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Finding the Most Efficient Unit in Data Envelopment Analysis 
In data envelopment analysis, identifying the most efficient decision-making unit (DMU) is crucial for 

gaining insights into efficient DMUs. Various approaches have been suggested in the literature to determine 

the most efficient DMU in data envelopment analysis. These approaches aim to develop a model with 

enhanced discriminatory ability among DMUs. This study introduces a new model based on a common set 

of weights approach using mixed integer linear programming to select the most efficient DMU. The 

proposed model ensures that the efficiency score of only one DMU (the most efficient) is strictly greater 

than one, while the efficiency scores of other DMUs are less than or equal to one. This model demonstrates 

a strong discriminatory capability, enabling the full ranking of all DMUs with fewer constraints than models 

that allow complete ranking. To validate the proposed model and compare its performance with recent 

approaches, two numerical examples from the literature are utilized. 

AMS Subject Classification: 90C08; 90C11 
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Introduction 

Charnes, Cooper [1] introduced data envelopment analysis (DEA), a mathematical 

approach to assess the relative efficiency of a homogeneous group of DMUs. DEA categorizes 

DMUs into efficient and inefficient groups. While it's not possible to rank efficient units solely 

based on their efficiency score of one, so several methods in the DEA literature have been explored 

for this purpose. These methods offer varied perspectives for ranking efficient units. Notable 

methods include cross-efficiency ranking methods [2-12], super efficiency ranking methods[11], 

the common set of weights (CWS) methods[13-21], benchmark ranking methods[22], the linear 

discriminant analysis[23], discriminant analysis of ratios[24-25].  

In some instances, the decision-maker has to choose just one DMU from a group of 

efficient DMUs, known as the most efficient DMU. This has led to various studies in DEA aiming 

to identify the most efficient unit. Karsak and Ahiska [12] introduced an integrated multi-criteria 

decision-making (MCDM) DEA model to evaluate the most efficient DMU in Advanced 

Manufacturing Technology (AMT). Amin, Toloo [26] developed an enhanced MCDM model to 

address convergence issues raised in [12]. Amin and Toloo [27] proposed an integrated DEA 

model for finding the most CCR-efficient. Toloo and Nalchigar [28] extended the model in [27] 

for selecting the most BCC-efficient DMU by solving only one linear programming. 

 Later, a new mixed integer nonlinear programming (MINLP) model was introduced by 

Amin [29] to overcome the drawback of determining more than one most efficient DMU by the 

model of Amin and Toloo [27]. While the model in [29] can identify the most optimal unit, it is 

nonlinear and consequently challenging to solve. Toloo, Sohrabi [30] researched data mining, 

where they discovered that determining the most pertinent association rule by taking various 

factors into account is a pivotal undertaking. They developed an algorithm for giving priority to 

association rules, albeit with certain shortcomings. This was subsequently enhanced by Toloo and 

Nalchigar [28] to address some of its limitations. 

Foroughi [31] proposed a new mixed integer linear programming (MILP) model to identify 

the most efficient DMU by maximizing the minimum possible distance between a chosen DMU 

and the next highest-ranked DMU. By removing additional constraints in Foroughi's model, Wang 
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and Jiang [32] proposed a new model to identify the most efficient DMU, which is less complex 

than Foroughi's model.  

Toloo [33] proposed a new MILP model to find the most efficient DMU without explicit 

input. Another model by Toloo [34] removes non-Archimedean epsilon, reducing computations 

needed, to identify the most efficient DMU while emphasizing epsilon selection. 

 Toloo [35] emphasized the crucial challenge of selecting and ranking suppliers accurately 

in the supply chain with imprecise data. Toloo [36] proposed a novel minimax MILP model that 

employs the CSW method to choose the most efficient DMU. 

