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Abstract: Rolling stands as a crucial manufacturing technique that offers the 

dual benefit of enhancing steel's mechanical characteristics. Given the 

substantial time investment and financial burden associated with rolling 

experiment setups, implementing predictive models for mechanical properties 

can enhance precision while reducing both temporal and monetary costs. This 

study conducted hot rolling experiments on CK45 steel across two distinct 

environments. The specimens underwent rolling at five different temperature 

levels and five varying work-roll rotation speeds, maintaining consistent 

reduction percentages. Following the rolling process, the samples were rapidly 

cooled in ambient air and cold-water conditions, with hardness measurements 

obtained using specialized testing equipment. The research employed the 

Adaptive Neuro-Fuzzy Inference approach to forecast hardness values based on 

operational parameters. The model utilized rolling temperature and rotational 

speed of the rollers as input variables, while the hardness measurements post-

quenching in both air and water environments served as output data. The 

analysis yielded R² values exceeding 0.99 between measured and predicted 

results for both environments, demonstrating ANFIS's effectiveness in 

accurately predicting sample hardness across various rolling speeds and 

temperatures. 
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1 INTRODUCTION 

Rolling is one of the most common manufacturing 

processes for producing metallic products, such as 

steel, in different shapes and dimensions [1].  

Flat rolling represents a cornerstone process in modern 

manufacturing, accounting for a substantial 40-60% of 

rolled product output in industrialized nations. This 

prevalent technique is executed through two primary 

methodologies: hot rolling and cold rolling, each 

selected based on factors such as product 

specifications, dimensional requirements, desired 

mechanical properties, and manufacturer objectives. 

The hot rolling process, characterized by deformation 

occurring above the material's recrystallization 

temperature, offers several notable advantages such as 

high deformation rates, Low required power for 

deformation, and no strain hardening in the work [2-3].  

On the other hand, rolling process can be considered as 

a strengthening method of steel products in which the 

strengthening can be done by changing the grain sizes 

and plastic deformation. By using the rolling method as 

a manufacturing process, controlling the effective 

parameters of strengthening can be carried out at low 

costs and high rates [4-5].  Various studies have been 

conducted worldwide on the effect of rolling 

parameters on mechanical properties.  

Nikan and colleagues [6] investigated the effect of hot 

rolling parameters on two-phase steels in their research. 

Based on their research results, the rolling temperature 

and reduction rate showed an effective change in 

mechanical properties. Mandana et al [7] evaluated the 

effect of hot rolling on the mechanical properties of 

low and high-carbon steels. They found out that the hot 

rolling process is an excellent method for eliminating 

the age hardening and increasing the yield strength in 

these kinds of steel.  

Pitter et al [8] investigated the effect of hot rolling 

parameters such as reduction rate and rolling 

temperature on St60Mn in research. In this research, 

tensile strength, yield strength, hardening, modulus of 

elasticity, toughness and bending strength were 

measured based on the changes in rolling parameters. 

As was mentioned earlier, the rolling process is a costly 

and time-consuming method, so creating an 

experimental setup for the evaluation of the effect of 

rolling parameters on mechanical properties is not 

feasible and cost-effective for all parameters. 

Therefore, creating a prediction model for predicting 

the mechanical properties of rolled products based on 

rolling parameters is necessary and can play a 

significant role in reducing costs. 

During recent years, various artificial intelligence 

techniques, including fuzzy logic, neural networks, and 

adaptive neuro-fuzzy inference systems, have been 

employed to predict materials' mechanical properties. 

In their study, Abdul Syukor Mohamad Jaya and 

colleagues [9] introduced a novel methodology for 

forecasting the hardness of Titanium aluminum nitride 

(TiAlN) coatings by implementing the Adaptive Neuro-

Fuzzy Inference System (ANFIS). G. Khalaj et al [10] 

studied a new approach based on the adaptive network-

based fuzzy inference systems (ANFIS) to predict the 

Vickers micro hardness of the phase constituents 

occurring in five steel samples after continuous 

cooling. Ly et al [11] used ANFIS model for better 

prediction of the compressive strength of MSC 

(manufactured sand concrete).  

M. Zare et al [12] explored the potential of ANN and 

ANFIS models to forecast yield strength (YS) and 

ultimate tensile strength (UTS) of a warm compacted 

molybdenum prealloy using existing data. Analysis of 

ANFIS modeling versus ANN model results indicates 

superior performance during the training stage. Le et al 

[13] used an adaptive neuro-fuzzy inference system for 

the prediction of  the critical buckling load of steel 

columns. Yadollahi et al [14] developed an adaptive 

network-based fuzzy inference system (ANFIS) model 

and two linear and nonlinear regression models to 

predict the compressive strength of geopolymer 

composites. 

