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ABSTRACT
This paper investigates the radial breathing mode (RBM) vibration 
of single-walled carbon nanotubes (SWCNTs) in a fluid media. 
Doublet mechanics (DM) model is used to consider microstructural 
features of the tube along with Navier-stoke's equation is considered 
to incorporate fluid properties. The medium surrounding the 
nanotube is typically modeled as a compressible Newtonian fluid 
and purely radial vibration of an elastic nanotube called the 
breathing mode in fluid is studied. An implicit partial differential 
equation that governs the RBM vibration of SWCNTs vibrating in 
fluid is derived and then solved using fluid-solid intraction in 
boundaries to give the damped frequency of the tube. Because of 
fluid interaction with the nanotube, the frequency obtained has 
complex form which in real part is the main frequency and the 
imaginary part represents the damping severity. The effects of 
microstructure along with fluid compressibility and viscosity in the 
breathing mode of an elastic nanotube are discussed in details. The 
results obtained herein are compared with the existing theoretical 
and experimental results and good agreement especially with the 
latter is observed. 
                               

Keywords: Doublet mechanics; Damped frequency; Fluid-solid 
interaction; Single-walled carbon nanotubes; Radial vibration;
Compressible Newtonian fluid.

1    INTRODUCTION

ARBON nanotubes (CNTs) are perfect tiny and hollow cylinder with unique electromechanical behaviors. 
They have attracted worldwide attention for their potential use as nano-pipes conveying fluids [1, 2]. For 

example, researchers have found that CNTs could be filled with liquid metal to become the smallest thermometers 
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[3]. In addition, biological nanoparticles such as viruses have also been modeled as elastic spheres in the studies of 
their vibration characteristics in different media with ultrasound waves via resonance [4]. Nanopipes that behave as 
tiny straws could deliver medicines, very slowly to a person's bloodstream or to a highly specific location in the 
body [5]. Studies on the vibration of elastic nanoparticles embedded in fluid media have recently attracted 
considerable interest, because of potential applications, for example, as an alternative nondestructive instrument for 
determining the properties of the material and designing mechanical and biological sensors [6]. The resonant 
frequencies and damping characteristics of mechanical nanostructures with different shapes have been measured by 
a variety of experimental methods [7]. Because of unique transport properties of CNTs for conveying fluid, 
investigating the physical and mechanical properties of fluid-filled CNTs is essential and their applications in 
nanoengineering are a controversial research topic [8, 9]. In addition, interest in fluid-filled SWCNTs is rising due to 
the progress in large-scale synthesis of them. Based on these considerations, it is very significant to study the 
vibration characteristics of fluid-filled CNTs. Low damping and high quality factor are desirable in these 
applications for detecting with high sensitivity. Therefore, studying of damping mechanisms is of much concern due 
to energy dissipation or energy transfer to the surrounding media. Ruijgrok and et al. combined ultrafast pump–
probe spectroscopy with optical trapping to investigate homogeneous damping of the acoustic vibrations of 
nanospheres and nanorods in water [10]. From the modeling point of view, acoustic vibrations of elastic bodies are 
classical problems in CCM. For example, Fatahi-Vajari and Imam [11-13] studied theoretically the vibrations of an 
elastic tube in vacuum with different geometries. The effect of chirality in nanotubes was investigated by 
Ebrahimian et al. [14-16].  Ebrahimian et al. studied the nonlinear buckling behavior of a composite rectangular 
plate reinforced with graphene nanosheets, employing the third-order shear deformation principle [17]. In addition, 
the effect of different surrounding environments, including an elastic solid matrix and inviscid and viscous fluid 
media, were also considered in later studies [18]. As a remark, for a nanoparticle with a typical size of tens of 
nanometers, the atomic spacing is usually sufficiently small that a CCM description is valid. Such an approach was 
also shown to be successful in predicting the resonant frequency (on the order of tens of GHz) of a gold nanoparticle 
vibrating in water [19, 20]. Recently, an experiment on the vibration of a bi-pyramidal gold nanoparticle in water-
glycerol mixtures suggested that the high frequency vibration could trigger viscoelastic responses in the mixture [21, 
22]. 