Lam [37] proposed a MILP model similar to the super-efficiency model, aiming to directly 

identify the most efficient DMU. Salahi and Toloo [38] illustrated that Lam’s model may be 

infeasible, and they proposed a modified model to cope with this issue. Toloo [39] proposed a 

method for finding the most cost-efficient DMU by utilizing the proposed approach in [40] when 

the prices are fixed and known. Toloo and Salahi [41] developed a new two-step MINP model 

utilizing epsilon to identify a single efficient DMU with an efficiency score exceeding one. Both 

non-linear models of Toloo and Salahi [41] can be turned into linear models. Based on the 

proposed model in [41], Özsoy, Örkcü [42] presented a MINP without epsilon, streamlining the 

process to select the most efficient DMU. This model singles out one DMU as the most efficient 

with fewer constraints compared to [41]. 

Given the limitations of the existing proposed models, like non-linear nature, incomplete 

ranking, and two-stage process, this study presents a new MILP model, which selects the most 

efficient unit in a single step. The proposed model assigns an efficiency score greater than one for 

the most efficient DMU, while other DMUs have efficiency scores that are strictly less than or 

equal to one. This model has several computational advantages such as high discriminative power, 

fewer constraints, and greater simplicity compared to similar models. Furthermore, the model is 

compared with several recent models on two examples from the literature, demonstrating its high 

discrimination power and potential application in various real-world scenarios such as facility 

layout design in manufacturing systems and the banking industry. 

The following is an outline of the paper: Section 2 provides a brief overview of current 

models used to identify the most efficient DMU. In Section 3, an alternative MILP model is 

proposed to determine the most efficient DMU. Furthermore, Section 4 demonstrates the potential 

applications of the proposed MILP model through two numerical examples and its effectiveness 

in identifying the most efficient DMU. Finally, the paper concludes in Section 5. 

2. Preliminaries 

Throughout this paper, we assume that n homogeneous DMUs, ( 1,2,..., )jDMU j n= , 

which consume m various inputs, ( 1,2,..., )ijx i m= , to produce s different outputs,

( 1,2,..., )rjy r s= . Let ( 1,2,..., )iv i m= and ( 1,2,..., )ru r s= be the weights of ith input and rth 

output, respectively. The efficiency score of ( 1,2,..., )jDMU j n=  can be calculated 

mathematically as[43]:  
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Sueyoshi [22] proposed the following DEA model under constant return to scale (CRS) for 

estimating the best relative efficiency score of the DMU under evaluation, 
pDMU : 
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Let *( 1,2,..., )iv i m=  and *( 1,2,..., )ru r s=  be the optimal weights of ith input and rth output in 

model (1), respectively. If the 
pDMU  is CCR-efficient (

* 1pe = ), then
* *

1 1

0
s m

r rp i ip

r i

u y v x
= =

− =  ; 

otherwise there exists at least one other index  1,2,...,j n  such that 
* *

1 1

0
s m

r rj i ij

r i

u y v x
= =

− =  .  

Definition 1. If there is a common set of optimal weights, ( )* *( 1, 2,..., ), ( 1, 2,..., ) 0r ir s i m= = u v

, such that 
* *

1 1

0
s m

r rp i ip

r i

u y v x
= =

− =   and moreover 
* *

1 1

0,
s m

r rj i ij

r i

u y v x j p
= =

−    , then 
pDMU  is 

called the most (best) efficient unit[36]. 

In the following, we will review some well-known existing models in the literature for 

finding the most efficient DMU.Wang and Jiang [32] proposed the following MILP model for 

finding the most CCR-efficient DMU under CRS. 
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Where 1(( ) max{ })u

r rj
j

l m s y −= + and 1(( ) max{ })v

i ij
j

l m s x −= +  lower bounds borrowed from 

model (1). Model (2) is feasible and aims to maximize the overall efficiency of all of the DMUs. In 

this model, 
pDMU  is determined as the most efficient DMU if and only if

* 1p = . 

