Journal of Optimization in Soft Computing (JOSC)

Vol. 2, Issue 4, pp: (1-15), Winter-2024
Journal homepage: https://sanad.iau.ir/journal/josc

Paper Type (Research paper)

Real-Time Scalable Task Offloading in Edge Computing Using Semi-
Markov Decision Processes and Attention-Based Deep Reinforcement

Learning

Abbas Mirzaei®, Naser Mikaeilvand?, Babak Nouri-Moghaddam?, Sajjad Jahanbakhsh Gudakahriz?,
Ailin Khosravani!, Fatemeh Tahmasebizade!, Ali Seifi!, Hosein Hatami

1. Department of Computer Engineering, Ardabil Branch, Islamic Azad University, Ardabil, Iran
2. Department of Computer Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
3. Department of Computer Engineering, Germi Branch, Islamic Azad University, Germi, Iran

Article Info

Avrticle History:
Received: 2024/11/28
Revised: 2025/01/05
Accepted: 2025/02/02

DOI:

Abstract

Keywords:

Edge Computing; Task
Scheduling; Reinforcement
Learning; System Scalability.

*Corresponding Author’s Email
Address:
mirzaei_class_87@yahoo.com

Edge computing has emerged as a dynamic framework where
computational tasks are offloaded to distributed edge servers (ESs) to
provide low-latency and efficient services. As edge systems grow in
scale and complexity, leveraging Deep Reinforcement Learning (DRL)
has become a prominent approach to optimize task offloading and
Resource management. However, traditional DRL-based
methodologies encounter several challenges: (1) Discrete-time
decision frameworks, such as Markov Decision Processes (MDPs),
often enforce offloading in fixed timeslots, leading to scheduling
delays and inefficient Resource utilization. (2) Static computational
structures struggle to adapt to varying numbers of edge servers or user
devices, resulting in scalability issues and system inefficiencies. To
overcome these limitations, we introduce a novel DRL-driven real-time
offloading mechanism tailored for dynamic and scalable edge
environments. Our approach reformulates the offloading problem
within a Semi-Markov Decision Process (SMDP) framework and
introduces an adaptive optimization mechanism utilizing attention-
based graph operations for heterogeneous Resource environments. This
system, like how we prioritize tasks and divide resources, figures out
how much attention to pay to each task and which server should handle
it, to make things work smoothly. To make this work even better in the
real world, we use a special method to adjust the rewards, which helps
the system learn and improve its performance over time

1. Introduction

The rapid expansion of mobile networks and the
proliferation of connected devices have
transformed modern computing environments.
From autonomous vehicles to immersive
augmented reality applications, the demand for
high-speed, low-latency services has surged.
Traditional cloud computing architectures, despite
their powerful centralized Resources, often fall
short in meeting these latency-sensitive
requirements due to long transmission distances
and centralized processing bottlenecks [1]-[5]. This

gap has driven the evolution of edge computing,
which brings computation and storage closer to
end-users by deploying edge servers (ESs) within
the network's proximity. Within this paradigm,
tasks may be executed locally or offloaded to
nearby ESs. While ESs are equipped with more
robust computational capabilities compared to
UDs, the process of uploading tasks to ESs
introduces additional energy consumption and
latency. Moreover, the computational capacity of
ESs remains constrained compared to centralized

A. Mirzaei et al. / Journal of Optimization of Soft Computing (JOSC), 2(4): 1-15, 2024

cloud servers, making them unsuitable for handling
large volumes of concurrent tasks. Resource
contention among multiple tasks can degrade
system performance and quality of service (QoS)
[6], [7]. Consequently, devising an efficient
scheduling mechanism for task offloading has
become critical. Such mechanisms aim to optimize
the selection of offloading targets and Resource
allocation strategies [8], often framed as mixed-
integer nonlinear programming (MINLP)
problems, which are known to be NP-hard [9].

Initially, mathematical approaches [10] were
developed to solve these optimization problems.
However, these model-based methods struggle
with generalization across diverse edge systems
characterized by heterogeneous transmission
technologies, application requirements, and
computational Resources. To address this
limitation, model-free metaheuristic algorithms
[11, 12] were introduced for task offloading.
Despite their flexibility, these algorithms face
significant challenges, including large search
spaces and poor adaptability to dynamic edge
environments. In recent years, Deep
Reinforcement Learning (DRL) has demonstrated
exceptional capabilities across various domains,
such as robotics control, autonomous driving, and
natural language processing. Leveraging deep
neural networks, DRL combines high-dimensional
data analysis with model-free learning, making it a
compelling choice for dynamic edge systems. Its
online learning capabilities enable adaptive policy
updates through continuous interaction with the
environment, offering real-time adaptability to
evolving edge conditions. As a result, DRL-based
methods have shown promising results in
optimizing task offloading and Resource allocation
in edge computing [13]-[16]. Despite its
advantages, DRL-based approaches face inherent
limitations, as illustrated in Fig. 1. Firstly, these
methods typically rely on discrete-time Markov
Decision Processes (MDPs), where decisions are
made at fixed intervals. This framework
necessitates batch processing of tasks, causing
delays as tasks wait for the next decision interval to
be scheduled [17]. Such wait-for-scheduling
latency increases Resource contention and lowers
task completion rates, particularly in systems with
stringent delay requirements. Secondly, traditional
DRL methods lack scalability [18, 19]. The fixed
computational graph of deep neural networks
requires consistent input and output dimensions,
making it challenging to adapt to varying system
scales [20]. For instance, in mobile edge
environments, the dynamic nature of vehicular
edge systems—with frequent arrivals and

departures of service or user vehicles—renders
non-scalable DRL approaches infeasible.
Retaining scalability under these conditions is
crucial but often necessitates retraining models, a
process that is both time-intensive and
computationally expensive.

Random batch

,7_' Learning AGENT Target
<7 y

)«"\; update AN
% —_—

Experience

Buffer Training > y
_______ F S 0. % i I
I Update ! S !
_‘, SI at r[t I
............................ T, AT AT A
MDs Profiles : 4 I | 513;:;.v,"‘
i State:s, { .
Action:a, Reward:rt —
_ 8 |_S®
) : g 1 ¢ MEC El\:V I
() war Task Queue \
(())(((u' -:‘ BSs Profiles 2 \\

D@

Figure 1. Challenges in DRL-Based Offloading
Approaches.

Transitioning from a batched offloading
framework to a real-time approach, where tasks are
immediately scheduled upon arrival, intuitively
minimizes waiting time and avoids dimensional
mismatches caused by fluctuating task volumes.
However, the discrete-time MDP framework
utilized by classical DRL algorithms is inherently
unsuitable for such scenarios [21]-[23].
Additionally, scalability challenges, such as
mismatches in the dimensions of inputs and outputs
caused by dynamic variations in the number of
edge servers (ESs) and user devices (UDs), remain
unresolved. To address these challenges, we
propose a Real-time and Scalable Task Offloading
framework (ReSTO), leveraging a DRL-based
methodology.

In ReSTO, the task offloading problem is modeled
as a Semi-Markov Decision Process (Semi-MDP)
to enable decision-making at arbitrary task arrival
times. The framework introduces the Scalable
Continuous Proximal Policy Optimization
(SCPPO) algorithm, specifically designed to align
with the

Semi-MDP framework. To ensure scalability,
SCPPO employs a heterogeneous graph attention
mechanism for feature extraction, translating task-
specific characteristics into adaptive attention
scores for decision-making. Moreover, we develop
a hybrid reward mechanism that integrates model-
based and real-time feedback, referred to as the
homotopy reward. This reward scheme bridges the

Real-Time Scalable Task Offloading in Edge Computing Using Semi-Markov Decision Processes

gap between theoretical models and real-world
dynamics while enhancing exploration efficiency
during learning.

