature and rotational
speed of the rollers as input variables, while the hardness measurements post-
quenching in both air and water environments served as output data. The
analysis yielded R? values exceeding 0.99 between measured and predicted
results for both environments, demonstrating ANFIS's effectiveness in
accurately predicting sample hardness across various rolling speeds and
temperatures.
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1 INTRODUCTION

Rolling is one of the most common manufacturing
processes for producing metallic products, such as
steel, in different shapes and dimensions [1].

Flat rolling represents a cornerstone process in modern
manufacturing, accounting for a substantial 40-60% of
rolled product output in industrialized nations. This
prevalent technique is executed through two primary
methodologies: hot rolling and cold rolling, each
selected based on factors such as product
specifications, dimensional requirements, desired
mechanical properties, and manufacturer objectives.
The hot rolling process, characterized by deformation
occurring above the material's recrystallization
temperature, offers several notable advantages such as
high deformation rates, Low required power for
deformation, and no strain hardening in the work [2-3].
On the other hand, rolling process can be considered as
a strengthening method of steel products in which the
strengthening can be done by changing the grain sizes
and plastic deformation. By using the rolling method as
a manufacturing process, controlling the -effective
parameters of strengthening can be carried out at low
costs and high rates [4-5]. Various studies have been
conducted worldwide on the effect of rolling
parameters on mechanical properties.

Nikan and colleagues [6] investigated the effect of hot
rolling parameters on two-phase steels in their research.
Based on their research results, the rolling temperature
and reduction rate showed an effective change in
mechanical properties. Mandana et al [7] evaluated the
effect of hot rolling on the mechanical properties of
low and high-carbon steels. They found out that the hot
rolling process is an excellent method for eliminating
the age hardening and increasing the yield strength in
these kinds of steel.

Pitter et al [8] investigated the effect of hot rolling
parameters such as reduction rate and rolling
temperature on St60Mn in research. In this research,
tensile strength, yield strength, hardening, modulus of
elasticity, toughness and bending strength were
measured based on the changes in rolling parameters.
As was mentioned earlier, the rolling process is a costly
and time-consuming method, so creating an
experimental setup for the evaluation of the effect of
rolling parameters on mechanical properties is not
feasible and cost-effective for all parameters.
Therefore, creating a prediction model for predicting
the mechanical properties of rolled products based on
rolling parameters is necessary and can play a
significant role in reducing costs.

During recent years, various artificial intelligence
techniques, including fuzzy logic, neural networks, and

adaptive neuro-fuzzy inference systems, have been
employed to predict materials' mechanical properties.
In their study, Abdul Syukor Mohamad Jaya and
colleagues [9] introduced a novel methodology for
forecasting the hardness of Titanium aluminum nitride
(T1iAIN) coatings by implementing the Adaptive Neuro-
Fuzzy Inference System (ANFIS). G. Khalaj et al [10]
studied a new approach based on the adaptive network-
based fuzzy inference systems (ANFIS) to predict the
Vickers micro hardness of the phase constituents
occurring in five steel samples after continuous
cooling. Ly et al [11] used ANFIS model for better
prediction of the compressive strength of MSC
(manufactured sand concrete).

M. Zare et al [12] explored the potential of ANN and
ANFIS models to forecast yield strength (YS) and
ultimate tensile strength (UTS) of a warm compacted
molybdenum prealloy using existing data. Analysis of
ANFIS modeling versus ANN model results indicates
superior performance during the training stage. Le et al
[13] used an adaptive neuro-fuzzy inference system for
the prediction of the critical buckling load of steel
columns. Yadollahi et al [14] developed an adaptive
network-based fuzzy inference system (ANFIS) model
and two linear and nonlinear regression models to
predict the compressive strength of geopolymer
composites.

Xie, Q et al [15], in their research, utilized the machine
learning method for predicting the mechanical
properties of several steel alloys after the welding
operations. The results indicated that the error
percentage in predicting these properties ranges
between 36.2% to 2.16%. Soleymani, M et al [16] used
neural networks for predicting the mechanical
properties of steel plates made of St37 during the
welding operations. The preliminary results were
previously announced. Xu, H et al [17] identified a
specific chemical composition of a steel alloy after the
welding operations.

