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Abstract 

This paper addresses the stabilization of flexible joint manipulators (FJMs) under the influence of unknown and unbounded 

faults, model uncertainties, and external disturbances. To achieve this, the upper bound of model uncertainties and external 

disturbances is treated as a nonlinear function of the system states with unknown parameters. A novel robust-adaptive finite-

time sliding mode controller (RAFSMC) is designed, where the unknown coefficients of the functional upper bound of 

disturbances are estimated using stable adaptive laws. The RAFSMC enhances the convergence speed of the flexible joints to 

their desired values, offering a more practical solution for the finite-time control of FJMs, even in scenarios where disturbances 

may have unbounded amplitudes. Initially, the equations governing the FJM model are segmented into two subsystems, after 

which the innovative robust-adaptive sliding mode controller is formulated, featuring a third-order finite-time sliding mode 

surface, a continuous control approach, and stable adaptive laws. The finite-time convergence of the FJM system states to the 

sliding surface is established, and a new approximation for the sign function is introduced to further reduce chattering. Stability 

proofs are provided using finite-time Lyapunov theory, and the simulation results, along with comparative analyses presented 

at the conclusion of the paper, demonstrate the effectiveness of the proposed methodology. 
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1. Introduction 

Robotic manipulators find broad applications 

across a wide range of industries, such as 

manufacturing, sorting systems, quadruped robotics, 

and rehabilitation exoskeletons [1-3]. Recently, 

trajectory-tracking control has garnered 

considerable attention from the research 

community. Proportional-integral-derivative (PID) 

control is often employed due to its practical 

simplicity [4]. However, PID control falls short of 

achieving the desired performance for dynamic 

systems when high-performance demands or 

varying operating conditions are present. The design 

of high-performance trajectory-tracking controllers 

for robotic manipulators is challenging, given their 

nonlinear and highly coupled dynamics [5]. 

Moreover, nonlinear friction, parameter variations, 

unmodeled dynamics, payload fluctuations, and 

external disturbances further complicate control 

performance [6]. As such, advanced control 

schemes that are robust against disturbances are 

essential to meet performance goals under different 

conditions. 

In recent decades, flexible-joint manipulators 

(FJMs) have gained significant popularity in human-

robot interactions because of their flexibility, which 

enhances safety for humans [7-8]. However, FJMs 

are underactuated, high-order nonlinear systems, 

leading to complex control challenges since their 

order is double that of rigid manipulators and they 

possess fewer actuators than the number of degrees 

of freedom to be controlled [9]. Furthermore, FJM 

systems encounter uncertainties and disturbances 

from both the actuators and links, including 

variations in the environment, couplings, and 
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uncertainties in parameters [10-11]. This study aims 

to develop a precise tracking control strategy for 

FJMs, addressing these constraints, including 

unbounded perturbations. 

The rapid advances in integrated circuits and 

computing technologies have enabled the 

implementation of sophisticated control strategies to 

improve the performance of mechatronic systems 

like FJMs. In [8], the authors review techniques 

related to flexible robotic manipulator (FRM) 

systems, emphasizing recent advancements in 

motion planning and control strategies. This work 

provides a comprehensive categorization of 

emerging research trends and applications in this 

field Numerous nonlinear control techniques, 

including backstepping [12], adaptive control [13], 

neural networks [14], singular perturbation control 

[15], and fuzzy control [16], have been applied to 

FJM systems. In [7], a radial basis function (RBF) 

neural network-based PID tuning method is 

proposed to enhance trajectory tracking in robotic 

manipulators. This method addresses uncertainties 

in the system dynamics by adapting the PID gains in 

real-time, validated through simulations with a 5-

DOF manipulator. In [10], a nonlinear observer-

based visual servoing approach is introduced for the 

vibration control of flexible manipulators using only 

image feedback. The method employs state 

estimators to regulate image positions and suppress 

vibrations, demonstrating its efficacy through 

experimental results. 

Among these, sliding mode control (SMC) has 

gained substantial attention due to its inherent 

robustness against model errors, parameter 

uncertainties, and external disturbances [17-18]. 

SMC is recognized for its effectiveness in regulating 

robotic manipulators, offering low sensitivity to 

both structured and unstructured uncertainties and 

external disturbances. The flexibility of SMC has 

made it increasingly popular in recent years for 

controlling systems with flexible structures [19-21]. 

However, the main challenge with 

conventional SMC is the chattering effect caused by 

switching elements. Several methods, such as high-

order SMC, boundary layer-based SMC, and 

observer-based SMC, have been proposed to 

mitigate chattering in FJM systems [22-24]. 