This paper aims to address the limitations of
existing DRL-based task offloading approaches in
edge computing environments. Specifically, we
focus on:

1- Overcoming the limitations of discrete-time
MDPs: We propose a novel continuous-time DRL
framework that enables real-time, event-triggered
task scheduling, eliminating the need for batch
processing and reducing wait-for-scheduling
latency.

2- Improving scalability in dynamic environments:
We introduce a scalable DRL architecture that can
The key contributions of this work are as follows:

e Introduction of ReSTO
Framework:
We propose ReSTO, a novel real-time and
scalable task offloading framework. ReSTO
models the offloading problem using a Semi-
MDP and introduces the SCPPO algorithm for
real-time decision-making, eliminating the
latency associated with traditional batched
scheduling.
e Scalability via Graph Attention
Mechanism:
SCPPO employs heterogeneous graph
attention operations to extract task and
Resource features dynamically, enabling
adaptive attention score generation. This
approach prevents dimensional mismatches as
the number of ESs or UDs changes, ensuring
scalability.
e Development of
Reward:
We formulate a hybrid reward system
combining theoretical model rewards with
real-time feedback. This homotopy reward
reduces the disparity between theoretical
assumptions and real-world conditions,
improving both performance and exploration
efficiency.

Homotopy

The remainder of this paper is organized as
follows: Section Il reviews related works,
particularly focusing on real-time and scalable
RL/DRL-based approaches. Section Ill presents
the system model for real-time offloading and the
corresponding optimization problem. In Section
IV, we detail the ReSTO framework, including the
Semi-MDP formulation and the SCPPO algorithm
design. Section V evaluates ReSTO’s performance

adapt to varying numbers of tasks and edge servers
without requiring extensive model retraining.
By achieving these objectives, we aim to:

e Enhance task completion rates and
reduce latency in edge computing
systems with stringent performance
requirements.

e Improve resource utilization by
enabling more efficient task
scheduling and allocation.

e Increase the adaptability and
robustness of DRL-based offloading
solutions in dynamic and
unpredictable edge environments.

against state-of-the-art algorithms, highlighting its
scalability and efficiency. Finally, Section VI
concludes the paper with insights and potential
future directions.

2. Related Works

In this section, we provide a comprehensive review
of DRL-based task offloading methods. Following
this, we delve into existing RL/DRL approaches
for real-time or scalable task offloading, analyzing
their achievements and limitations in comparison
to our proposed framework.

A. DRL-Based Task Offloading in Edge
Computing

Over the past decade, task offloading in edge
computing systems has increasingly relied on Deep
Reinforcement Learning (DRL) algorithms due to
their capacity for dynamic decision-making and
adaptability to complex environments. These
algorithms leverage the ability of neural networks
to process high-dimensional inputs and learn
optimal policies directly through interaction with
the environment. Numerous studies have tailored
DRL methods to address the unique challenges of
edge systems, such as Resource constraints,
latency requirements, and dynamic user demands.
One notable example is the work of Wang et al.
[12], who utilize Deep Q-Learning (DQN) to
optimize both task offloading and Resource
configuration in a blockchain-enabled edge
computing framework. Their approach introduces
trust mechanisms and leverages blockchain for
secure and efficient offloading. Similarly, Huang et
al. [13] employ a Twin Delayed Deep
Deterministic Policy Gradient (TD3) algorithm for
partial offloading systems, where tasks can be split
between local and edge processing. This method
improves decision-making by accounting for the
variability in task size and Resource availability,

A. Mirzaei et al. / Journal of Optimization of Soft Computing (JOSC), 2(4): 1-15, 2024

demonstrating the potential of DRL in adaptive
task allocation.

Building on these foundational approaches,
subsequent research has focused on enhancing the
performance and robustness of DRL-based task
offloading. For instance, Xu et al. [14] and Ma et
al. [15] introduce temporal feature extraction to
capture the dynamic nature of edge environments,
utilizing historical state information to better
model system behavior and predict the effects of
various actions. This temporal awareness allows
the system to adapt to changing workloads and
network conditions, leading to more effective
offloading strategies.

Moreover, Xu et al. [16] propose an exploration-
exploitation strategy tailored to the training
process. By prioritizing exploration during the
early stages of training and gradually shifting
towards the exploitation of learned policies, their
approach strikes a balance between discovering
new solutions and refining existing ones. This
adaptive strategy improves policy performance and
ensures more reliable decision-making over time.
To address the computational complexity and
convergence challenges associated with large
action spaces, researchers have also explored
hybrid approaches that integrate DRL with
traditional optimization techniques. For example,
Chen et al. [17] enhance DQN-based task
offloading with sequential quadratic programming
for Resource allocation. This combination reduces
the dimensionality of the problem and accelerates
convergence, enabling more efficient use of edge
Resources.

Li et al. [18] take a multi-agent approach,
employing a Parameterized Multi-Agent Soft
Actor-Critic (SAC) algorithm to address the
interdependence of actions across agents. By
categorizing actions into those that affect other
agents and those that do not, they effectively
manage Resource contention in collaborative edge
environments. The use of a genetic algorithm
further refines Resource allocation decisions,
ensuring optimal system performance.

Despite these advancements, existing DRL-based
methods face inherent limitations due to their
reliance on the discrete-time Markov Decision
Process (MDP) framework. This framework
enforces decision-making at fixed intervals,
leading to batch processing of tasks. Such a
structure introduces scheduling delays, as tasks
must wait until the next decision point before
offloading can occur [24], [25]. This wait-for-
scheduling latency becomes particularly
problematic in latency-sensitive applications,
where even slight delays can significantly degrade

performance. Additionally, most DRL approaches
encode system states into a one-dimensional input
vector for processing by a multi-layer perceptron
(MLP). While this design simplifies
implementation, it limits scalability. Fixed input-
output dimensions in MLPs cannot adapt to
changes in the number of edge servers (ESs) or user
devices (UDs), resulting in dimensional
mismatches. This lack of flexibility hampers the
applicability of DRL algorithms in dynamic edge
environments, such as vehicular networks or large-
scale loT systems, where the network topology and
Resource availability frequently change.

These challenges underscore the need for novel
frameworks and algorithms that overcome the
constraints of discrete-time MDPs and enable real-
time, scalable task offloading in edge computing
systems. Future solutions must address both the
latency introduced by batch processing and the
scalability issues arising from static neural network
architectures, paving the way for more adaptive
and efficient DRL applications in edge
environments.

e Categorization by Objective:

1. Latency Minimization: Focus on
methods specifically designed to
minimize task completion time or
end-to-end delay.

2. Energy Efficiency: Analyze methods
that prioritize minimizing energy
consumption at the device and
network levels.

3. Resource Allocation: Discuss
approaches that optimize resource
allocation among UDs and ESs,
considering factors like CPU,
memory, and bandwidth.

4. Load Balancing: Examine methods
that aim to distribute the
computational load evenly across the
available ESs.

B. Real-Time RL/DRL for Task Scheduling

Real-time decision-making is a critical component
of task scheduling in edge computing and
numerous other domains, where rapid responses to
dynamic changes are essential for maintaining
system performance and efficiency. However, the
discrete-time Markov Decision Process (MDP)
framework, which underpins most traditional
RL/DRL methods, introduces inherent constraints
when applied to real-time applications. By
requiring fixed decision intervals, the discrete-time
MDP framework creates bottlenecks, such as

Real-Time Scalable Task Offloading in Edge Computing Using Semi-Markov Decision Processes

delays in task execution, that compromise the
responsiveness and adaptability of RL-based
solutions. Alternative frameworks, such as the
multi-armed bandit [26]-[30], have been explored
to address some of these challenges. While these
models are computationally simpler and focus on
optimizing immediate rewards, they often fail to
account for the temporal dependencies and
cumulative effects of actions. This omission can
lead to suboptimal decision-making, particularly in
complex and dynamic environments where long-
term outcomes must be carefully balanced with
short-term gains [31]-[33].