The continuum models have been widely used to discuss the mechanical behaviors of fluid-filled MWCNTs. For 
example, Yan et al. [23] exhibited the dynamical stability behaviors of fluid-conveyed MWCNTs and determined 
the critical flow velocities associated with divergence, restabilization and utter. Natsuki et al. [24] presented sound 
wave propagation in both SWCNTs and DWCNTs filled with fluid and found that the wave propagation in fluid-
filled CNTs was affected largely by the speed of free wave in the fluid. Dong et al. [25] reported the results of an 
investigation into the wave dispersion characteristic in fluid-filled CNTs embedded in an elastic medium and 
described the effects of shear deformation, rotary inertia and elastic matrix on the velocity, critical frequency, cut-of 
frequency and amplitude ratio of wave propagation in MWCNTs. Experiments on the acoustic vibrations of elastic 
nanostructures in Newtonian fluid media have been used to study the mechanical properties of materials [9]. 
Ghobanpour Arani et al. proposed a nonlocal foundation model to analyze the vibration and instability of a Y-
shaped Y-SWCNT conveying fluid using Eringen’s nonlocal theory [26]. Rexy et al. studied the nonlocal elastic 
waves in a fluid conveying Armchair thermoelastic SWCNT under moving harmonic load using Eringen's nonlocal 
elasticity theory via Euler Bernoulli beam equation [27]. Coupled vibration of nanotube has been studied in many 
papers like [28, 29]. On the other hands, one of the most important applications of vibrating nanotubes in fluid is in 
fabrication of nanosensors acting in fluid media [30, 31].

Four distinct categories of materials that have attracted significant attention are nanomaterials, macromaterials, 
micromaterials, and smart materials. These categories span a wide spectrum of size, structure, and functionality, 
effecting their applications across various industries. Nanomaterials operate at the nanoscale, exhibiting exceptional 
properties due to their small size. Macromaterials encompass large-scale structures and materials often seen in 
everyday life. Micromaterials, on the other hand, bridge the gap between nano and macro by focusing on materials 
at the microscale. Finally, smart materials are designed to respond dynamically to external stimuli, offering unique 
adaptability and versatility.

The following table lists the differences between nano, macro, micro and smart materials.
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Table 1
Comparison between different main categories of materials

Property Nano Material Macro Material Micro Material Smart Material

Size
Dimensions lesser than 100 

nanometers (nm).
Dimensions larger than 

1 millimeter (mm).
Dimensions about 5 
micrometers (µm).

Varies, not defined by 
size.

Examples
Carbon nanotubes, 

nanoparticles.
Metals, plastics, 

ceramics.
MEMS devices, 
microelectronics.

Shape-memory alloys, 
piezoelectric materials.

Behavior
Unique properties due to 

small size.
Common properties at 

visible scale.

Intermediate 
properties and 

behavior.

Respond to external 
stimuli.

Observability
Requires specialized tools 

like microscopes.
Visible to the naked 

eye.

Requires specialized 
tools like 

microscopes.

Observable through 
functionality.

Applications
Nanomedicine, 
nanoelectronics.

Construction, 
manufacturing.

MEMS devices, 
microsensors.

Sensors, actuators, 
adaptive systems.

Size-related Size-dependent properties. Bulk properties. Intermediate scale.
Not size-dependent, 
functionality-based.

It should be pointed out that the RBM is the characteristic phonon mode of SWCNTs which leads to a periodic 
increase and decrease of the tube diameter. This feature is specific to CNTs and is not observed in other carbon 
systems such as graphite [13]. On the other hand, this frequency is usually the strongest feature in SWCNT Raman 
spectra which plays a crucial role in the experimental determination of the geometrical properties of SWCNTs [32]. 
Furthermore, studying radial vibration of nanotubes conveying fluid is very significant for manufacturing and 
production nanosensors. Therefore, it is very important to know the behavior of RBM frequency of different 
nanotubes, precisely.

Although the vibration of fluid-conveying nanotube has been studied more but to the Authors best knowledge, 
studies on RBM vibration characteristics in SWCNTs which are immersed in fluid are not particularly investigated 
in the literature yet and the present paper attempts to consider such problem. In this paper, first the classical problem 
of the breathing mode of a vibrating elastic tube in a vacuum is revisited and then is extend to complex fluid media. 
When interactions between the tube and fluid need to be considered, the vibration frequency is significantly different 
from the empty one. Therefore, we focus on the dynamical behaviors of a fluid-filled SWCNT with considering 
scale effect by using DM model. The paper has been organized by first presenting a DM formulation in Section 1.2 
for the elasticity problem of a radially vibrating nanotube and in section 2.2 the propagation of acoustic waves in the 
fluid medium. The two problems are then coupled by matching the velocities and stresses at the interface of the solid 
in section 3. An analytical eigenvalue equation determining the vibration frequencies of an elastic nanotube in a 
compressible, viscous, Newtonian fluid medium is also obtained in this section. The results are validated against 
previous theoretical and experimental studies of a vibrating nanotube. The calculations are then extended and 
studied in detail in Section 4, with results and remarks discussed.