Toloo [36] proposed the following minimax model for finding the most efficient DMU 

under CRS. 
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The model (3) is always feasible and the optimal objective value of model (3) is bounded. This 

model determines 
pDMU  as the most efficient DMU if 

* 0pd = ; in this case, 
pDMU  has the 

highest efficiency score that can be greater than 1, whereas those of the other DMUs are bounded 

by 1.  

Lam [37] introduced a MILP model for selecting the most efficient unit that has an objective 

similar to that of the super-efficiency model in DEA. 
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where M is a large number. In model (4), it is assumed that all inputs and outputs are strictly 

positive. This model aims to maximize h, which is the difference between the weighted sums of 

the outputs and inputs of the chosen DMU (most efficient DMU). The most efficient DMU (
* 1pI =

) is the DMU with the highest efficiency score, and its efficiency score can be greater than 1, while 

the scores of other DMUs are bounded by 1.   In this model, 
* is the maximum non-

Archimedean[44]. 

Toloo and Salahi [41] suggested a MINP model for selecting the best DMU with two steps as 

follows:  
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where M is a large positive number. Toloo and Salahi [41] revealed that the minimum possible 

interval between the first two top-ranking DMUs is [−h*, h*]. They also proved that h* is strictly 

positive. As per model (5), only one DMU can be identified as the most efficient DMU (
* 1pI = ). 

* in model (5) can be obtained through the following model in the second step of Toloo and 

Salahi's procedure. 
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Toloo and Salahi [41] introduced a continuous variable jz  to replace jhI in models (5-6) and by 

adding the following constraints to model (5-6), transformed these models to MILP models. 
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Inspired by the work of Toloo and Salahi (2,018), Özsoy, Örkcü [42] proposed a MINP model 

without epsilon to choose the most efficient DMU as follows:  
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The structure of model )7( is similar to model )5(, but it does not require calculating epsilon. 

 

 

3. The proposed model 

Inspired by the model (2), we propose the following model for determining the most efficient 

DMU: 
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Where M is a large positive number and ( 1,2,..., )j j n = are binary variables, only one of which 

can take a nonzero value of one. Constraints ( 1,2,..., )u

r ru l r s = and ( 1,2,..., )v

i iv l i m = are 

borrowed from (2) and have been extensively applied in DEA practice. 
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Which (10) allows the efficiency of 
pDMU to be larger than one, while (11) guarantee that the 

efficiencies of the other DMUs to be less than or equal one. So, only the most efficient DMU can 

have an efficiency score of over one( 1p = ).The objective function in model (8) aims to maximize 

the distance between the efficiency score of the most efficient DMU and other DMUs. This 

minimizes the probability of other decision-making units having an efficiency score of 1, leading 

to a complete ranking of the units in a single step with fewer restrictions compared to other models. 
Table 1 compares models (2-5), (7) and the proposed model based on the number of constraints, 

complete ranking ability and the number of steps of each model. 

 
Table1: Comparison of models based on structure and ability 

 Model 2 Model 3 Model 4 Model 5 Model 7 Proposed model 

Number of constraints n+1 2n+2 3n+1 5n+1 5n+1 4n+1 

Full rank ability × × × ✓ ✓ ✓ 

Number of steps 1 1 2 2 1 1 

 

As can be seen in table1, the proposed model is one-step model that has enabling the full ranking 

of all DMUs, and has fewer constraints than models with full ranking. 

Theorem1. Model (8) always has a feasible solution. 
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Proof. Let ( )ˆˆ ˆ, ,u v  be an optimal solution to model (2). Note that Wang and Jiang [32] proved 

that such a solution exists. Toloo [36] proved that in optimality there exists an index k such that
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Theorem 2. The optimal objective value of model (8) is bounded. 

Proof. Let ( ), , ,u v s be any arbitrarily feasible solution to model (8). From the constraints of this 

model, we have: 
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(12) and (13) show that objective function of model (8) has lower and upper bounds for any 

feasible solution. Proof completed. 
4. Numerical examples 

The numerical examples below use models (2), (3), (7), and (8) to find the most efficient DMU. 