In this research, the hot rolling operation was carried
out in two different environments on CK45 steel. The
samples were rolled at five levels of temperature and
five levels of rotational speeds of work-rolls under the
same reduction percentage. They were then quickly
cooled down in room atmosphere and cold water, and
the hardnesses were measured by a hardness testing
machine.

The Adaptive Neuro-Fuzzy Inference method was used
for predicting the hardness based on the input
parameters. Rolling temperature and the rotational
speed were considered as the inputs, and the measured
hardness after quenching in two air and water
environments were considered as the output of the
model. The obtained R? for the measured and estimated
results for each environment was above 0.99, which
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shows that the ANFIS method can effectively predict
the hardness of the samples based on different rolling
speeds and temperatures.

2 EXPERIMENTS

CK45 steel was used as the main material for hot
deformation. The chemical composition of CK45 is
given in “Tablel”.

Table 1 Chemical composition of CK45 steel
C Mn Si P S Fe

Element

0.45 | 0.65 | 0.25 | 0.01 | 0.035 | balance Yowt

A resistance furnace produced by Azar Furnace with
the FI1L model and with a nominal temperature of
1250 °C was used to heat the material. The sample
dimensions are given in “Fig. 1.
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Fig.1  The prepared sample for operation.

Fig.2  The Vickers Hardness testing machine used for
hardness measurement.

The rolling machine existing in the manufacturing
workshop of Tabriz University of Sahand (IMK-1000h)
was used for rolling operation. The power of this
machine is 1000hp, and the roller diameter and roller
length are 35c¢cm and 40cm, respectively. An ESE WAY
DVS B-P series of hardness testing machines (“Fig. 2”)
was used for measuring the material hardness.
The rotational speed of the rollers and the rolling
temperature in five levels were used for the rolling
operation. “Table 2” shows the rolling parameters used
for the experimental procedure.

Table 2 Rolling parameters used for experiment

Rotational speed (rpm) Temperature (°C)
10 850
12 900
15 950
17 1000
20 1050

3 EXPERIMENTAL PROCEDURES

After preparing the samples and increasing the furnace
temperature to 950 °C, they were austinitized in furnace
for two hours. They were then rolled immediately after
being taken out of the furnace with 62 per cent of
plastic deformation, at five rolling temperatures and
five roller speeds. Figure 3 shows the rolling process.
The samples were rapidly quenched in either ambient
air (room temperature) or cold water (-100 °C), and
they were then evaluated using a hardness testing
machine using the Vickers method (30Kgf load and a
pyramid diamond tool). The testing operations were



repeated 5 times for each sample, and the averages
were obtained and considered as the final hardness
values for all of the samples. The value of the resultant
force is obtained by the following equation:

R
Fig.3  The samples under rolling.

4 ADAPTIVE NEURO FUZZY INFERENCE
SYSTEM (ANFIS)

The Adaptive Neuro-Fuzzy Inference System (ANFIS),
introduced by Jang in 1993, represents a significant
advancement in modeling nonlinear systems [9], [18-
19]. This Takagi-Sugeno type model integrates fuzzy-
based human knowledge with data-driven learning,
creating a robust input-output mapping framework.
ANFIS operates within the structure of adaptive
networks, employing a hybrid learning procedure. This
innovative approach combines the strengths of artificial
neural networks (ANN) and fuzzy inference systems
(FIS), resulting in a model capable of both reasoning
and self-learning. The fuzzy rules in ANFIS can be
expressed as follows:

Rule 1: If x is Aj and y is By, then f; = pix +quy + 11.
Rule 2: If x is Az and y is B2, then f; = pox +qoy+ 12.

In which pi, p2, qi, Q2, 11, and 1 represent linear
coefficients in the consequent section, while A, Az, By,
and B denote nonlinear coefficients. Figure 4 shows
the matching ANFIS structure for dual-input first-order
Sugeno fuzzy systems with two rules.
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Fig.4  Architecture of ANFIS model [13], [18].