2    FORMULATION

In this section, the basic equations of motion for the nanotube are derived and the interaction between fluid and 
structure are investigated in the later section. 

2.1 Radial vibration of nanotube

The governing equations for RBM vibration of SWCNTs are derived. Now, consider a SWCNT of length L, mean 
radius R, Young’s modulus E, Poisson’s ratio  and mass density  as shown in Fig. 1. The direction in radial, 

polar and axial are denoted by , r  and z, respectively. The corresponding displacements are introduced by , ru u

and zu respectively.
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Fig. 1 
A nanotube in cylindrical coordinate [34].

The basic equations of motion for a nanotube based on thin shell theory are as follow [11, 12]
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wherein if and l 
�

are body forces and body couples, respectively.

Also, assuming that the shell-like body is thin, the physical components ijN and ijM are written as:

 
2
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ij ij

h
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                                                                                                        (7)
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In order to overcome to the classical continuum mechanics (CCM) limitations [37], various important 
modifications to CCM were suggested to enter microstructural features into the theory. One of the most important 
generalized continuum theories that have recently been applied to materials with microstructure is doublet 
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mechanics (DM). This theory originally developed by Granik (1978), has been applied to granular materials by 
Granik and Ferrari (1993) and Ferrari et al. (1997) [35]. In DM micromechanical models, solids are represented as 
arrays of points, particles or nodes at finite distances. This theory has shown good promise in predicting observed 
behaviors that are not predictable using continuum mechanics like Flamant paradox and also dispersive wave 
propagation [36]. In this section, this theory is used to obtain the basic equations of motion for CNTs.

From DM principles, the microstrains with only three terms approximation can be written in cylindrical 
coordinates as [32]:

        0 0 0 0 0 2 0 0 0 01 1
. . . . . . . . .

2 6                           τ τ u τ τ τ u τ τ τ τ u                                         (9)

wherein 0,   τ and u are microstrain, branch vector and displacement vector, respectively. The gradient operator 
in cylindrical coordinates is given by

1
r zr r z

  
   
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e e e                                                                                                                             (10)

Similarly to Eq. (9), the macro- to microstress relations, to within three terms in the expansion, in the cylindrical 
coordinates may be written as [34]:
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In this study, the following assumptions for cylindrical shells are made. First, all points that lie on a normal to 
the middle surface remain the same before and after the deformation. It can be assumed that the transverse shear 

stresses  M
rz and  M

z are to be negligible. Second, displacements are small compared to the shell thickness.

As is known, in the RBM, all carbon atoms move coherently in the radial direction creating a breathing-like 
vibration of the entire tube. Thus, with assumptions of axisymmetric and homogeneity for the entire tube in the 

RBM vibration, this implies that 0,  0
θ r

 
 

 
and 0u  . Considering such assumptions, Eqs. (1)- (6) reduce to
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In the DM, the relation between microstress and microstrain in isotropic media with local interactions is given by

0p A                                                                                                                                                            (13)

As a result of the above assumptions, the gradient operator and the displacement vector are given by:

 ,r r ru z
r


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
e  u e                                                                                                                                      (14)

It is further assumed that all doublets originating from a common node have the same magnitudes, i.e.,
,  1, 2,3a a   .

As mentioned above, a SWCNT is constructed from three doublets having equal lengths and angles between 
them, an example of which is a Zigzag SWCNT shown in Fig. 2.
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Fig. 2 
A Zigzag nanotube [34].

Considering Fig. 2, the director vectors in cylindrical coordinates can be expressed as:
0 0 0
1 2 30 , 0 ,  0r r r                                                                                                                                                 (15)
0 0 0
1 2 30  ,  30 ,  30cos cos                                                                                                                               (16)
0 0 0
1 2 31 , 60 ,  6z z zcos cos                                                                                                                                (17)

Where z is in the axial direction and r and  are in the radial and circumferential directions of the nanotube, 
respectively.

Substituting Eq. (14) into Eq. (9) and performing some algebraic manipulations, it is found that
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Inserting Eq. (18) into Eq. (13), the following equation for the microstresses is obtained
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Similarly, substituting from Eq. (19) into Eq. (11) and taking note of Eq. (14), it is found that
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This equation is the relation between the macrostresses and the displacements. Setting i and j equal to  in Eq. 