In contrast, the Semi-Markov Decision Process
(Semi-MDP) framework is particularly well-suited
for real-time scheduling tasks. Unlike the discrete-
time MDP, Semi-MDP allows for variable
intervals between decision points, making it more
flexible and capable of handling tasks as they
arrive. This flexibility enables the development of
policies that optimize long-term performance while
addressing the immediate requirements of real-
time systems. For instance, Liang et al. [20] and
Hao et al. [21] successfully use Semi-MDPs to
model real-time scheduling problems,
demonstrating the framework’s potential to
accommodate dynamic workloads and varying
system conditions. Despite its advantages, adapting
existing algorithms to the Semi-MDP framework
poses unique challenges due to its structural
differences from the traditional MDP approach.
One common strategy involves normalization,
which converts Semi-MDP problems into an MDP-
compatible format, allowing established DRL
algorithms to be applied. For example, Liang et al.
[22] normalize Semi-MDP problems by estimating
theoretical model-based Q-values for supervised
pre-training [34]-[36]. This approach provides a
starting point for the policy, which is then refined
through interactions with the environment.
Similarly, Wu et al. [23] utilize state transition
probabilities during the normalization process to
transform Semi-MDPs into a form solvable by
value iteration techniques.

An alternative to normalization-based methods is
the direct design of algorithms tailored to the Semi-
MDP framework. These approaches avoid the
approximations and assumptions inherent in
normalization, enabling more accurate modeling of
real-world scenarios. For example, Van Huynh et
al. [24] propose a Dueling Double Deep Q-
Network (DDQN) approach that maximizes
cumulative single rewards without incorporating
discount factors, focusing instead on immediate
benefits within a Semi-MDP structure. Wei et al.
[9] employ an exponential decay model to compute

cumulative discounted returns, deriving a Bellman
optimality equation to guide decision-making with
DQN. Kim et al. [25] adapt the Soft Actor-Critic
(SAC) algorithm for the Semi-MDP framework,
introducing modifications that account for the
variable time intervals and cumulative reward
structures characteristic of Semi-MDPs. Despite
these advancements, existing methods still exhibit
notable limitations. Normalization-based
approaches often rely heavily on theoretical
assumptions, such as idealized transition models or
fixed state representations, which reduce their
generalizability to real-world, complex
environments [37]-[40]. These assumptions can
lead to performance degradation when applied to
heterogeneous and highly dynamic edge systems,
where practical constraints and unpredictable
factors frequently deviate from theoretical models.
On the other hand, model-free DRL approaches
[41]-[45] that bypass theoretical dependencies also
face challenges. These methods commonly employ
simplistic neural network architectures, such as
basic feedforward models, that lack the scalability
needed to adapt to dynamic edge network
conditions. In systems where the number of edge
servers (ESs) and user devices (UDs) can fluctuate
significantly, fixed input-output dimensions lead to
dimensional ~ mismatches, requiring costly
retraining of the models to accommodate changes
[46]-[48]. This inflexibility limits the practical
deployment of model-free DRL solutions in
scenarios characterized by high variability and
evolving system requirements. Overall, while the
Semi-MDP framework offers significant potential
for enabling real-time decision-making in edge
computing, achieving effective and scalable
solutions necessitates innovative algorithmic
designs that address both the limitations of
normalization-based methods and the scalability
constraints of traditional DRL models. Future work
must focus on bridging these gaps to develop
robust and adaptable frameworks capable of
supporting real-time, scalable task scheduling in
edge environments.

o Weaknesses of Current Semi-MDP
Methods:

1. Normalization-Based Approaches:

2. Reliance on Theoretical Assumptions:
Often rely on idealized models and
assumptions, which can limit their
applicability in real-world scenarios
with high variability and uncertainty.

3. Potential for Accuracy Loss: The
normalization process can introduce
approximations that may lead to

A. Mirzaei et al. / Journal of Optimization of Soft Computing (JOSC), 2(4): 1-15, 2024

suboptimal solutions or reduced
accuracy.

4. Limited Exploration of Direct Semi-
MDP Algorithms: While some direct
approaches exist, the field is still
relatively under-explored compared to
normalization-based methods.

5. Scalability Challenges: As the
complexity of the environment and the
number of tasks increase, solving
Semi-MDPs can become
computationally expensive, especially
for complex DRL algorithms.

6. Handling of Uncertainty: Many
existing methods may not adequately
address the inherent uncertainty and
stochasticity present in real-world
scheduling problems.

3. System Model and Problem Formulation

We consider a crowdsourcing-inspired MEC
system, as illustrated in Fig. 1, comprising multiple
applications and edge servers (ESs) with diverse
configurations and characteristics. ~ These
applications may vary significantly in their
requirements, encompassing delay-sensitive
services such as networked gaming, autonomous
driving, and AR/VR, as well as resource-intensive
tasks like big data analytics, scientific computing,
and video surveillance [49]. Similarly, ESs can
range from micro data centers and edge clouds to
high-capacity computing servers or even gateways
deployed in residential or office settings. For
generality, we assume these ESs are managed and
operated by distinct edge service providers. To
maximize resource utilization and enhance system
performance in terms of scalability, reliability, and
other metrics, a third-party platform is introduced
to coordinate ES operations and handle workload
dispatch from end users. Acting as an intermediary,
this platform serves as a front-end interface for
edge computing services, bridging the gap between
clients submitting tasks and ESs providing
computational resources. Upon receiving a task,
the platform assigns it to the most suitable ES
hosting the requested service and ensures the
computation result is returned to the client
seamlessly. This interaction is transparent to users,
provided the system meets their application
performance expectations, such as low latency and
high computation quality.

Both application providers and ESs must undergo
an onboarding process with the platform before

accessing or delivering edge services. This
formalized process involves signing agreements
with the platform to define roles and
responsibilities. For application providers, this
includes specifying service requirements such as
task rates, task valuation, budget constraints,
computational demands, QoS parameters (e.g.,
maximum tolerable delay), and security or
compliance needs. Similarly, ESs seeking to
participate in the system are subject to a
comprehensive evaluation by the platform. This
involves reviewing their security protocols,
compliance certifications, and data management
practices to ensure adherence to industry standards
and regulatory requirements [50]. Additionally, a
risk assessment is often conducted to identify
potential vulnerabilities. ESs must provide detailed
information regarding their resource capacities,
operational costs, and revenue expectations.
Using this information, the platform optimizes task
offloading strategies and resource allocation for
ESs, subsequently formalizing agreements with
both parties. Once agreements are in place, ESs
configure the necessary accounts and
infrastructure, enabling application providers to
deploy their services. Importantly, ongoing
monitoring and auditing mechanisms are
established to ensure all parties adhere to the
agreed-upon terms, with regular performance and
compliance evaluations conducted throughout the
service lifecycle.
This study considers a scenario where application
providers make advance payments to the platform,
which, in turn, allocates a portion of these
payments to incentivize contributions from edge
servers (ESs). The platform's key decisions
include: (1) whether to accept both the application
providers and ESs into the system, (2) determining
the amount of resources each ES should allocate to
applications, and (3) devising an efficient task
dispatching strategy to distribute tasks among the
backend ESs hosting the services. To simplify
notation, we define the set of ESs and
applications/services in the system as M and N,
respectively, with the corresponding cardinalities
denoted by |IM| and |N|. For clarity, the terms
"applications™ and "application providers" are used
interchangeably in this paper unless otherwise
specified. The primary notations employed
throughout this work are summarized in Table 1.
Each application i € N; is characterized by a tuple
(pi,vl-,al-,Di,sl-),Where:

1. p;: The payment made by application

provider iii to the platform for task
offloading.