Although boundary layer-based SMC reduces 

chattering by using a saturation function, this 

approach is only effective outside the boundary 

layer, leading to steady-state tracking errors. 

Meanwhile, observer-based SMC reduces chattering 

by adjusting the switching gain but requires an 

additional observer. High-order SMC addresses 

continuity by incorporating higher derivatives into 

the control law [21]. 

Another issue with traditional SMC is its 

limited ability to handle unmatched perturbations 

that enter the system through various channels [25]. 

To address this, adaptive SMC methods have been 

introduced, such as the approach in [26], which 

addresses mismatched disturbances through a 

backstepping-like design. Other methods, such as 

the cascaded SMC scheme in [27], handle 

mismatched disturbances in FJM systems. While 

these approaches reduce the impact of such 

perturbations, there remains room for performance 

improvement due to discontinuous control laws, 

passive disturbance handling, or computational 

complexity. 

Recent research has explored fractional-order 

SMC for FJM systems, using fractional calculus to 

enhance control performance [28]. Although 

advancements in control strategies for flexible 

manipulator systems have been made, handling 

uncertainties, disturbances, and faults remains a core 

research focus. Obtaining full state information from 

FJM systems is often costly and complex due to 

structural limitations, leading to the development of 

observer designs for these systems. For example, an 

extended state observer (ESO) was introduced in 

[11] to estimate states and uncertainties for 

trajectory tracking. Additionally, disturbance 

observers (DO) have been used to decouple joint 

interactions in flexible-link systems [29]. 

In [30], full-state feedback was employed to 

address trajectory tracking with variable elasticity in 

FJMs, ensuring the tracking error remained 

minimal. Other studies, such as [16], used fuzzy 

sliding surfaces to improve control performance, but 

finite-time convergence was not analyzed. While 

many SMC methods ensure asymptotic stability, 

finite-time stability offers more precise control 

within a specified time frame. Neural networks and 

Kalman filters were used in [23] to address 

chattering, but finite-time convergence was not 

discussed. In contrast, the method proposed here 

offers a comprehensive finite-time control solution 

that extends beyond chattering reduction. While 

research in [12, 31-33] emphasizes robustness, 

finite-time convergence is not covered. A terminal 

sliding mode control (TSMC) approach with a 

cascaded finite-time sliding mode observer 

(CFTSMO) was proposed in [34] for robust finite-

time convergence and disturbance attenuation. 

Additionally, a nonsingular fast terminal sliding 

mode controller (NFTSMC) with a finite-time 

extended state observer (FTESO) was designed for 

trajectory tracking in FJMs [35]. A recent study in 

[36] introduced a super-twisting adaptive SMC, 

addressing input saturation constraints and claiming 

finite-time stability. In [37], a nonlinear I-PID-type 

control scheme is presented for torque-driven 

flexible joint robots facing input saturation. The 

proposed controller ensures global asymptotic 

stability in the presence of disturbances and 

uncertainties, validated by real-time experiments on 

a two-degrees-of-freedom manipulator. 



227                              International Journal of  Smart Electrical Engineering, Vol.13, No.4, Fall  2024                         ISSN:  2251-9246  

EISSN: 2345-6221  

Recently in [38], a nonsingular fixed-time 

sliding mode controller is proposed to mitigate the 

effects of friction, dynamic parameter uncertainty, 

and external disturbances in flexible manipulators. 

By incorporating a generalized disturbance 

estimator and adaptive RBF neural networks, the 

approach demonstrates substantial improvements in 

control accuracy. In [39], an adaptive integral 

sliding mode controller (AISMC) based on singular 

perturbation theory is developed for flexible joint 

robots. This controller effectively reduces tracking 

errors and noise, proving its stability and robustness 

through experimental validation. Finally, in [40], a 

method for designing an adaptive sliding mode 

control law for flexible joint manipulators is 

presented. The proposed controller aims to counter 

disturbances affecting the actuator signals, with its 

stability verified by the Lyapunov method and 

performance assessed through simulations and real-

time responses. 

In practical applications, FJM systems 

encounter unmodeled dynamics and external factors 

like wind or unwanted forces, which are modeled as 

external disturbances. Unlike earlier studies, where 

disturbances were considered independent 

variables, this work recognizes that disturbances and 

uncertainties depend on system states, such as the 

position and orientation of the FJM end-effector. 

