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Abstract

Introduction: The issue of land use changes and their detection, as
well as the effects they have on cities and their surrounding
environments, has become an important and practical topic, and the
use and creation of various up-to-date methods and models to study
this issue have become an important matter. In this regard, remote
sensing data, by providing up-to-date and reliable information on the
status of land cover, are a suitable tool for preparing land cover and
use maps.

Methods: In this study, the catchment area of the Neyshabur Plain
which is a part of the catchment area of the central desert of Iran is
considered. Envi 5.6 and ArcMap 10.7 software were used to process,
analyze, and retrieve satellite data, and Qgis 3.16 software was used
to finalize thematic maps. It should be noted that in this study, the
Google Earth Engine, which is known as the most powerful system
for processing satellite image time series in remote sensing, was also
used.

Findings: According to the results of the error matrix obtained, it
was found that the neural network method with an overall accuracy
of 83.35 and a kappa coefficient of 0.79 for the year 2013, the
maximum likelihood method with an overall accuracy of 81.92 and a
kappa coefficient of 0.78 for the year 2019, and a neural network
with an overall accuracy of 36.79 and a kappa coefficient of 0.75 for
the year 2021, have more favorable performance and accuracy for
preparing land use maps than other methods.
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Extended Abstract

Introduction

In general, the phenomena and features of
the Earth's surface are called land cover, all
activities that humans perform on Earth are
called land use, and maps that represent
such activities on Earth's surface are called
land use maps.

Land cover and land-use change are
important issues that have significant
impacts on the environment and its
processes. Access to up-to-date and accurate
land cover and use data through satellite
imagery provides an excellent opportunity
to identify, monitor, and model future
changes.

Research has shown that changes in land
cover and use caused by human
interventions, such as deforestation, arable
farming, and urbanization, can have
irreversible effects on ecosystems and the
environment (1). Detecting these changes is
important for monitoring the dynamics of
different land cover types and land uses in
the future.

By assessing land use changes, it is possible
to plan and manage land to reduce
destructive effects using remote sensing
technology at large scales with high accuracy
and low cost.

Geographic Information Systems (GIS) and
Remote Sensing (RS) are powerful and cost-
effective tools for assessing spatial and
temporal changes in land cover and use (2).
Remote sensing data are the most common
source for detecting, quantifying, and
revealing patterns of land cover and use
because they collect data at regular intervals
and are suitable for accurate geographic
processing and geo-referencing (3).

Materials and Methods

The catchment area of the Neyshabur Plain
is part of the catchment area of the central
desert of Iran and is located in the northeast.
This basin has a total area of approximately
7200 square kilometers, of which
approximately 4300 square kilometers are
plains and the rest are highlands (Fig
2).Neyshabur Plain is one of the most
important plains of Razavi Khorasan
Province in terms of agricultural

productivity and population density. In the
climatic divisions of the country, Neyshabur
is part of the central plateau and semi-desert
climate; in terms of rainfall, it is considered
adry area

In this study, to identify the maximum
changes that occurred in the land cover of
the region, in the period of 9 years from 2013
to 2021, 3 years, wet (2019), dry (2021), and
normal (2013) were specified according to
the amount of annual precipitation obtained
from the weather station, as well as the SPI
standardized rainfall index for the 12-month
period from 1982 to 2022, using the CHIRPS
rainfall satellite data, which was calculated
in the GEE.

Three different machine learning
approaches, ie. minimum distance,
maximum likelihood, and neural network
have been used and the results are
compared.

Findings

The performance of all the aforementioned
methods was evaluated according to the
results of various parameters in the
generated error matrix, and it was found
that the minimum distance method could
not perform well in any of the studied years.
In contrast, other algorithms based on their
different inputs have been able to produce
classification maps with desirable accuracy
for each LULC in each year. The performance
results of all methods used in this study are
shown in Figs 10,11,12 and 13.

Based on the results obtained, it was
determined that the minimum distance
algorithm was unable to produce
classification maps with the desired
accuracy and precision in any of the years,
while the two other methods perform better
and give satisfactory results.

Discussion

Three various machine learning methods
were employed in this study for land use
classification of the Neyshabur Plain in Iran.
In comparison, classification methods
showed acceptable but different
performance in each year, both in general
and in terms of the ability of each method to
separate land uses with different spectral
behaviors. In 2019, the maximum likelihood
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algorithm, and in 2013 and 2021, the neural
network algorithm achieved the best results.
It is worth mentioning that according to the
numbers and various statistical parameters,
the error matrix is expressed as outputs that
indicate the accuracy of the classified maps;
however, by obtaining good results, one
cannot expect to produce a completely
accurate and correct classification map,
since the matrix of errors is not able to show
part of the errors in the classified maps.
Sufficient and suitable knowledge of the user
in the study area should be considered to
ensure the accuracy and correct distribution
of different LULC classes

Conclusion

In this study, by taking advantage of the very
high processing capabilities of the Earth
Engine system in retrieving and processing
satellite images, an attempt was made to
examine changes in land cover and land use
in Neyshabur city using different methods.
In this study, an attempt was made to show
the maximum amount of change that
occurred in the land cover level in the 3-year
study period, wet, dry, and normal, based on
annual precipitation information, and the
images related to these dates were selected,
processed, and analyzed.

Based on the results obtained, it was
determined that the minimum distance
algorithm was not able to produce
classification maps with the desired
accuracy and precision in any of the years.
In comparison, other classification methods
have shown acceptable but different
performance in each year, both in general
and in terms of the ability of each method to
separate land uses with different spectral
behaviors. In 2019, the maximum likelihood
algorithm, and in 2013 and 2021, the neural
network algorithm achieved the best results.
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