Real-Time Scalable Task Offloading in Edge Computing Using Semi-Markov Decision Processes

2. v;: The utility gained by i from offloading
a task, such as reduced energy consumption
at user devices, enhanced computational
quality, or shorter response times.
Generally, p; < v; Offloading offers net
benefits to the application.

3. a;: The arrival rate of tasks for application
i.

4. s;: The workload (measured in CPU cycles)
required to process a task.

5. D;: The maximum latency tolerable by
application i.

Given the stochastic nature of the system and the
uncertainty in resource allocation at ESs, the actual
value derived by an application from task
offloading depends on the quality of the edge
computing service. We represent this with a utility
function u;; € [0,1], which quantifies the
satisfaction level of application i when offloading
tasks to ES;. This utility function is an abstract
representation and can vary depending on the
application's requirements.

For instance, for delay-sensitive applications,
u;;may be defined based on reductions in task
latency. For resource-intensive applications,
u;;could reflect the computational quality, such as
compression ratios or prediction accuracy.
Moreover, the form of w;; can differ even within
the same application category. For example, in
delay-sensitive applications, u;; could be a step
function to model satisfaction levels in the
presence of hard deadlines.

_ 1, if tij < D;

wij = { 0, otherwise (1)

A. Platform Model
The platform operates under the following assumptions:

1. The platform employs a probabilistic task
dispatching mechanism, where each
application task is routed to a specific ES
based on predefined probabilities.

2. The payment p; made by application iii is
distributed between the platform and the
ES executing the task. Specifically, the
ES receives a reward of (1 — A,)p;,
where 4; < 1, while the platform retains
A;p; as its service charge or maintenance
fee. The parameter 4; , a critical system
variable, is determined by the platform
and forms part of the contractual
agreement with the ES.

4. Real-time and Scalable Task Offloading
Framework

Before detailing the algorithm, we first describe the
calculation of u;; and t;; under a fixed resource
allocation F;; = Fy. The following assumptions,
drawn from prior studies, are applied:

1. Tasks from each application arrive
according to a Poisson process [46].
Consequently, the arrival of tasks from
application i at ES; also follows a Poisson
process with a rate of r;; = a;x;; , where
a; represents the task arrival rate, and x;;
denotes the probability of task dispatch to
ES; .

2. The workload of tasks from each
application is assumed to follow an
exponential distribution (in CPU cycles)
[27][36]. This implies that the processing
time for a task from application i at ES;
also follows an exponential distribution
with a mean of 1/wijl/w where w;; =
F;;(0) and s; represents the workload of
the task.

Based on these assumptions, the task processing
system for an application i at ES; can be modeled
as an M/M/lqueue. The probability density
function (pdf) for the task delay t;; this system is
then expressed as:

fr(ty < t) = (wij —r) - e~ (o)t 2

Assuming w;; is defined as in Eq. (2) and x;; > 0
(indicating that tasks from application i are
offloaded to ES;), the relationship derived from
constraint (3b) is as follows:

Pr(t; < (1-2)D;) = prob,
©)

Combining (7) and (8), we get:

1 |In (1- prob;) Fi(}

X S — | g U 4

tj a; [(1—%>Di s ()
L

Let x;;H, denote the right-hand side (RHS) of the
inequality mentioned above, defined as:

A. Mirzaei et al. / Journal of Optimization of Soft Computing (JOSC), 2(4): 1-15, 2024

>

H
xi]'

1 In (1—;robi) + F_L‘(;' (5)
@ (1— v—f)Di Si
1A

Clearly, x;;H, represents the upper bound of the
offloading probability for which application
provider i is satisfied with offloading its tasks to
ES; , meeting the QoS requirements. Notably, this
upper bound is independent of A; and is solely
determined by F; (0) and the workload profiles.

Similarly, from constraint (3c) and assuming x;; >
0, we derive:

(1+8j)ei(F5)
Xij = ai1-2)p; ' ©®

Let the right-hand side (RHS) of the above

inequality be denoted as xiLj , defined as:

L s (B (FY)
YT ai-ap

)

Algorithm 1 Deriving the optimal resource
allocation, task offloading probabilities, and ratios

under a given resource allocation Fi‘}'s.
Input: Task profiles (a;s,p;s, vis, D;s,s;s); ES
- ! -
profiles (c]-(Fl-,-) s, Fjs, B;is); Initial resource

allocations F's;
Output: Resource allocations FS-'N’S; Ratios
2%~"s; Task offloading probabilities x?[’s;
fori € Ndo
forj e M do
Derive x;}
fori € N do
Get A7 and x;)
forj e M do
GetY) s
Obtain ;"™ $, F;7™$ and x;;”s

and 29, according to Eq 5.

0 ~No ok~ WD

5. Simulation Experiments

A. Experimental Setup

The simulation framework was developed using
Python 3.9 and PyTorch 2.3.0, running on a high-
performance desktop system powered by an Intel
Core i9-13900K processor and an Nvidia GeForce
RTX 3090 GPU. This computational setup was

chosen to ensure efficient processing of the
complex algorithms and large-scale datasets
involved. The simulation leverages vehicle
trajectory data from the Peachtree Street section of
the Next Generation Simulation (NGSIM) dataset
[36]. This dataset provides detailed and realistic
representations of urban traffic flow, making it
suitable for modeling dynamic user-device
behaviors in edge computing scenarios.

In our simulation environment, user devices (UDs)
are designed to move along stochastic trajectories
generated from the NGSIM dataset. These
trajectories simulate real-world mobility patterns,
such as vehicles traveling through a busy
metropolitan area. UDs are assumed to exit the
system once their respective trajectories conclude,
reflecting the dynamic entry and exit behavior
typical in edge networks. Edge nodes (ENSs) are
deployed strategically at random locations along
these trajectories, ensuring adequate coverage of
user mobility patterns while capturing the inherent
randomness of real-world deployments. The
system parameters used in the simulation are
comprehensively detailed in Table Il. These
include network characteristics, Resource
configurations, and mobility patterns, ensuring that
the simulation accurately reflects the operational
constraints and requirements of modern edge
computing environments.

Training Process and Network Design

The training process was meticulously designed to
optimize the learning performance of the proposed
algorithm. The neural network architecture
incorporates several specialized components to
handle the complexity of real-time task offloading
and Resource allocation. The hidden feature
dimension d was set to 256, balancing
computational efficiency with model
expressiveness. The attention mechanism
employed K=4 attention heads, enabling the model
to capture intricate relationships between tasks and
edge nodes across multiple dimensions.

Three encoder components—Hpgy, Heey, and
Hrgsk —Were implemented as two-layer
multilayer perceptrons (MLPs), each employing
Tanh activation functions. These encoders
transform raw input data into high-dimensional
representations suitable for downstream
processing. The MLP Dc, responsible for
computing Resource allocation, was configured
with two layers, ensuring lightweight and efficient
computation. In contrast, the MLP Dv within the
critic network was designed with four layers to
enhance its capacity for estimating value functions,

Real-Time Scalable Task Offloading in Edge Computing Using Semi-Markov Decision Processes

which are critical for effective policy evaluation
and improvement.

Key Parameters for the Continuous-Time PPO
Algorithm

To align the training process with the Semi-
Markov ~ Decision Process (Semi-MDP)
framework, we tailored the continuous-time
Proximal Policy Optimization (PPO) algorithm
with carefully selected hyperparameters. The
discount factor o was set to 0.1, ensuring a
balanced emphasis on immediate rewards and
long-term gains. The importance sampling ratio e,
set to 0.2, controlled the degree of policy updates
to maintain stability during training. The
Generalized Advantage Estimation (GAE)
hyperparameter A was configured as 0.98 to
improve the estimation of advantages, enhancing
the convergence rate and overall learning
efficiency.