This means the upper bound of disturbances and 

uncertainties is not necessarily a scalar value but a 

nonlinear function of system states. Moreover, the 

coefficients of this nonlinear function are unknown 

and need to be estimated through adaptive rules, 

making the control problem more realistic. 

This study presents a novel robust-adaptive 

finite-time sliding mode controller (RAFSMC) 

designed to stabilize FJM systems, where the upper 

bound of disturbances is an unknown, nonlinear 

state-dependent function. The chattering 

phenomenon is effectively addressed by 

approximating the sign function in SMC, ensuring 

smooth control input without chattering. The key 

innovation of this paper lies in considering the upper 

bound of disturbances as a nonlinear function of 

system states with unknown coefficients, a 

significant improvement over previous SMC 

controllers for finite-time trajectory tracking in FJM 

systems. 

A novel terminal robust adaptive finite-time 

sliding mode control (RAFSMC) for trajectory 

tracking of FJM robot end-effectors exposed to 

unknown perturbations. The continuous sliding 

mode surface reduces chattering while maintaining 

performance. 

The proposed controller can handle unbounded 

external disturbances and uncertainties, where the 

upper bound is a nonlinear function of system states 

with unknown coefficients, estimated using adaptive 

laws. This is a departure from previous studies that 

assume a constant upper bound for disturbances. 

The rest of the paper is structured as follows: 

Section II outlines the FJM model, problem 

formulation, and necessary preliminaries. Section III 

presents the proposed controllers, including SMC 

and robust-adaptive SMC. Simulation results are 

given in Section IV to validate the theoretical 

findings. The conclusion is provided in Section V. 

2. Flexible joint manipulators modeling 

The dynamic model of a flexible robot is 

represented by the following equations, with the 

derivation process omitted here. For detailed 

explanations, refer to [39]. 

𝐷(𝜃)�̈� + 𝐶(𝜃, �̇�)�̇� + 𝑔(𝜃) = 𝐾𝑠(𝑟𝜃𝑚 − 𝜃) (1) 

𝐽�̈�𝑚 + (𝐵 + 𝑅𝑚
−1𝐾𝑚𝐾𝑏)�̇�𝑚 + 𝑟𝐾𝑠(𝑟𝜃𝑚 − 𝜃)

= 𝑅𝑚
−1𝐾𝑚𝑈 

(2) 

where 𝜃 ∈ 𝑅𝑛and 𝜃𝑚 ∈ 𝑅𝑛 respectively 

denote the joint angle and rotor position vectors, 𝑈 ∈
𝑅𝑛 is the vector of motors voltage, 𝐷 ∈ 𝑅𝑛×𝑛 is the 

manipulator inertia matrix, 𝐶 ∈ 𝑅𝑛×𝑛 denotes the 

Centrifugal and Coriolis terms matrix and 𝑔 ∈ 𝑅𝑛 is 

gravitation force vector. In equation (2), 𝐽 ∈ 𝑅𝑛×𝑛, 

𝐵 ∈ 𝑅𝑛×𝑛, 𝑟 ∈ 𝑅𝑛×𝑛 and 𝑅𝑚 ∈ 𝑅𝑛×𝑛 respectively 

indicate the coefficients of the motor’s inertia, 

motors damping, reduction gear and armature 

resistance. 𝐾𝑠 , 𝐾𝑚, 𝐾𝑏 ∈ 𝑅
𝑛×𝑛 are some constant 

diagonal matrices [39]. 

We proceed with modeling the flexible-joint 

robot in the presence of faults, disturbances, and 

uncertainties. The mechanical dynamics of the 

system are captured by the dynamic equations (Eq. 

1), while the electrical dynamics are described in Eq. 

(2), where DC motor voltages serve as the control 

inputs [39]. Disturbances, such as unmodeled 

dynamics, are considered within Eq. (1) in 

accordance with standard approaches from the 

literature. Furthermore, an input bias fault is 

introduced into Eq. (2), necessitating its inclusion 

alongside the system input term. This ensures that 

the input bias fault is positioned consistently with 

respect to the system input. Consequently, the 

dynamic equations, accounting for unmodeled 

dynamics and input faults, provide an extended 

version of the nominal model described in Eqs. (1) 

and (2). 