The adaptive neuro-fuzzy inference system comprises a
five-layer architecture: the fuzzy layer, product layer,
normalized layer, de-fuzzy layer, and total output layer
[13], [18], [20]. Each layer contains nodes with specific
functions, as detailed below:

Layer 1: This initial layer, designated as the fuzzy
layer, features adjustable nodes represented by square
symbols and labeled A, A,, Bi, and B,. These nodes
correspond to the system's inputs, x and y. The labels
Ai, A;, By, and B, serve as linguistic descriptors
utilized in fuzzy theory to delineate the membership
functions (MFs). Within this layer, the node functions
establish the membership relationship between the
input and output functions, which can be expressed
mathematically as:

0; = ud;(x); j=12,.. (1
0; =uB(y); i=12,.. (2)
In this system, O;; and O; represent the output
functions, while pai and ppj denote the corresponding
membership functions (MFs). These MFs may take
various forms, including triangular, trapezoidal, or
Gaussian functions, among others.

Layer 2: This layer, known as the product layer,
consists of fixed nodes depicted as circles and labeled
"Prod." This layer generates outputs w; and w», which
serve as weight functions for the following layer. The
output of each node in this layer, denoted as O, is
calculated by multiplying all incoming signals, as
follows:

0y =w; = pd;(x).uB;i(y); =12, ... 3)

The output signal from each node, wi, indicates the
activation level of a rule.

Layer 3: This is the normalization layer where each
node is a fixed node, denoted by a circle node and
marked as Norm. The nodes compute normalized
activation levels by calculating the ratio of this node's
activation strength to the total sum of all activation
strengths.
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03, =W; = ——; i=12,.. 4)
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Layer 4: This is the defuzzification layer containing
adaptive nodes and indicated by square nodes. Each
node i in this layer is an adaptive node with a node
function:

O4; = Wif;i = wi(pix + q;y + z;) ()

Where wi represents the normalized firing strength
output from layer 3 and pi, qi, and ri constitute the
parameter set for this node. These parameters follow a
linear pattern and are known as consequent parameters
of this node.

Layer 5: This layer contains one fixed node, indicated
by a circle and labeled sum, which calculates the final
output by adding all incoming signals together as:

= Ziwifi
=W =500 ©6)

The quantity of fuzzy sets corresponds to the number of
nodes present in the initial layer. Meanwhile, the
dimensionality of layer 4 reflects the total number of
fuzzy rules integrated into the framework,
demonstrating the sophistication and adaptability of the
ANFIS structure. When compared to neural networks,
fuzzy rules can be viewed as analogous to neurons.

An ANFIS system can undergo supervised training to
progress from a given input toward a specific desired
output. During the forward phase of the ANFIS hybrid
algorithm, node outputs advance until layer four, and
the consequent linear parameters (pi, i, ri) are
calculated using the least-squares approach with
training datasets. During the backward phase, error
signals travel in reverse, and the premise nonlinear
parameters (Ai, Bi, Ci) are modified through gradient
descent. Research has demonstrated that this hybrid
methodology is remarkably effective in ANFIS training
[91, [13], [18-19].

5 RESULTS AND DISCUSSION

value m and a standard deviationk > 0 as illustrated
below (“Fig. 5):

—(x-m)?
pu(x) = e 2+

m
c

Fig.5  Gaussian membership function.

After selecting the membership functions, the ANFIS
model structure was created based on the experiments
and defined fuzzy sets. In the designed structure, the
rotational speed (V) and the rolling temperature (T) are
defined as input, and the Vickers hardness (VH) as
output of the model. The input and outputs of the
model are given in “Fig. 6”.

In the developed model, five fuzzy sets were
implemented to fuzzify the rolling parameters,
corresponding to their five distinct levels. Given that
the experimental design comprised 25 tests, a total of
25 fuzzy sets were established for both rotational speed
and temperature as the primary variables. The rule
count was matched to the number of experiments,
resulting in 25 fuzzy rules being formulated for the
hardness prediction model. Following the model
construction, the ANFIS model training was executed
using MATLAB software, and the outcomes were
generated according to the model specifications. The
ANFIS model architecture for predicting the material
hardness after rolling is illustrated in “Fig. 7”.