B. Training Configuration and Iterations

The training process spanned 400 episodes,
providing sufficient iterations for the algorithm to
converge to an optimal policy. Each episode was
further divided into a maximum of 200 iterations,
allowing the model to explore diverse states and
actions comprehensively. During training, the
model continually interacted with the simulated
environment, refining its policy through trial and
error while leveraging feedback from the
homotopy reward mechanism. This hybrid reward
system combined theoretical insights with real-
time observations, bridging the gap between
simulated models and practical deployments.

The overall design of the simulation environment,
coupled with the robust training setup, ensures that
the proposed algorithm is well-equipped to handle
dynamic and scalable edge computing scenarios.
By incorporating realistic mobility patterns,
stochastic task generation, and advanced neural
network architectures, the simulation framework
provides a reliable foundation for evaluating the
effectiveness of real-time task offloading and
Resource allocation strategies in next-generation
edge systems.

TABLE I.
PARAMETER SETTINGS OF SIMULATION
Notations Simulation Notations Simulation
Value Value
M 8 a U(L0, 1.2)
f U (2 4) B MB U (0.8,
" GHz 1.0) GCycle
dam 50 Meter 9 U(,?2)
N 30 p Second

1 Watt

qmax 3 ¢ -3
114

2
t 1 g dBm/MHz
X 0.1 B 1 MHz
U, 2

fn GHz @ !

Y 4 K 10-%7

The data reuse frequency was configured to 10
iterations. For the actor-network, the learning rate
was set to 1 x 107*, while the critic network
utilized a higher learning rate of 1 x 1073.The
Adam optimizer, with &=1x107%was
employed for parameter updates.

To evaluate the performance of the proposed
method, we conducted a comparative analysis with
four state-of-the-art DRL-based methods designed
to address scalability, as well as a single-step
greedy method. A brief overview of these
approaches is as follows:

e Single-Step Greedy (SSG): This method
selects actions greedily based on
immediate task benefits. While intuitive, it
focuses exclusively on short-term gains,
neglecting long-term system optimization.

e Sequence to Sequence (S2S) [11]:

This approach leverages recurrent neural
networks (RNNs) for sequential system
feature extraction and multi-action
generation. However, it operates under a
batched offloading framework and
struggles to adapt action dimensions to
dynamic variations in the number of edge
nodes (ENs).

e Self-Attention (SA) [10]:

Using a self-attention mechanism, this
method integrates task features and
generates actions in parallel. Despite this,
it inherits the limitations of S2S, including
reliance on batched offloading and the
inability to adapt to changes in EN counts
due to its concatenation of EN states as
input.

e Event-Driven DON (EDQ) [9]:

This real-time approach employs an event-
driven Deep Q-learning framework based
on task and EN states. However, its
reliance on a multilayer perceptron (MLP)
architecture for the Q-network constrains
scalability, particularly in large-scale
systems.

e GNN-based Multi-agent DRL (GMD)
[30]:

This method utilizes a distributed multi-
agent DRL framework with graph neural

A. Mirzaei et al. / Journal of Optimization of Soft Computing (JOSC), 2(4): 1-15, 2024

networks (GNNs), allowing user devices
(UDs) to independently select actions. By
representing offloading targets as positive
integers instead of one-hot vectors, it
offers significant scalability. However,
multi-agent DRL frameworks are
challenging to train in large-scale
environments, often leading to diminished
performance.

For a fair comparison, we set the batch interval to
0.2 in subsequent experiments for the S2S, SA, and
GMD methods, which follow a batched offloading
framework.

Notably, the ReSTO framework outperformed all
baselines in terms of system cost, even under zero-
shot transfer scenarios, surpassing re-trained
methods as well. This underscores the exceptional
scalability and efficiency of ReSTO. Interestingly,
we observed that the system costs of SA and EDQ
remained stable or even increased as additional
ENs became available. This phenomenon is
attributable to their reliance on concatenated EN
states as input, which inflates the input dimensions,
causing the critic network to struggle with accurate
evaluations. For EDQ, the increase in selectable
actions further ~ complicates Q-network
convergence, exacerbating its limitations in larger
systems.

C. Batched Offloading V.S. Real-Time
Offloading
To highlight the performance benefits of

transitioning from batched offloading to real-time
offloading, we compare the proposed ReSTO
method with existing approaches under two load
scenarios. The results, as illustrated in Fig. 2,
consider a normal scenario with baseline system
settings and a harsh scenario where the load factor
B €u(1.2,1.4). For consistency, we introduce
artificial delays in task execution to emulate
batched offloading for ReSTO, SSG, and EDQ,
which inherently support real-time offloading.
Other methods, lacking real-time capabilities, are
excluded from this analysis. Batched offloading is
tested with four discrete timeslot intervals: 0.8, 0.6,
0.4, and 0.2.

The experimental findings indicate that reducing
the interval duration in batched offloading
substantially lowers system costs under both load
scenarios, with the real-time offloading approach
consistently achieving the best performance. This
improvement is especially pronounced under
higher load conditions, as shorter decision intervals
minimize the delay between task arrival and
scheduling, allowing for more effective Resource

10

management. Conversely, under increased system
loads, extended waiting periods in batched
offloading sharply reduce the scope for scheduling
adjustments, leading to greater performance
degradation. Notably, at elevated load levels with
larger timeslot intervals, DRL-based methods
display inferior performance compared to the SSG
approach. This can be attributed to challenges in
learning from delayed and sparse rewards during
training, particularly when task failures dominate
the early learning phase. As a result, many DRL-
based methods converge to suboptimal solutions,
unable to recover effectively. In contrast, the
ReSTO framework, supported by the homotopy
reward mechanism, provides more immediate and
structured reward feedback during early training
stages. This design facilitates more efficient
exploration and allows ReSTO to avoid local
optima, delivering significantly better performance
even under harsh conditions.

D. Ablation Study

An ablation study was conducted to investigate the
impact of the homotopy reward design and graph-
based cell state aggregation on the performance of
the proposed framework. The experiments were
carried out under both normal and harsh scenarios
to provide a comprehensive evaluation across
varying load levels. Two key components were
evaluated: (1) the reward mechanism, with three
configurations considered—model-based reward,
reality reward, and the proposed homotopy
reward—and (2) the user device (UD) state fusion
method, comparing direct aggregation of UD states
independently versus graph-based aggregation of
cell states. These configurations were
systematically combined into multiple algorithm
variants, and their performance was assessed.

The study revealed significant differences in
performance across the reward settings. Among the
configurations, the reality reward (blue line)
exhibited the largest fluctuations during training.
These fluctuations can be attributed to the reward
mechanism's reliance on real-time feedback, which
is inherently noisy and less predictable. The lack of
robust guidance in the early training stages often
led to instability in task success rates, particularly
under harsh scenarios where Resource constraints

are more pronounced. Additionally, this
configuration struggled to balance immediate
performance with long-term optimization,

highlighting its limitations
unpredictable environments.

Conversely, the model-based reward demonstrated
greater stability but was less effective in capturing
the complexities of real-world conditions. This

in dynamic and

Real-Time Scalable Task Offloading in Edge Computing Using Semi-Markov Decision Processes

resulted in suboptimal exploration, limiting its
ability to adapt to diverse scenarios. The proposed
homotopy reward bridged the gap between the
model-based and reality rewards, effectively
integrating theoretical guidance with real-time
feedback. This hybrid approach significantly
improved exploration efficiency, enabling the
algorithm to converge faster and achieve better
performance across both normal and harsh
scenarios. The homotopy reward design also
mitigated the challenges of sparse rewards,
ensuring consistent progress during training.