These datasets are sourced from prior research in the DEA literature, and the source is mentioned 

in each case. 

Example 1. In this example, 19 facility layout plans (FLDs), including two inputs and four outputs 

in manufacturing systems, are considered to evaluate efficiency. Data retrieved from [36]is shown 

in Table 1. 

Inputs: x1= material handling cost, x2 = adjacency score. 

Outputs: y1 = sharpe ratio, y2 = flexibility,y3 = quality, y4 = hand-carry utility. 
Table 1: Data set for 19 FLDs. 

DMUs x1 x2 y1 y2 y3 y4 

FLD1 20,309.56 6,405 0.4697 0.0113 0.041 30.89 

FLD2 20,411.22 5,393 0.438 0.0337 0.0484 31.34 

FLD3 20,280.28 5,294 0.4392 0.0308 0.0653 30.26 

FLD4 20,053.2 4,450 0.3776 0.0245 0.0638 28.03 

FLD5 19,998.75 4,370 0.3526 0.0856 0.0484 25.43 

FLD6 20,193.68 4,393 0.3674 0.0717 0.0361 29.11 

FLD7 19,779.73 2,862 0.2854 0.0245 0.0846 25.29 

FLD8 19,831 5,473 0.4398 0.0113 0.0125 24.8 

FLD9 19,608.43 5,161 0.2868 0.0674 0.0724 24.45 

FLD10 20,038.1 6,078 0.6624 0.0856 0.0653 26.45 

FLD11 20,330.68 4,516 0.3437 0.0856 0.0638 29.46 

FLD12 20,155.09 3,702 0.3526 0.0856 0.0846 28.07 

FLD13 19,641.86 5,726 0.269 0.0337 0.0361 24.58 

FLD14 20,575.67 4,639 0.3441 0.0856 0.0638 32.2 

FLD15 20,687.5 5,646 0.4326 0.0337 0.0452 33.21 

FLD16 20,779.75 5,507 0.3312 0.0856 0.0653 33.6 

FLD17 19,853.38 3,912 0.2847 0.0245 0.0638 31.29 

FLD18 19,853.38 5,974 0.4398 0.0337 0.0179 25.12 

FLD19 20,355 17,402 0.4421 0.0856 0.0217 30.02 
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Table 2 displays the optimal solution obtained by solving model (8) with 100M = . Since *

10 1 = , 

thus FLD10 is identified as the most efficient FLD by model(8). 

 
Table 2: Results of the model (8) in Example 1. 

* *

1 2

* * * *

1 2 3 4

* *

10 10

v = 0.00873230639680301, v =9.57744320576179e-06, 

u =265.112513351513, u =1.94704049844237, u = 1.97005516154452,u = 0.00496031746031746,

1, 0( 10), 4.64050997732481e-14j j s = =  =

 

 

Table 3 shows the outcomes of models (1), (2), (3), (7), and (8) in Example 1. The highest 

efficiency scores achieved by the various models are highlighted in bold. The numbers in 

parentheses alongside the efficiency scores denote the FLDs rankings. The results of model 1 

(CCR model) indicates that nine FLDs are efficient.  The results from models (2), (3), (7), and (8) 

indicate that FLD10 is the most efficient FLD. Models (8), just like models (2), (3), and (7), allow 

the efficiency score of one DMU to exceed one (the most efficient DMU), while the efficiency 

scores of the other DMUs remain less than or equal to one. Models (2) cannot fully distinguish 

between the DMUs. In model (2), both FLD3 and FLD12 have the same rank value. However, 

models (3), (5), and (8) are capable of ranking all DMUs effectively. It's worth noting that FLD13 

is identified as the worst unit in all models. 

 

Table 3: Efficiency of FLDs by different models Example 1. 

