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Figure 1. Geographical location: West Azerbaijan Province; Urmia County; Urmia City; Urmia urban air
quality monitoring station and Urmia Airport meteorological station
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Fig 5- Scatter plot of observed and modeled SO: values using the XGBoost algorithm: (a) Train data; and (b)
Test data.
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Fig 6- Residual error plot of the XGBoost model: (a) Train data; and (b) Test data.
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Table 3- Performance evaluation of machine learning algorithms without applying meteorological parameters.
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Abstract

Air pollution, as one of the main environmental
challenges, has significant adverse effects on public
health and quality of life. Sulfur dioxide (SO;), one
of the criteria pollutants of ambient air quality, not
only causes harmful impacts on human health but
also contributes to global phenomena such as acid
rain. This study aims to monitor and analyze SO,
concentrations in Urmia city using data from the
TROPOMI sensor onboard the Sentinel-5P satellite,
combined with ground-level data and machine
learning algorithms. The research employed
advanced machine learning techniques to develop
models. Data were collected during the period 2019
to 2023, preprocessed, and analyzed using
performance indicators such as the coefficient of
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determination (R?) and root mean square error
(RMSE). The results revealed that integrating
ground-based and satellite data, alongside
meteorological parameters such as air temperature,
relative humidity, evapotranspiration, wet-bulb
temperature, cloud cover, and atmospheric pressure
at station height, significantly improved the
performance of the models. The XGBoost
algorithm, with R? of 0.89 and RMSE of 0.57 ppb,
was identified as the best-performing model.
Analyses excluding meteorological parameters
showed a substantial decrease in model accuracy
(i.e., the XGBoost model performance without
meteorological  parameters demonstrated a
significant degradation, with R dropping to 0.38
and RMSE increasing to 0.75 ppb), highlighting the
critical importance of these variables. Satellite data
demonstrated their potential to play a key role in
bridging information gaps caused by the limitations
of ground-based stations. Moreover, combining
modern technologies with environmental data can
contribute to more accurate pollutant identification,
improve air quality, and serve as a model for other
cities in Iran and developing countries.

Extended Abstract

Introduction: Air pollution is considered one of the

most  significant  environmental  challenges
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worldwide, with far-reaching impacts on public
health, ecosystems, and the economy. This issue is
particularly pronounced in urban areas with high
population density or industrial activities. Air
pollution leads to respiratory problems,
cardiovascular diseases, and various disorders in the
functioning of vital human body systems. Among
the various pollutants, sulfur dioxide (SO,) is
recognized as one of the primary pollutants due to
its prominent role in causing respiratory diseases,
producing acid rain, and negatively affecting air
quality. Additionally, this pollutant can impact soil
quality and water resources, disrupting natural
ecosystem cycles. This study aims to accurately
investigate SO, concentrations in Urmia city using
data from the Sentinel-5P satellite, integrated with
advanced machine learning methods.

Problem Statement: In many developing regions,
such as Urmia, there are significant limitations in
providing accurate and continuous air quality data.
The lack of ground-based monitoring stations and
deficiencies in recording essential data are major
challenges in analyzing pollution trends and
identifying influencing factors. These limitations
create information gaps in air quality management
and in developing practical pollution reduction
programs. In such circumstances, adopting
innovative methods to address these deficiencies is
essential. Satellite data, particularly TROPOMI data
with high temporal and spatial resolution, can serve
as an effective solution. These data offer
comprehensive  information on the spatial
distribution of pollutants, enabling more robust
analysis of emission patterns and temporal
variations.  Additionally, correlation analysis
between satellite and ground-based data enhances
understanding of spatial and temporal pollutant
distributions. This study combines these data
sources with machine learning algorithms to
propose practical and scientifically sound solutions
for improved air quality management.

Objectives: This study aims to utilize satellite data
in combination with ground-based data to achieve a

more accurate analysis of SO, concentrations and
identify the meteorological factors influencing
them. One primary objective is to provide a
comprehensive and reliable model for managing
SO, concentrations in urban areas with similar
limitations as Urmia. Additionally, using advanced
machine learning algorithms, this research seeks to

uncover complex relationships between
meteorological variables and pollutant
concentrations. Specifically, it examines the impact
of air  temperature, relative humidity,

evapotranspiration, wet-bulb temperature, cloud
cover, and atmospheric pressure at station height.
Another goal is to propose strategies for improving
air quality management using advanced data
analysis techniques.

Methodology: Satellite-based SO, data from
Sentinel-5P were extracted using Google Earth
Engine (GEE). These were integrated with ground-
based monitoring information from air quality
stations (SO, and other pollutants), and
meteorological data as described above. Data
preprocessing included outlier removal using Z-
score (data with Z > 3 or Z < -3 were excluded).
Several machine learning algorithms, including
Decision Tree, Random Forest, Extra Trees,
Gradient Boosting, XGBoost, CatBoost, and
AdaBoost, were employed. 80% of data were
allocated for training and 20% for testing. Model
performance was evaluated using R? and RMSE. To
assess meteorological influence, correlation
coefficients between each input and SO;
concentration were analyzed. Model performances
were then compared, and recommendations
provided.

Results and Discussion: Integrating satellite and
ground-based data significantly enhanced the
accuracy of SO, concentration modeling. Advanced
machine learning algorithms identified complex
variable relationships. Excluding meteorological
parameters caused substantial accuracy reductions,
demonstrating their essential role. Satellite data
proved effective as a complementary or alternative
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source in regions lacking monitoring stations. High-
resolution data, particularly during critical times
and locations, improved model accuracy. The
modeling results revealed that the influence of
meteorological variables on SO, concentration
varies with time and conditions, indicating the need
for further detailed analyses in future studies.

Conclusion: Integrating satellite and ground-based
data with advanced machine learning algorithms
provides a powerful tool for air quality analysis and
management. This approach can serve as a model
for other Iranian cities and developing countries.
Findings contribute to environmental planning,
mitigate pollution effects on public health, and
improve urban quality of life. In areas with limited
ground data access, this method delivers

comprehensive and accurate information. Using
satellite data with meteorological variables
uncovers new dimensions in air quality analysis.
Specifically, this approach is suitable for long-term
pollution trend analysis and designing pollution
mitigation policies. Emphasizing high-resolution
data and advanced techniques underscores the
capacity of these methods to address complex
environmental issues.

Keywords: Ambient air pollution, SO,, Sentinel-
5P, Machine Learning Algorithms, Urmia,
Meteorological Parameters.
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