(20), the following equation for the normal stress  M
 is found
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If Eq. (21) is substituted into Eq. (7) and then integrated along the tube thickness, the following equation is 
obtained 
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Finally, upon substituting the components of the director vectors from Eqs. (15)- (17) into Eq.(22) and the result 
into Eq. (12) and neglecting body forces along with taking note of Eq. (14), the following equation of motion in the 
radial direction for a Zigzag SWCNTs is obtained
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Eq. (23) is a second order governing equation for the RBM vibration of a nanotube in DM to within the third 
order of approximation. This equation can be further simplified. Since the nanotube in RBM vibration can be 
considered to be in the state of plane stress, from [11], it may be concluded that
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If Eq. (24) is substituted into Eq. (23), it is found that
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Eq. (25) is the basic equation of motion for the RBM vibration of a Zigzag SWCNT incorporating the scale 
effects.
To find the frequency of RBM of the nanotube, a solution for the RBM vibration of the nanotube are assumed to be 
of the form

   

1

, i t
r n

n

u r t A e







                                                                                                                                               (26)

Where W and   are the amplitude and frequency of the RBM vibration, respectively. Superscript  in  
indicates the natural frequency with scale effects. nA is the amplitude of the tube vibration obtained later.

2.2 Fluid dynamics: propagation of acoustic waves

In this paper, the linearized Navier-Stokes equation for compressible flows is considered. Then, the velocity field, 
v is obtained by small-amplitude acoustic waves in the fluid with the following equation

 2 .
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v
v v                                                                                                                    (27)

where f is the density of the fluid,  is the shear viscosity,  is the bulk viscosity, and p is the thermodynamic 

pressure.
It should be noted that bulk viscosity becomes essential where fluid compressibility is important. It is dependent 

to the vibrational energy of the molecules. Bulk viscosity is zero for monatomic gases with low density, but it can be 
large for fluids with larger molecules. It is important in describing sound attenuation and the absorption of sound 
energy into the fluid depends on the sound frequency like the rate of fluid compression and expansion. For 
an incompressible liquid the volume viscosity is superfluous, and does not appear in the equation of motion. The 
shear viscosity of a system measures its resistance to flow. A simple flow field can be established in a system by 
placing it between two plates and then pulling the plates apart in opposite directions. Such a force is called a shear 
force, and the rate at which the plates are pulled apart is the shear rate.

Since the vibration is purely radial, a cylindrical coordinate system located at the center of the cylinder is used. 
The displacement field of the elastic tube and the velocity field of the fluid, have only radial components that are 
functions of the distance from the origin r and time t. With this geometrical symmetry, the identity 2 ( . )a a   
holds for a vector field a , which respectively simplifies Eq. (27) to
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where 
4

 
3

   introduced as viscosity coefficient which is zero for inviscid flow.

Now, the propagation of small-amplitude acoustic waves in the fluid surrounding for the vibrating nanotube is 
considered. The linearized continuity equation for a compressible fluid is given by the following equation
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where  ' , r t represents the density fluctuation considered to be small in comparison with fluid density means 

' f � . Together with the equation of state, 2 'p c  , where is the speed of sound in the fluid, Eq. (28) can be 

combined with Eq. (29) to obtain the following density fluctuations equation
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Now, the time-periodic solution with the same vibration of the frequency of the elastic tube is sought. Then, Eq. 
(30) can be solved by separation of variables to yield
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where nB are arbitrary constants and 
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order. The corresponding velocity field can then be obtained from the continuity equation (29) as
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3    COUPLING THE RADIAL VIBRATION OF AN ELASTIC NANOTUBE WITH THE SUUOUNDING 
FLUID

The vibration of the elastic nanotube is coupled with the fluid motion by matching the velocities and stresses at the 
boundary between the fluid and nanotube. Since small amplitude vibrations are considered, domain perturbation is 
used and the velocities and stresses are expanded at the boundary about the equilibrium radius of the cylinder, R, a 
constant, keeping only the leading-order terms. For continuity of velocity, the time derivative of the displacement 
field of the elastic cylinder given with Eq. (26) is computed and equated to the velocity field in the fluid obtained by 
Eq. (32) evaluated at    r R , which results in
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On the other hand, the stress tensor in the solid is given by
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The stress tensor in the fluid is given by
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where   1
 