Xie, Q et al [15], in their research, utilized the machine 

learning method for predicting the mechanical 

properties of several steel alloys after the welding 

operations. The results indicated that the error 

percentage in predicting these properties ranges 

between 36.2% to 2.16%. Soleymani, M et al [16] used 

neural networks for predicting the mechanical 

properties of steel plates made of St37 during the 

welding operations. The preliminary results were 

previously announced. Xu, H et al [17] identified a 

specific chemical composition of a steel alloy after the 

welding operations. 

In this research, the hot rolling operation was carried 

out in two different environments on CK45 steel. The 

samples were rolled at five levels of temperature and 

five levels of rotational speeds of work-rolls  under the 

same reduction percentage. They were then quickly 

cooled down in room atmosphere and cold water, and 

the hardnesses were measured by a hardness testing 

machine.  

The Adaptive Neuro-Fuzzy Inference method was used 

for predicting the hardness based on the input 

parameters. Rolling temperature and the rotational 

speed were considered as the inputs, and the measured 

hardness after quenching in two air and water 

environments were considered as the output of the 

model. The obtained R2 for the measured and estimated 

results for each environment was above 0.99, which 
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shows that the ANFIS method can effectively predict 

the hardness of the samples based on different rolling 

speeds and temperatures. 

2 EXPERIMENTS 

CK45 steel was used as the main material for hot 

deformation. The chemical composition of CK45 is 

given in “Table1”. 

 
Table 1 Chemical composition of CK45 steel 

Element Fe S P Si Mn C 

%wt balance 0.035 0.01 0.25 0.65 0.45 

 

A resistance furnace produced by Azar Furnace with 

the F11L model and with a nominal temperature of 

1250 oC was used to heat the material. The sample 

dimensions are given in “Fig. 1”. 

 

 
Fig. 1 The prepared sample for operation. 

 
 

 
Fig. 2 The Vickers Hardness testing machine used for 

hardness measurement. 
The rolling machine existing in the manufacturing 

workshop of Tabriz University of Sahand (IMK-1000h) 

was used for rolling operation. The power of this 

machine is 1000hp, and the roller diameter and roller 

length are 35cm and 40cm, respectively. An ESE WAY 

DVS B-P series of hardness testing machines (“Fig. 2”) 

was used for measuring the material hardness.  

The rotational speed of the rollers and the rolling 

temperature in five levels were used for the rolling 

operation. “Table 2” shows the rolling parameters used 

for the experimental procedure. 

 
Table 2 Rolling parameters used for experiment 

Rotational speed (rpm) C)oTemperature ( 

10 850 

12 900 

15 950 

17 1000 

20 1050 

3 EXPERIMENTAL PROCEDURES 

After preparing the samples and increasing the furnace 

temperature to 950 oC, they were austinitized in furnace 

for two hours. They were then rolled immediately after 

being taken out of the furnace with 62 per cent of 

plastic deformation, at five rolling temperatures and 

five roller speeds. Figure 3 shows the rolling process. 

The samples were rapidly quenched in either ambient 

air (room temperature) or cold water (-100 oC), and 

they were then evaluated using a hardness testing 

machine using the Vickers method (30Kgf load and a 

pyramid diamond tool). The testing operations were 
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repeated 5 times for each sample, and the averages 

were obtained and considered as the final hardness 

values for all of the samples. The value of the resultant 

force is obtained by the following equation: 

 

 
Fig. 3 The samples under rolling. 

4 ADAPTIVE NEURO FUZZY INFERENCE 

SYSTEM (ANFIS) 

The Adaptive Neuro-Fuzzy Inference System (ANFIS), 

introduced by Jang in 1993, represents a significant 

advancement in modeling nonlinear systems [9], [18-

19]. This Takagi-Sugeno type model integrates fuzzy-

based human knowledge with data-driven learning, 

creating a robust input-output mapping framework. 

ANFIS operates within the structure of adaptive 

networks, employing a hybrid learning procedure. This 

innovative approach combines the strengths of artificial 

neural networks (ANN) and fuzzy inference systems 

(FIS), resulting in a model capable of both reasoning 

and self-learning. The fuzzy rules in ANFIS can be 

expressed as follows: 
 

Rule 1: If x is A1 and y is B1, then f1 = p1x +q1y + r1.  

Rule 2: If x is A2 and y is B2, then f2 = p2x +q2y+ r2.  
 

In which p1, p2, q1, q2, r1, and r2 represent linear 

coefficients in the consequent section, while A1, A2, B1, 

and B2 denote nonlinear coefficients. Figure 4 shows 

the matching ANFIS structure for dual-input first-order 

Sugeno fuzzy systems with two rules. 
 

 
Fig. 4 Architecture of ANFIS model [13], [18]. 