An ANFIS model was created for predicting the
hardness of the rolled material based on the rotational
speed of the rollers and the rolling temperature. The
MATLAB program was used to develop the ANFIS
model. To map the mentioned effective parameters to
the material hardness and fuzzifying the inputs,
Gaussian membership function was found to be the best
fuzzifying function among the other membership
functions.

When compared with other methods, Gaussian family
methods had the most accurate results. The Gaussian-
based membership function is defined by a central
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Fig. 6  Inputs and outputs of the ANFIS system.



Fig.7  The structure of ANFIS model.

As was mentioned earlier, after the rolling process, the
samples were cooled separately in two environments,
including air and water and the hardness values were
measured using a Vickers test hardness machine. Two
different ANFIS models were designed for each of the
environments, and the predicted results of the models
for these environments were estimated.

Graphical result of the ANFIS model was also created
to evaluate the effects of the criterion variables. The
effect of the rotational speed of the rollers and the
rolling temperature on the hardness of the rolled
samples is given in three-dimensional graphic in “Fig.
8”. As is seen in the figure, both variables have a
nonlinear effect on the material hardness. Figure 6
shows the result of the model for air quenching. As is
seen in the figure, by increasing the rotational speed,
the hardness increases too. While by increasing the
rolling temperature a dramatic decrease is happened in
rolled material hardness values.
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Fig.8  The effect of rotational speed of rollers and rolling
temperature on the hardness using of ANFIS model (air
quenching).

Rotational speed (tpm) 17 &0

Figure 9 shows the results of the model for water
quenching. As is seen in the figure, by increasing both
the rotational speed and the rolling temperature, the
diagram shows an increase in rolled material hardness
values. Moreover, by comparing the figures in air and

Int. J. Advanced Design and Manufacturing Technology 56

water environments, it is found that the average
hardness is higher in water quenching in relation to air
quenching.
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Fig.9  The effect of rotational speed of rollers and rolling
temperature on the hardness using the ANFIS model (water
quenching).

The comparison diagram of the measured and
estimated hardness is also conducted to obtain the R?
values. Based on the comparison result, the R? value of
the model is 0.9983 for air quenching and is 0.9947 for
water quenching. It again confirms the ANFIS model
accuracy and its contribution to the reliable estimation
of rolled material hardness. Figures 10 & 11 show the
comparison diagram of the measured and estimated
hardness for air and water quenching, respectively.

In this research, the ANFIS method was used to predict
the hardness, which, according to the authors of the
paper, has not been previously reported in any research
using this method. Given that the volume of
experiments is usually low due to the high cost of
rolling operations, compared to previous research done
for similar cases using other methods, the
aforementioned method has predicted the results with
high accuracy by utilising the advantages of both fuzzy
and neural models.
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Fig. 10 Comparison of the measured and estimated results
(air quenching).
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Fig. 11 Comparison of the measured and estimated results
(water quenching).

6 CONCLUSIONS

This study investigated the impact of hot rolling
process variables on the hardness properties of CK45
steel after air and water quenching treatments. The
investigation focused on two key rolling parameters—
temperature during rolling and the rollers' rotational
velocity—as variables affecting material hardness.
Multiple specimens underwent rolling processes at five
distinct temperatures and five different roller speeds
while maintaining consistent reduction ratios.
Subsequently, the samples were rapidly cooled using
ambient air and cold water, with hardness
measurements obtained through specialized testing
equipment.

A predictive ANFIS framework was developed to
forecast hardness values using operational parameters.
The model incorporated temperature and rotational
speed as input variables, while the measured hardness
results from both air and water cooling served as output
data. Analysis revealed that modifications to rolling
parameters consistently produced noticeable alterations
in the material's grain structure, consequently affecting
mechanical  characteristics, including  specimen
hardness.

The ANFIS model's predicted outcomes were validated
against actual hardness measurements from testing
equipment. The comparative analysis demonstrated that
the ANFIS system accurately forecasts hardness values,
establishing it as a reliable methodology for predicting
results across various rolling parameter ranges not
directly tested in the experimental phase.
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