The study further examined the effects of state
aggregation methods. Directly aggregating UD
states independently often resulted in subpar
system performance due to the lack of contextual
understanding of Resource and task interactions
within the network. In contrast, the graph-based
cell state aggregation effectively captured spatial
and temporal dependencies, enhancing the
framework's ability to adapt to changes in system
dynamics. By leveraging graph structures to model
interactions between tasks and edge servers (ESS),
this method provided a holistic view of the
network, leading to more informed and efficient
decision-making.

The analysis also sheds light on the limitations of
the GMD algorithm, which demonstrated a
tendency to prioritize tasks with higher energy
consumption. This behavior can be traced to its
distributed multi-agent DRL framework, where
each agent operates with limited visibility into the
overall system state. Without a comprehensive
view of the network, agents often opted to process
tasks at a higher frequency to minimize CPU
occupancy and avoid Resource contention. While
this strategy may reduce immediate delays, it
inadvertently increases energy consumption and
diminishes the overall system efficiency.

In summary, the results highlight the advantages of
the proposed homotopy reward design and graph-
based cell state aggregation in improving system
performance and scalability. By addressing the
shortcomings of traditional reward mechanisms
and state aggregation methods, the proposed

approach achieves superior stability, faster
convergence, and enhanced adaptability,
particularly ~ under challenging operational
conditions.

E. Comparisons under Different Environmental
Settings

This section evaluates the performance of our
proposed algorithm against other methods under
varying simulation parameters, specifically
focusing on the task generation interval parameter

11

(22) of the exponential distribution and the user

preference for required CPU cycles). These
parameters influence the system load by altering
the task arrival rate and the computational demand
of each task. Our analytics illustrate the system
costs across different values of 2. A reduction in 2
corresponds to an increased number of tasks and a
heavier overall system load. The results reveal that
DRL-based methods consistently outperform the
SSG approach in all scenarios. This is due to the
long-term optimization capabilities inherent in
DRL, which enable proactive and foresight-driven
decision-making. In contrast, the SSG method
prioritizes immediate task optimization without
accounting for future system demands, leading to
significant queue delays and higher overall costs.
Among the DRL-based methods, the S2S approach
exhibits comparatively higher system costs. This
can be attributed to its vulnerability to the memory-
forgetting issue associated with processing long
task sequences. As 2 decreases, the number of
tasks requiring scheduling within each discrete
timeslot increases, further amplifying this
limitation. In contrast, the proposed ReSTO
framework achieves the lowest system cost across
all scenarios, with the performance gap widenthe
ing as £ decreases. This superior performance
stems from the fundamental differences between
real-time and batched offloading. As the system
load intensifies with a higher task arrival rate, the
limitations of batched offloading become more
pronounced, leading to greater performance
degradation for methods relying on discrete
scheduling intervals. These findings reaffirm the
advantages of the real-time offloading strategy
employed in ReSTO, particularly under high-load
conditions.

Our analytics compares the performance of the

algorithms across different values of E which
represents the computational load associated with

tasks. Higher B values indicate that tasks demand
more CPU cycles for processing, thereby
increasing the system load. The results reveal that
under low-load scenarios, DRL-based methods
demonstrate a clear advantage over the Single-Step
Greedy (SSG) approach, achieving significantly
lower system costs. This improvement is attributed
to the long-term optimization capabilities of DRL,
which enable more efficient Resource allocation
and task scheduling by anticipating future system
states. In contrast, SSG focuses solely on
immediate task optimization, often resulting in
suboptimal Resource utilization and increased
queuing delays. As the system load intensifies with

higher B values, the performance gap between

A. Mirzaei et al. / Journal of Optimization of Soft Computing (JOSC), 2(4): 1-15, 2024

DRL-based methods and SSG narrows. This
reduction in effectiveness stems from the
challenges introduced by the more demanding
environment. Heavier system loads generate
delayed and sparse rewards, complicating the
training process for DRL algorithms and limiting
their ability to converge to optimal policies. Under
these conditions, traditional DRL-based
approaches are more likely to become trapped in
local optima, as the sparse feedback makes it
difficult to identify and reinforce effective
scheduling strategies.

The proposed ReSTO framework, however,
addresses these limitations through its innovative
homotopy reward mechanism. By combining

model-based and reality-based rewards, the
homotopy reward provides consistent and
structured feedback throughout the training

process. This design enables ReSTO to navigate
complex and dynamic system states more
effectively, avoiding local optima and guiding the
algorithm toward globally optimized solutions.
The ability to adapt to varying load conditions is
further enhanced by the real-time offloading
strategy employed in ReSTO, which eliminates the
delays associated with batched scheduling. This
combination of timely decision-making and robust
reward feedback allows ReSTO to maintain
superior performance across all load conditions.
Moreover, the advantages of ReSTO become
increasingly pronounced as the system load rises.
In high-load scenarios, where tasks require
significant computational Resources and delays are
more detrimental, the benefits of real-time
offloading are particularly evident. By reducing the
waiting time between task arrival and execution,
ReSTO not only minimizes queuing delays but also
maximizes Resource utilization efficiency. These
factors collectively contribute to ReSTO’s
consistent outperformance of competing methods,
demonstrating its scalability, adaptability, and
resilience under diverse operational conditions.

In summary, the integration of the homotopy
reward mechanism and real-time offloading in
ReSTO provides a significant edge over existing
DRL-based approaches and heuristic methods like
SSG. The framework’s ability to maintain low
system costs under both low and high system loads
highlights its robustness and makes it a promising
solution for real-time and scalable task offloading
in dynamic edge computing environments.

12

System Cost

!

[0.8.1.0] [1.0,1.2] [1.2,1.4]
B

Fig 2. System Costs Across Algorithms for Varying Task
CPU Cycle Requirements.

B 556G
=3 525
041 3 SA
BN EDQ
3 GMD
0.3{ @R ReSO(Ours)

0.24
0.14
0.0+

[0.4,0.6) [0.6,0.8]

6. Conclusions

While DRL-based algorithms have demonstrated
exceptional capabilities in optimizing task
offloading for edge computing, several persistent
challenges limit their potential for broader practical
deployment. Key among these is the waiting time
associated with batched decision-making and the
dimensional mismatches arising from dynamic
system scales. These limitations not only impede
performance improvements but also hinder the
scalability and adaptability of such methods in real-
world applications. To address these critical issues,
we introduce ReSTO, a DRL-driven real-time and
scalable offloading framework designed to
overcome the inherent challenges of existing
methods. ReSTO redefines the task-offloading
paradigm by shifting from a batched scheduling
approach to a real-time offloading framework.
Tasks are scheduled immediately upon arrival,
eliminating waiting times and enabling more
efficient Resource utilization. This is achieved by
modeling the offloading problem as a Semi-
Markov Decision Process (Semi-MDP), allowing
decision-making at arbitrary task arrival times
rather than fixed intervals. To effectively solve the
problem, ReSTO employs a novel continuous-time
Proximal Policy Optimization (PPO) algorithm,
enhanced with specially designed scalable actor
and critic networks that adapt seamlessly to
varying numbers of edge nodes (ENs) and user
devices (UDs). This architecture ensures robust
performance across dynamic system conditions.