 

The adaptive neuro-fuzzy inference system comprises a 

five-layer architecture: the fuzzy layer, product layer, 

normalized layer, de-fuzzy layer, and total output layer 

[13], [18], [20]. Each layer contains nodes with specific 

functions, as detailed below:  

Layer 1: This initial layer, designated as the fuzzy 

layer, features adjustable nodes represented by square 

symbols and labeled A1, A2, B1, and B2. These nodes 

correspond to the system's inputs, x and y. The labels 

A1, A2, B1, and B2 serve as linguistic descriptors 

utilized in fuzzy theory to delineate the membership 

functions (MFs). Within this layer, the node functions 

establish the membership relationship between the 

input and output functions, which can be expressed 

mathematically as: 

 

𝑂𝑗 = 𝜇𝐴𝑗(𝑥);       𝑗 = 1,2, …                                        (1) 

 

𝑂𝑖 = 𝜇𝐵𝑖(𝑦);       𝑖 = 1,2, …                                        (2) 

In this system, O1,i and O1,j represent the output 

functions, while μAi and μBj denote the corresponding 

membership functions (MFs). These MFs may take 

various forms, including triangular, trapezoidal, or 

Gaussian functions, among others. 

Layer 2: This layer, known as the product layer, 

consists of fixed nodes depicted as circles and labeled 

"Prod." This layer generates outputs w1 and w2, which 

serve as weight functions for the following layer. The 

output of each node in this layer, denoted as O2,i, is 

calculated by multiplying all incoming signals, as 

follows: 

 

𝑂2,𝑖 = 𝑤𝑖 =  𝜇𝐴𝑗(𝑥). 𝜇𝐵𝑖(𝑦);    𝑖 = 1,2, … ..                (3) 

 

The output signal from each node, wi, indicates the 

activation level of a rule. 

Layer 3: This is the normalization layer where each 

node is a fixed node, denoted by a circle node and 

marked as Norm. The nodes compute normalized 

activation levels by calculating the ratio of this node's 

activation strength to the total sum of all activation 

strengths. 
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𝑂3,𝑖 = 𝑤̅𝑖 =  
𝑤𝑖

𝑤1+𝑤2
;    𝑖 = 1,2, ….                                (4) 

 

Layer 4: This is the defuzzification layer containing 

adaptive nodes and indicated by square nodes. Each 

node i in this layer is an adaptive node with a node 

function: 

 

𝑂4,𝑖 = 𝑤̅𝑖𝑓𝑖 = 𝑤̅𝑖(𝑝𝑖𝑥 + 𝑞𝑖𝑦 + 𝑧𝑖)                              (5) 

 

Where 𝑤𝑖 represents the normalized firing strength 

output from layer 3 and pi, qi, and ri constitute the 

parameter set for this node. These parameters follow a 

linear pattern and are known as consequent parameters 

of this node. 

Layer 5: This layer contains one fixed node, indicated 

by a circle and labeled sum, which calculates the final 

output by adding all incoming signals together as: 

 

𝑂5,𝑖 = ∑ 𝑤̅𝑖𝑓𝑖𝑖 =
∑ 𝑤𝑖𝑓𝑖𝑖

∑ 𝑤𝑖𝑖
                                                (6) 

 

The quantity of fuzzy sets corresponds to the number of 

nodes present in the initial layer. Meanwhile, the 

dimensionality of layer 4 reflects the total number of 

fuzzy rules integrated into the framework, 

demonstrating the sophistication and adaptability of the 

ANFIS structure. When compared to neural networks, 

fuzzy rules can be viewed as analogous to neurons. 

An ANFIS system can undergo supervised training to 

progress from a given input toward a specific desired 

output. During the forward phase of the ANFIS hybrid 

algorithm, node outputs advance until layer four, and 

the consequent linear parameters (pi, qi, ri) are 

calculated using the least-squares approach with 

training datasets. During the backward phase, error 

signals travel in reverse, and the premise nonlinear 

parameters (Ai, Bi, Ci) are modified through gradient 

descent. Research has demonstrated that this hybrid 

methodology is remarkably effective in ANFIS training 

[9], [13], [18-19]. 

5 RESULTS AND DISCUSSION 

An ANFIS model was created for predicting the 

hardness of the rolled material based on the rotational 

speed of the rollers and the rolling temperature. The 

MATLAB program was used to develop the ANFIS 

model. To map the mentioned effective parameters to 

the material hardness and fuzzifying the inputs, 

Gaussian membership function was found to be the best 

fuzzifying function among the other membership 

functions.  

When compared with other methods, Gaussian family 

methods had the most accurate results. The Gaussian-

based membership function is defined by a central 

value m and a standard deviation k > 0 as illustrated 

below (“Fig. 5”): 

 

𝝁(𝒙) =  𝒆
−(𝒙−𝒎)𝟐

𝟐𝒌𝟐                                                                               
 

 

 
Fig. 5 Gaussian membership function. 