DMUs CCR 

Wang and  

Jiang (2,012)- 

Model(2) 

Toloo (2,015) 

-Model(3) 

Özsoy et al. (2,021) 

-Model(7) 

Proposed model 

-Model(8) 

FLD1 0.984592 (13) 0.964891 (5) 0.734523 (16) 0.761219 (7) 0.703336(2) 

FLD2 0.988393 (12) 0.971531 (4) 0.804572 (10) 0.761527 (6) 0.653074(7) 

FLD3 0.997428 (11) 1 (2) 0.844136 (7) 0.770702 (3) 0.659215(6) 

FLD4 0.949290 (15) 0.894522 (14) 0.774063 (12) 0.673692 (15) 0.57332(9) 

FLD5 1 (1) 0.925330 (9) 0.870627 (6) 0.751551 (8) 0.537374(11) 

FLD6 0.973342 (14) 0.910794 (13) 0.825097 (9) 0.734339 (10) 0.554245(10) 

FLD7 1 (1) 0.790849 (17) 0.76786 (13) 0.552031 (17) 0.439958(17) 

FLD8 0.856831 (17) 0.868210 (15) 0.60761 (18) 0.723427 (13) 0.674081(3) 

FLD9 0.889201 (16) 0.834482 (16) 0.833446 (8) 0.630595 (16) 0.446235(16) 

FLD10 1 (1) 1.440321 (1) 1.149501 (1) 1.230623 (1) 1.005713(1) 

FLD11 0.998328 (10) 0.940190 (8) 0.922867 (4) 0.732256 (11) 0.515594(13) 

FLD12 1 (1) 1 (2) 1 (2) 0.766601 (5) 0.533705(12) 

FLD13 0.775852 (19) 0.675683 (19) 0.605774 (19) 0.513299 (19) 0.417161(19) 

FLD14 1 (1) 0.941034 (7) 0.931165 (3) 0.723855 (12) 0.510119(14) 

FLD15 1 (1) 0.951281 (6) 0.791951 (11) 0.740819 (9) 0.63644(8) 

FLD16 1 (1) 0.913958 (11) 0.915848 (5) 0.693781 (14) 0.4863(15) 

FLD17 1 (1) 0.769322 (18) 0.735705 (15) 0.534852 (18) 0.437167(18) 

FLD18 0.851718 (18) 0.913731 (12) 0.685373 (17) 0.767148 (4) 0.673624(4) 

FLD19 1 (1) 0.923829 (10) 0.745818 (14) 0.790033 (2) 0.660799(5) 

SUM  17.879452 16.491435 16.491435 11.11746 
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Fig. 1 provides an illustrative comparison between the results of models (2), (3), (7), and (8) in 

example 1 according to efficiency scores that are shown in Table 2. 
 

 
Fig.1. Illustrative comparison between the ranking results of different models in Example 1. 

 

 

 

 

 

 

 

 

 

 

 

The rank 

correlation coefficient can be used to evaluate the significance of the relationship between the 

models mentioned previously. Kendall and Spearman are two commonly used nonparametric 

methods that use rank correlation. We use these methods to determine the strength of the 

relationship between the rankings of models (2), (3), (7), and (8). Correlation values for Spearman 

and Kendall methods are shown in Table 4. Values above and below the diagonal indicate rank 

coefficients for Spearman and Kendall, respectively. The p-value for the correlation test is shown 

in parentheses below the correlation value. Table 4 shows a positive correlation between the 

proposed model ( model (8)), and model (7). The proposed model has fewer constraints than model 

(7) and  can be solved through one-step linear programming. Also, unlike model  )2(, model )8( 

ranks all FLDs completely. 

  

Table4: Ranking models correlation test in example 1. 