In addition to its innovative decision-making
framework, ReSTO introduces two key
mechanisms to further enhance its performance.
First, the homotopy reward mechanism integrates
model-based and reality-based rewards to bridge
the gap between theoretical assumptions and real-
world dynamics. This approach improves learning
efficiency, enabling the algorithm to avoid local
optima and converge toward globally optimal
policies. Second, ReSTO clusters UDs into cells,

Real-Time Scalable Task Offloading in Edge Computing Using Semi-Markov Decision Processes

aggregating state information to reduce
dimensional complexity and improve decision
accuracy. This clustering approach ensures
scalability and effective Resource allocation even
in large-scale systems with high task loads.
Extensive experimental evaluations highlight the
significant advantages of ReSTO over state-of-the-
artalgorithms. The results demonstrate that ReSTO
consistently achieves lower system costs while
exhibiting better scalability as the number of ENs
and UDs fluctuates. These findings underscore the
robustness and adaptability of the proposed
framework, making it well-suited for the dynamic
and heterogeneous environments characteristic of
modern edge computing systems. However,
transitioning from batch to real-time offloading
also brings new challenges, particularly in terms of
the computational overhead associated with state
acquisition and decision-making processes. The
need for rapid, real-time decisions places greater
importance on minimizing time complexity to
ensure the practical viability of ReSTO in large-
scale deployments. Future work will focus on
exploring and developing algorithms with reduced
time complexity, capable of operating under
partially updated or approximate state information.
By addressing these challenges, we aim to further
enhance the efficiency and scalability of real-time
offloading solutions, paving the way for their
widespread adoption in edge computing.

e Experimental Results and Validation:
Extensive simulations demonstrate the
superior performance of ReSTO compared to
state-of-the-art methods. Specifically, ReSTO
consistently achieves lower system costs (e.g.,
energy consumption, latency) while exhibiting
better scalability as the number of ENs and
UDs fluctuates. These results validate the
effectiveness of ReSTO in optimizing resource
allocation and adapting to dynamic system
conditions.

Conceptual Explanations:

e Addressing Batching Limitations: By
moving to a real-time framework,
ReSTO eliminates the inherent delay
associated with batched decision-
making, leading to more responsive
and efficient resource allocation.

References

[1] Y. Mao, C. You, J. Zhang, K. Huang, and K. B.
Letaief, “A survey on mobile edge computing: The
communication perspective,” IEEE Communications

Surveys & Tutorials, vol. 19, no. 4, pp. 2322-2358,
2017.

13

[2] Mirzaei, A. and Najafi Souha, A., 2021.
Towards optimal configuration in MEC Neural
networks: deep learning-based optimal resource
allocation. Wireless Personal Communications, 121(1),
pp.221-243.

[3] Zhou, Guoliang, and Amin Mohajer. "Blind
reconfigurable intelligent surfaces for dynamic
offloading in fixed-NOMA mobile edge networks."
International Journal of Sensor Networks 46, no. 3
(2024): 142-160.

[4] H. Guo, J. Li, J. Liu, N. Tian, and N. Kato, “A
survey on space-airground- sea integrated network
security in 6g,” IEEE Communications Surveys &
Tutorials, vol. 24, no. 1, pp. 53-87, 2022.

[5] Duan, H., & Mirzaei, A. (2023). Adaptive Rate
Maximization and Hierarchical Resource Management
for Underlay Spectrum Sharing NOMA HetNets with
Hybrid Power Supplies. Mobile Networks and
Applications, 1-17.

[6] Zhou, Nan, Ya Nan Li, and Amin Mohajer.
"Distributed capacity optimisation and resource
allocation in heterogeneous mobile networks using
advanced serverless connectivity strategies.”
International Journal of Sensor Networks 45, no. 3
(2024): 127-147.

[7] X. Huang, Y. Chen, J. Liu, M. Wang, P. Li,
and Q. Zhao, “Joint interdependent task scheduling and
energy balancing for multi-uav enabled aerial edge
computing: A multi-objective optimization approach,”
IEEE Internet of Things Journal, vol. 10, no. 4, pp.
3147-3160, 2023.

[8] Z. Yang, C. Pan, K. Wang, and M. Shikh-
Bahaei, “Energy efficient Resource allocation in uav
enabled mobile edge computing networks,”IEEE
Transactions on Wireless Communications, vol. 18, no.
9, pp. 4576-4589, 2019.

[9] Mohajer, Amin, Mohammad Yousefvand,
Ehsan Noori Ghalenoo, Parviz Mirzaei, and Ali Zamani.
"Novel approach to sub-graph selection over coded
wireless networks with QoS constraints.” IETE Journal
of Research 60, no. 3 (2014): 203-210.

[10] X. Zhang, J. Zhang, J. Xiong, L. Zhou, J. WEei,
and H. Li, “Energyefficient multi-uav-enabled
multiaccess edge computing incorporating noma,” IEEE
Internet of Things Journal, vol. 7, no. 6, pp. 5613-5627,
2020.

[11] Mirzaei, A. (2022). A novel approach to QoS-
aware resource allocation in NOMA cellular HetNets
using multi-layer optimization. Concurrency and
Computation: Practice and Experience, 34(21), e7068.
[12] T. Zhang, Y. Xu, J. Loo, D. Yang, L. Xiao, and
Y. Zhao, “Joint computation and communication design
for uav-assisted mobile edge computing in iot,” IEEE
Transactions on Industrial Informatics, vol. 16, no. 8,
pp. 5505-5516, 2020.

[13] Z. Liu, X. Tan, M. Wen, S. Wang, C. Liang,
and Q. Zhao, “An energyefficient selection mechanism
of relay and edge computing in uavassisted cellular
networks,” IEEE Transactions on Green
Communications and Networking, vol. 5, no. 3, pp.
1306-1318, 2021.

A. Mirzaei et al. / Journal of Optimization of Soft Computing (JOSC), 2(4): 1-15, 2024

[14] Mohajer, Amin, Javad Hajipour, and Victor
CM Leung. "Dynamic Offloading in Mobile Edge
Computing with Traffic-Aware Network Slicing and
Adaptive TD3 Strategy." IEEE Communications Letters
(2024).

[15] Yang, Jiuting, and Amin Mohajer. "Multi
objective constellation optimization and dynamic link
utilization for sustainable information delivery using
PD-NOMA deep reinforcement learning." Wireless
Networks (2024): 1-21.

[16] Somarin, A. M., Barari, M., & Zarrabi, H.
(2018). Big data based self-optimization networking in
next generation mobile networks. Wireless Personal
Communications, 101(3), 1499-1518.

[17] Kuang, Shuhong, Jiyong Zhang, and Amin
Mohajer. "Reliable information delivery and dynamic
link utilization in MANET cloud using deep
reinforcement learning."” Transactions on Emerging
Telecommunications Technologies 35, no. 9 (2024):
€5028.

[18] Hua, Yuxiu, Rongpeng Li, Zhifeng Zhao,
Xianfu Chen, and Honggang Zhang. "GAN-powered
deep distributional reinforcement learning for resource
management in network slicing."” IEEE Journal on
Selected Areas in Communications 38, no. 2 (2019):
334-349.

[19] X. Qin, Z. Song, Y. Hao, and X. Sun, “Joint
Resource allocation and trajectory optimization for
multi-uav-assisted multi-access mobile edge
computing,” IEEE Wireless Communications Letters,
vol. 10, no. 7, pp. 1400-1404, 2021.

[20] Wang, Qianxing, Wei Li, and Amin Mohajer.
"Load-aware continuous-time optimization for multi-
agent systems: Toward dynamic resource allocation and
real-time adaptability." Computer Networks 250 (2024):
110526.

[21] H. Hu, Z. Chen, F. Zhou, Z. Han, and H. Zhu,
“Joint Resource and trajectory optimization for
heterogeneous-uavs enabled aerial-ground cooperative
computing networks,” IEEE Transactions on Vehicular
Technology, vol. 72, no. 6, pp. 7119-7133, 2023.

[22] Mirzaei, A., Barari, M., & Zarrabi, H. (2019).
Efficient resource management for non-orthogonal
multiple access: A novel approach towards green
hetnets. Intelligent Data Analysis, 23(2), 425-447.