2

T
D    v v represents the rate of strain tensor. The only nonzero component of the stress tensor 
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Simplification on Eq. (36) yields
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where the equation of state and the continuity equation have been used. Evaluating and matching the stresses in the 
solid and fluid given respectively with Eq. (34) and Eq. (37) at r=R via relation between stresses for thin-walled 
cylinders under pressure, leads to
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                                                                                                                                                                        (38)
The two boundary conditions in Eqs. (33) and (38) can be rearranged as follow
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For non-trivial solution to the system of equations in Eq. (39), it is required that the determinant of the matrix 

representing this system must be zero, which leads to the eigenvalue equation for the natural frequencies 
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It is notable that Eq. (40) is a transcendental equation and should be solved numerically. With solving Eq. (40), a 

complex frequency is obtained as    r i i    , where r and i are, respectively, the real and imaginary parts of 

the frequency. The imaginary part of complex conjugate root can be considered as a criterion for severity of 
damping. When this coefficient increases, the vibration will damp in lesser time. It should be added that this 
parameter has no influence on the main (real) frequency.

Here, only the results for the fundamental mode ( n = 1) is calculated, since it is mainly the mode detected in 
experimental measurements. Although, higher order modes can be obtained by finding other roots of the same 
equation. For an inviscid flow (  0   ), the eigenvalue condition (40) for  reduces to
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                                                                       (41)

The case  0f  corresponds to an elastic cylinder radially vibrating in a vacuum [13] where the eigenvalue 

condition further simplifies to

 1 0nJ k R                                                                                                                                                      (42)

It should be noted that the attenuation in oscillation is not due to viscous dissipation in the fluid since an inviscid 
medium is considered in Eq. (41). Instead, the attenuation comes from the propagation of energy into the 
surrounding medium away from the vibrating tube. Compressibility in the fluid provides a mechanism for energy to 
propagate away from the vibrating tube through acoustic waves. When the shear and bulk viscosities of fluid are 
taken into account, Eq. (41) gives a slightly reduced. For inviscid flow, all damping is due to the propagation of 
acoustic waves away from the source. It should also be pointed out that when the breathing mode of an elastic tube 
surrounded by another elastic medium is considered, the eigenvalue conditions can be alternatively obtained by 
modifying the constitutive relation to include the viscous contribution from the fluid. For the case of vacuum 
surrounding the vibrating cylinder, the frequencies determined from Eq. (42) are real because there is no damping 
outside the cylinder. When the vacuum is replaced by an inviscid fluid medium, the frequencies determined from the 
roots of Eq. (41) become complex, which implies that the free oscillation of the elastic cylinder in a fluid takes the 
form of a sinusoid attenuating exponentially.

4    RESULT AND DISCUSSION

To show the validity and accuracy of the present analysis, numerical results are calculated to compare with those 
available in the literature. Table 2 compares the RBM frequencies of the different SWCNTs vibrating in vacuum 
obtained from different methods. Reasonable agreement between the present solutions and those given in the other 
literature is achieved. Experimentally, the RBMs frequency is related to  via f = w/2πC where

102.9979245 /8 10 sC cm  is the velocity of light in the vacuum. This relation is used in Tables 1 below to report 

the frequencies in 
1cm 
. Throughout this paper, the material properties of SWCNT are taken to be: Young’s 

modulus 1.059 E TPa , mass density 32270  /kg m  and Poisson's ratio 0.2  [13]. In the DM model, the 

scale parameter used is the carbon-carbon bond length 0.1421 nm  and equilibrium interlayer spacing between 

two adjacent tubes is considered to be equal to 0.34 nm [16].
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Table 2

Frequencies of RBMs (
1cm

) for various SWCNTs with different methods

Tube chirality Tube 
diameter

RBM [13] Experimental 
result [33]