  Spearmen 

      
Wang and Jiang 

 (2,012)- 

Model(2) 

Toloo (2,015) 

-Model(3) 

Özsoy et al. (2,021) 

-model(7) 

proposed model 

-model(8) 

K
en

d
a

ll
 

Wang and Jiang 

 (2,012)-Model(2) 

Correlation 1 0.6105 0.8175 0.5789 

p-value  (0.0065) (0.0000) (0.0107) 

Toloo (2,015) 

-Model(3) 

Correlation 0.4854 1 0.3175 -0.0667 

p-value (0.0032)  (0.1850) (0.7868) 

Özsoy et al. (2,021)- 

Model(7) 

Correlation 0.7076 0.2398 1 0.7825 

p-value (0.0000) (0.1637)  (0.0001) 

Proposed model- 

Model(8) 

Correlation 0.4386 -0.0760 0.6608 1 

p-value (0.0083) (0.6787) (0.0000)  
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Example 2. As the second example, we use a real data set of 14 Czech Republic banks, adapted 

from [45]. Table 5 indicates the inputs and outputs of banks that are described below: 

Inputs: X1 =number of employees, X2 =number of branches, X3 =assets, X4 =equity, X5 =expenses 

Outputs: Y1 =deposits, Y2 = loans, Y3 = non-interest income, Y4 = interest income.  

 

Table 5: Inputs and Outputs of 14 branches.  
DMUs X1 X2 X3 X4 X5 Y1 Y2 Y3 Y4 

AIR 400 18 33,600 2,596 745 30,696 11,135 14 554 

CMZRB 217 5 111,706 4,958 566 86,967 16,813 634 1,700 

CS 10,760 658 920,403 93,190 18,259 629,622 479,516 8,747 32,697 

CSOB 7,801 322 937,174 73,930 16,087 629,622 479,516 8,747 32,697 

EQB 296 13 8,985 1,296 601 7,502 5,611 19 215 

ERB 72 1 33,614 464 173 2,940 1,762 15 131 

FIO 59 36 18,561 726 347 17,174 6,465 211 536 

GEMB 3,346 260 135,474 34,486 5,276 97,063 101,898 3,943 11,026 

ING 293 10 128,425 913 1,034 92,579 19,216 468 5,139 

JTB 407 3 85,087 7,233 1,333 62,085 39,330 487 3,686 

KB 8,758 399 786,836 100,577 13,511 579,067 451,547 8,834 35,972 

LBBW 365 18 31,300 2,774 1,138 20,274 2,528 128 1,046 

RB 2,927 125 197,628 18,151 57,112 144,143 150,138 2,829 8,563 

UCB 2,004 98 318,909 38,937 13,804 195,120 192,046 2,740 8,891 

 

Utilizing model (8) with the data set presented in Table 5, we arrive at the optimal solution(

500M = ) in Table 6. Since *

10 1 = , thus  JTB bank is recognized as the most efficient bank by 

model (8). 

 
Table 6: Results of the model (8) in Example 2. 

* * * *

1 2 3 4

*

5

* * * *

1 2 3 4

v = 1.03263114415531e-05, v =8.62395716185947, v =0.00839407430091381, v 0.0239030938097463,

v 0.018156388032191,

u = 1.6135236516751e-07, u =0.0119879515784093, u = 0.404132740901498,u = 0.08

=

=

* * *

10 10

92887795654194,

1, 0( 10),  -59.231022328601j j s = =  =

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7: Efficiency of bank branches by different models in example 2. 

DMUs 
CCR 

Model(1) 

Wang and 

Jiang (2,012)- 

Model(2) 

Toloo (2,015)-

Model(3) 

Özsoy et al. (2,021)- 

Model(7) 

Proposed 

model-Model(8) 

AIR 1(1) 0.797188(11) 0.573436(11) 0.385261(12) 0.367774(12) 

CMZRB 1(1) 1(2) 0.759709(10) 0.679386(9) 0.549378(9) 

CS 1(1) 1.13391(1) 1.098292(1) 0.990725(2) 0.968671(2) 

CSOB 1(1) 1(2) 1(2) 0.974095(4) 0.960639(3) 

EQB 1(1) 0.618833(12) 0.522892(12) 0.352771(13) 0.410334(11) 