[23] Gu, LiFen, and Amin Mohajer. "Joint
throughput maximization, interference cancellation, and
power efficiency for multi-IRS-empowered UAV
communications.” Signal, Image and Video Processing
18, no. 5 (2024): 4029-4043.

[24] G. Chen, Q. Wu, R. Liu, J. Wu, and C. Fang,
“Irs aided mec systems with binary offloading: A
unified framework for dynamic irs beamforming,”IEEE
Journal on Selected Areas in Communications, vol. 41,
no. 2, pp. 349-365, 2023.

[25] X. Li, Y. Qin, J. Huo, and W. Huangfu,
“Computation offloading and trajectory planning of
multi-uav-enabled mec: A knowledge-assisted
multiagent reinforcement learning approach, IEEE
Internet of Things Journal, 2023.

[26] Yang, Ting, Jiabao Sun, and Amin Mohajer.
"Queue stability and dynamic throughput maximization

14

in multi-agent heterogeneous wireless networks."
Wireless Networks (2024): 1-27.

[27] Mirzaei, A., & Rahimi, A. (2019). A Novel
Approach for Cluster Self-Optimization Using Big Data
Analytics. Information Systems & Telecommunication,
50.

[28] Y. Gu, C. Yin, Y. Guo, B. Xia, and Z. Chen,
“Communicationcomputation- aware user association in
mec hetnets: A meta-analysis,” IEEE Transactions on
Wireless Communications, vol. 22, no. 9, pp. 6090—
6105, 2023.

[29] Zhang, Qi, Zhigang Li, Zhenteng Qin,
Xiaochuan Sun, and Haijun Zhang. "Temporal Feature-
Enhanced Deep Reinforcement Learning for RAN
Slicing with User Mobility." IEEE Communications
Letters (2023).

[30] F. Zhou, Y. Wu, R. Q. Hu, and Y. Qian,
“Computation rate maximization in uav-enabled
wireless-powered mobile-edge computing systems,”
IEEE Journal on Selected Areas in Communications,
vol. 36, no. 9, pp. 1927-1941, 2018.

[31] Q. Hu, Y. Cai, G. Yu, Z. Qin, M. Zhao, and G.
Y. Li, “Joint offloading and trajectory design for uav-
enabled mobile edge computing systems,”IEEE Internet
of Things Journal, vol. 6, no. 2, pp. 1879-1892, 2019.
[32] Zhao, Zhongyong, Yu Chen, Jiangnan Liu,
Yingying Cheng, Chao Tang, and Chenguo Yao.
"Evaluation of operating state for smart electricity
meters based on transformer—encoder-BiLSTM." IEEE
Transactions on Industrial Informatics 19, no. 3 (2022):
2409-2420.

[33] Mohajer, Amin, Maryam Bavaghar, Rashin
Saboor, and Ali Payandeh. "Secure dominating set-
based routing protocol in MANET: Using reputation.”
In 2013 10th International ISC Conference on
Information Security and Cryptology (ISCISC), pp. 1-7.
IEEE, 2013.

[34] Y. Xu, T. Zhang, Y. Liu, D. Yang, L. Xiao,
and M. Tao, “Cellular connected multi-uav mec
networks: An online stochastic optimization approach,”
IEEE Transactions on Communications, vol. 70, no. 10,
pp. 66306647, 2022.

[35] Nemati, Z., Mohammadi, A., Bayat, A., &
Mirzaei, A. (2024). Metaheuristic and Data Mining
Algorithms-based Feature Selection Approach for
Anomaly Detection. IETE Journal of Research, 1-15.
[36] Li, Rongpeng, Chujie Wang, Zhifeng Zhao,
Rongbin Guo, and Honggang Zhang. "The LSTM-based
advantage actor-critic learning for resource
management in network slicing with user
mobility." IEEE Communications Letters 24, no. 9
(2020): 2005-20009.

[37] L. Zhang, J. Li, Y. Wang, Z. Chen, Q. Liu, and
Y. Sun, “Task offloading and trajectory control for uav-
assisted mobile edge computing using deep
reinforcement learning,” IEEE Access, vol. 9, pp. 53
708-53 719, 2021.

[38] X. Zhang, J. Zhang, J. Xiong, L. Zhou, J. Wei,
and H. Li, “Energy efficient multi-uav-enabled
multiaccess edge computing incorporating noma,” IEEE
Internet of Things Journal, vol. 7, no. 6, pp. 5613-5627,
2020.

Real-Time Scalable Task Offloading in Edge Computing Using Semi-Markov Decision Processes

[39] L. Wang, K. Wang, C. Pan, W. Xu, N. Aslam,
and L. Hanzo, “Multiagent deep reinforcement learning-
based trajectory planning for multiuav assisted mobile
edge computing,” IEEE Transactions on Cognitive
Communications and Networking, vol. 7, no. 1, pp. 73—
84, 2021.

[40] T. Zhang, Y. Xu, J. Loo, D. Yang, L. Xiao, and
Y. Zhao, “Joint computation and communication design
for uav-assisted mobile edge computing in iot,” IEEE
Transactions on Industrial Informatics, vol. 16, no. 8,
pp. 5505-5516, 2020.

[41] Z. Liu, X. Tan, M. Wen, S. Wang, C. Liang,
and Q. Zhao, “An energy efficient selection mechanism
of relay and edge computing in uavassisted cellular
networks,” IEEE Transactions on Green
Communications and Networking, vol. 5, no. 3, pp.
1306-1318, 2021.

[42] Yan, Dandan, Benjamin K. Ng, Wei Ke, and
Chan-Tong Lam. "Deep reinforcement learning based
resource allocation for network slicing with massive
MIMO." IEEE Access (2023).

[43] C.-Y. Hsieh, Y. Ren, and J.-C. Chen, “Edge-
cloud offloading: Knapsack potential game in 5g multi-
access edge computing,” IEEE Transactions on
Wireless Communications, vol. 22, no. 4, pp. 3124-
3136, 2023.

[44] N. Zhao, C. Xu, W. Zhang, S. Yang, G.-M.
Muntean, and F. Zhou,*“5g-enabled uav-to community
offloading: Joint trajectory design and task scheduling,”
IEEE Journal on Selected Areas in Communications,
vol. 39, no. 11, pp. 3306-3320, 2021.

[45] H. Guo and J. Liu, “Uav-enhanced intelligent
offloading for internet of things at the edge, IEEE
Transactions on Industrial Informatics, vol. 16, no. 4,
pp. 2737-2746, 2020.

[46] Wang, Zhaoying, Yifei Wei, F. Richard Yu,
and Zhu Han. "Utility optimization for resource
allocation in multi-access edge network slicing: A twin-
actor deep deterministic policy gradient
approach.” IEEE Transactions on Wireless
Communications 21, no. 8 (2022): 5842-5856.

[47] X. Qin, Z. Song, Y. Hao, and X. Sun, “Joint
Resource allocation and trajectory optimization for
multi-uav-assisted multi-access ~ mobile edge
computing,” IEEE Wireless Communications Letters,
vol. 10, no. 7, pp. 1400-1404, 2021.

[48] M. Li, N. Cheng, J. Gao, Y. Wang, L. Zhao,
and X. Shen, “Energyefficient uav-assisted mobile edge
computing: Resource allocation and trajectory
optimization,” IEEE Transactions on Vehicular
Technology, vol. 69, no. 3, pp. 3424-3438, 2020.

[49] Wang, Yue, Yu Gu, and Xiaofeng Tao. "Edge
network slicing with statistical QoS
provisioning." IEEE Wireless Communications
Letters 8, no. 5 (2019): 1464-1467.

[50] H. Guo and J. Liu, “Uav-enhanced intelligent
offloading for internet of things at the edge, IEEE
Transactions on Industrial Informatics, vol. 16, no. 4,
pp. 2737-2746, 2020.

15