Present 
method

Percent of differences between 
present method and 
experimental result

(9,0) 0.7047 317.4 317.2 317.2 0

(10,0) 0.7830 286.2 285.4 285.6 0.0007

(6,6) 0.8138 275.1 274.6 274.7 0.0011

(11,0) 0.8613 260.5 259.5 259.8 0.0012

(12,0) 0.9397 239.1 237.8 238.1 0.0013

(7,7) 0.9494 236.4 235.4 235.7 0.0013

(13,0) 1.0180 220.9 219.5 219.9 0.0018

(8,8) 1.0850 207.2 206.0 206.4 0.0019

(14,0) 1.0963 205.2 203.9 204.3 0.0029

(15,0) 1.1746 191.7 190.3 190.7 0.0021

(9,9) 1.2206 184.3 183.1 183.5 0.0022

(16,0) 1.2529 179.8 178.4 178.8 0.0022

(17,0) 1.3312 169.3 167.9 168.3 0.0024

(10,10) 1.3563 166.0 164.8 165.1 0.0018

(18,0) 1.4095 159.9 158.6 158.9 0.0019

(19,0) 1.4878 151.5 150.2 150.6 0.0027

(11,11) 1.4919 151.0 149.8 150.1 0.0020

(20,0) 1.5661 144.0 142.7 143 0.0021

The calculations for frequency in radial vibration of SWCNTs vibrating in fluid are also given in graphical form 
in Figs. 3- 5. To study the effects of different physical parameters on vibration frequency, the breathing mode of a 
single nanotube in water was measured. Fig. 3 shows the frequency variations versus fluid density for different 
mode number for Zigzag (16, 0). As can be seen from this figure, in contrast to a systems vibrating in vacuum, the 
frequencies are a function of fluid density so that as the density increases, the frequency decreases. As fluid density 
increases more, the more pronounced reduction between the frequencies become. It can also be seen that as the 
mode number increases, the frequency increases too. It can also be seen that reduction of frequency with fluid 
density is more sensitive in higher mode numbers.
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Fig. 3
Frequency versus fluid density for different mode numbers.

Fig. 4 illustrates the frequency variations against the tube diameter in different viscosity coefficients. It can be 
observed that with the increase of the tube diameter, the frequencies of SWCNTs decrease. The decreasing rate for 
the frequency is more apparent for lower tube diameter. As is expected, frequency is lesser in the higher viscosity 
coefficient. It is due to the existence of viscose fluid around the tube which has damping effect for the tube. As said 
before the attenuation of fluid energy comes from the propagation of energy into the surrounding medium away 
from the vibrating tube. When the shear and bulk viscosities of fluid are taken into account, result may give a 
slightly reduced. For inviscid flow, all damping is due to the propagation of acoustic waves away from the source. It 
is also seen that as the tube diameter increases more, the frequencies tend to approach the single value. This effect is 
more pronounced for tubes with higher viscosity coefficient around it.
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Fig. 4
Frequency versus fluid density for different mode numbers.

Variations of frequency versus shear viscosity have been plotted in Fig. 5 for Zigzag and Armchair tubes. As 
seen from this figure, as the shear viscosity increases, the frequencies decreases.  This reduction is more apparent in 
higher shear viscosity. It may be because of the increased viscous dissipation. It is also seen that the vibration 
frequency of Zigzag nanotubes is fewer more than the Armchair one or Armchair nanotubes is stiffer than the 
Zigzag one. It may be because this reason that microstructural interaction between viscosity and scale effect is more 
significant in Zigzag one. 

Fig 5
Frequency versus shear viscosity for Zigzag and Armchair nanotubes.
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5    CONCLUSIONS
In this paper, the frequencies of a radially oscillating elastic nanotube in simple and complex fluid media have been 
studied. The equations of motion for solid tube are derived based DM considering reaction between fluid and 
nanotube in the boundary using Navier-Stoke's equation. First, a nanotube vibrations in vacuum is considered and 
then the Newtonian fluid media around the tube taking into account with considering both shear and viscosities, and 
demonstrated that the fluid compressibility plays a significant role in the radial vibration of nanotubes. Due to the 
simplicity of the tube geometry considered in this work, the eigenvalue equation for the breathing mode in the fluid 
medium is exact and analytical while is solved numerically. To show the accuracy and ability of this method, the 
generated results obtained have been compared with available results and reasonable agreement has been achieved. 
The main results specifically obtained in this paper are as follows.

1- Due to the coupling and interaction between the fluid and structure, frequency of the tube vibrating in fluid 
is dependent to the fluid properties too. Because of fluid compressibility, the frequency is attenuated and 
obtained as complex form which in real part is the main frequency and the imaginary part represents the 
damping severity.

2- The frequency of the tube has inverse proportion with fluid density. As the fluid density increases, the tube 
frequency decreases. This reduction is more significant for higher mode numbers.

3- As the viscosity coefficient increases, the frequency decreases. Similar behavior is seen with tube diameter.
4- The shear viscosity has decreasing effect on tube frequency. This reduction is more significant for higher 

values of shear viscosity. For the same shear viscosities, the frequency of Zigzag nanotube is slightly 
higher than the Armchair one.
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