ERB 0.473757(14) 0.131031(14) 0.13181(14) 0.136019(14) 0.127476(14) 

FIO 1(1) 1(2) 0.859853(8) 0.540581(10) 0.429939(10) 

GEMB 1(1) 1(2) 1(2) 0.92167(6) 0.883709(6) 

ING 1(1) 0.943912(9) 0.773142(9) 0.874328(8) 0.729025(8) 

JTB 1(1) 1(2) 0.977494(5) 1.165441(1) 1.064267(1) 

KB 1(1) 1(2) 0.985409(4) 0.988263(3) 0.960615(4) 

LBBW 0.824637(13) 0.604593(13) 0.415037(13) 0.410718(11) 0.347436(13) 

RB 1(1) 1(2) 0.929992(7) 0.917785(7) 0.881171(7) 

UCB 1(1) 0.906461(10) 0.940065(6) 0.965502(5) 0.893695(5) 

SUM  12.135928 10.967131 10.302545 9.574129 
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Table 7 presents the results of models (1), (2), (3), (7) and (8) respectively. The results show that 

out of 14 branches, 12 are efficient. Models (2) and (3) identify CS bank as the most efficient bank, 

while models (7) and (8) select Bank JTB as the most efficient bank. Furthermore, all models agree 

that the ERB bank is the worst bank. It's important to note that models (2) and (3) do not fully rank 

all banks, while models (7) and (8) do. Among these models, (8) has a simpler structure than 

models (7) in terms of constraints.  

Figure 2 shows the rank of each bank based on the efficiency score of models (2), (3), (7), and (8) 

in example 2. 

 

 
Fig.2. Illustrative comparison between the ranking results of different models in Example 2. 

 

In table 8, we emphasized the coefficients of Spearman and Kendall. The findings indicated a 

positive relationship between between model (8) with models (2),(3) and (7). Data in Table 8 

shows a strong correlation between model (8) and model (7). For the model (8) and model (7), the 

Spearman and Kendall's rank correlation coefficients are 0.978022 and 0.912087912 respectively. 

The proposed model with fewer constraints has completely ranked the banks in one step. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table8: Ranking models correlation test in example 2. 

  Spearmen 

      
Wang and 

Jiang (2,012)-

Model(2) 

Toloo (2,015)-

Model(3) 

Özsoy et al. 

(2,021)-

model(7) 

proposed 

model-

model(8) 

K
en

d
a

ll
 

Wang and Jiang 

 (2,012)-Model(2) 

Correlation 1 0.736264 0.661538 0.696703 

p-value  
)0.003819 ( )0.012187 ( )0.007343 ( 

Toloo (2,015) 

-Model(3) 

Correlation 0.604395604 1 0.894505 0.907692 

p-value ( 0.001957077)  )0 ( )0 ( 

Özsoy et al. (2,021)- 

Model(7) 

Correlation 0.516483516 0.736263736 1 0.978022 

p-value ( 0.009753043) ( 7.72E-05)  )0 ( 

Proposed model-

Model(8) 

Correlation 0.56043956 0.78021978 0.912087912 1 

p-value ( 0.004565983) ( 1.92E-05) ( 5.18E-08)  
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5. Conclusion 
In this paper, we have proposed a new MILP model based on a common weight set for identifying 

the most efficient DMU. In the proposed model, the most efficient unit has an efficiency score 

greater than one, and other DMUs have efficiency scores less than or equal to one. In this model, 

the distance between the efficiency score of the most efficient unit and other units is enough to 

allow for a complete ranking. The proposed model has fewer constraints than some models with 

full ranking and is solved in one step. Two real examples with known ranks cited in the literature 

were selected to ensure the validity of the proposed model. The results illustrated that the proposed 

model has high discrimination power. Further important future research directions would be 

considering the effect of selecting a value for M on the finding of the most efficient DMU and 

incorporating negative data in the model. 
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