 

After selecting the membership functions, the ANFIS 

model structure was created based on the experiments 

and defined fuzzy sets. In the designed structure, the 

rotational speed (V) and the rolling temperature (T) are 

defined as input, and the Vickers hardness (VH) as 

output of the model. The input and outputs of the 

model are given in “Fig. 6”. 

In the developed model, five fuzzy sets were 

implemented to fuzzify the rolling parameters, 

corresponding to their five distinct levels. Given that 

the experimental design comprised 25 tests, a total of 

25 fuzzy sets were established for both rotational speed 

and temperature as the primary variables. The rule 

count was matched to the number of experiments, 

resulting in 25 fuzzy rules being formulated for the 

hardness prediction model. Following the model 

construction, the ANFIS model training was executed 

using MATLAB software, and the outcomes were 

generated according to the model specifications. The 

ANFIS model architecture for predicting the material 

hardness after rolling is illustrated in “Fig. 7”. 

 

 
Fig. 6 Inputs and outputs of the ANFIS system. 
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Fig. 7 The structure of ANFIS model. 

 

As was mentioned earlier, after the rolling process, the 

samples were cooled separately in two environments, 

including air and water and the hardness values were 

measured using a Vickers test hardness machine. Two 

different ANFIS models were designed for each of the 

environments, and the predicted results of the models 

for these environments were estimated.  
Graphical result of the ANFIS model was also created 

to evaluate the effects of the criterion variables. The 

effect of the rotational speed of the rollers and the 

rolling temperature on the hardness of the rolled 

samples is given in three-dimensional graphic in “Fig. 

8”. As is seen in the figure, both variables have a 

nonlinear effect on the material hardness. Figure 6 

shows the result of the model for air quenching. As is 

seen in the figure, by increasing the rotational speed, 

the hardness increases too. While by increasing the 

rolling temperature a dramatic decrease is happened in 

rolled material hardness values.  

 
Fig. 8 The effect of rotational speed of rollers and rolling 

temperature on the hardness using of ANFIS model (air 

quenching). 

 
Figure 9 shows the results of the model for water 

quenching. As is seen in the figure, by increasing both 

the rotational speed and the rolling temperature, the 

diagram shows an increase in rolled material hardness 

values. Moreover, by comparing the figures in air and 

water environments, it is found that the average 

hardness is higher in water quenching in relation to air 

quenching. 

 

 
Fig. 9 The effect of rotational speed of rollers and rolling 

temperature on the hardness using the ANFIS model (water 

quenching). 

 
The comparison diagram of the measured and 

estimated hardness is also conducted to obtain the R2 

values. Based on the comparison result, the R2 value of 

the model is 0.9983 for air quenching and is 0.9947 for 

water quenching. It again confirms the ANFIS model 

accuracy and its contribution to the reliable estimation 

of rolled material hardness. Figures 10 & 11 show the 

comparison diagram of the measured and estimated 

hardness for air and water quenching, respectively. 

In this research, the ANFIS method was used to predict 

the hardness, which, according to the authors of the 

paper, has not been previously reported in any research 

using this method. Given that the volume of 

experiments is usually low due to the high cost of 

rolling operations, compared to previous research done 

for similar cases using other methods, the 

aforementioned method has predicted the results with 

high accuracy by utilising the advantages of both fuzzy 

and neural models. 

 

 
Fig. 10 Comparison of the measured and estimated results 

(air quenching). 
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Fig. 11 Comparison of the measured and estimated results 

(water quenching). 

6 CONCLUSIONS 

This study investigated the impact of hot rolling 

process variables on the hardness properties of CK45 

steel after air and water quenching treatments. The 

investigation focused on two key rolling parameters—

temperature during rolling and the rollers' rotational 

velocity—as variables affecting material hardness. 

Multiple specimens underwent rolling processes at five 

distinct temperatures and five different roller speeds 

while maintaining consistent reduction ratios. 

Subsequently, the samples were rapidly cooled using 

ambient air and cold water, with hardness 

measurements obtained through specialized testing 

equipment. 

A predictive ANFIS framework was developed to 

forecast hardness values using operational parameters. 

The model incorporated temperature and rotational 

speed as input variables, while the measured hardness 

results from both air and water cooling served as output 

data. Analysis revealed that modifications to rolling 

parameters consistently produced noticeable alterations 

in the material's grain structure, consequently affecting 

mechanical characteristics, including specimen 

hardness. 

The ANFIS model's predicted outcomes were validated 

against actual hardness measurements from testing 

equipment. The comparative analysis demonstrated that 

the ANFIS system accurately forecasts hardness values, 

establishing it as a reliable methodology for predicting 

results across various rolling parameter ranges not 

directly tested in the experimental phase. 
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