𝐷(𝜃)�̈� + 𝐶(𝜃, �̇�)�̇� + 𝑔(𝜃) + ∆𝑓(𝜃)

= 𝐾𝑠(𝑟𝜃𝑚 − 𝜃) + 𝑑𝑠 

(3) 

𝐽�̈�𝑚 + (𝐵 + 𝑅𝑚
−1𝐾𝑚𝐾𝑏)�̇�𝑚 + 𝑟𝐾𝑠(𝑟𝜃𝑚 − 𝜃)

= 𝑅𝑚
−1𝐾𝑚𝑈 + 𝐹𝑎𝑓𝑎 + 𝑑𝑚 

(4) 

Where 𝑓𝑎 ∈ 𝑅
𝑛 represents the unknown 

actuator error, 𝐹𝑎 ∈ 𝑅
𝑛×𝑛 is the fault input matrix 

and ∆𝑓 ∈ 𝑅𝑛 is a vector encompassing unknown 

dynamics and modelling uncertainties. Also 

𝑑𝑚, 𝑑𝑠 ∈ 𝑅
𝑛 stands for external disturbances. It is 
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also worth to mention that due to the presence of 

various types of faults such as disturbances in the 

voltage or current in the energy supply system in the 

manipulator or other faults, the possibility of the 

fault entering the robot system from its energy 

source, i.e. the voltage and current of the motor, is 

high. For this reason, the fault is considered in the 

introduced robot model as the input bias 

A) Rewriting the robot model with flexible 

joints in nonlinear state space form 

The flexible robotic arm model outlined in 

Eqs. (3) and (4) possesses 4n degrees of freedom. In 

this section, we will apply a transformation to 

express these equations in a more standard nonlinear 

state-space format. This transformation simplifies 

the application of established theorems for 

designing stabilizing control strategies. The 

transformation of the variables is defined as follows: 
𝑥1 = 𝜃, 𝑥2 = 𝜃𝑚 

𝑥3 = �̇�, 𝑥4 = �̇�𝑚 

(5) 

The model of the mechanical arm with flexible 

joints, incorporating faults and unmodeled dynamics 

as detailed in Eqs. (3) and (4), can be expressed as 

follows: 
�̇�1 = 𝑥3 

�̇�2 = 𝑥4 

�̇�3 = 𝐷
−1(𝑥1){𝐾𝑠(𝑟𝑥2 − 𝑥1) − 𝐶(𝑥1, 𝑥3)𝑥3

− 𝑔(𝑥1) − ∆𝑓(𝑥)
+ 𝑑𝑠}  

�̇�4 = 𝐽
−1{𝑅𝑚

−1𝐾𝑚𝑈 + 𝐹𝑎𝑓𝑎 + 𝑑𝑚
− (𝐵 + 𝑅𝑚

−1𝐾𝑚𝐾𝑏)𝑥4
− 𝑟𝐾𝑠(𝑟𝑥2 − 𝑥1)}; 

(6) 

where 𝑥𝑖 ∈ 𝑅
𝑛 for 𝑖 = 1,2, … ,4. By defining 

𝑥 = [𝑥1, 𝑥2, 𝑥3, 𝑥4]
𝑇 ∈ 𝑅4𝑛,  

Eq. (6) can alternatively be represented in the 

following more consolidated form: 

 

�̇� = 𝐴𝑥 + 𝐵𝑈 + 𝐻 + 𝛷 (7) 

where 

 

𝐴 = [

0 0 1 0
0 0 0 1
0 0 0 0

𝐽−1𝑟𝐾𝑠 −𝐽−1𝑟𝐾𝑠𝑟 0 −𝐽−1(𝐵 + 𝑅𝑚
−1𝐾𝑚𝐾𝑏)

]

∈ 𝑅4𝑛×4𝑛;  𝐵 = [

0
0
0

𝐽−1𝑅𝑚
−1𝐾𝑚

]

∈ 𝑅4𝑛×𝑛; 

(8) 

𝐻(𝑥, 𝑡) = [

0
0

−𝐷−1(𝑥1)(∆𝑓(𝑥) + 𝑑𝑠)

𝐽−1(𝐹𝑎𝑓𝑎 + 𝑑𝑚)

] ∈ 𝑅4𝑛;  𝛷(𝑥, 𝑡)

= [

0
0

𝐷−1(𝑥1){𝐾𝑠(𝑟𝑥2 − 𝑥1) − 𝐶(𝑥1, 𝑥3)𝑥3 − 𝑔(𝑥1)}

0

] ∈ 𝑅4𝑛 

Following the definition of the error, tracking 

the desired configuration in the dynamic model of 

the flexible-joint robot is defined as follows: 

�̂� = 𝑥 − 𝑥𝑑𝑒𝑠 ∈ 𝑅
4𝑛 (9) 

where 𝑥𝑑𝑒𝑠 = [𝜃𝑑𝑒𝑠 , 𝜃𝑚 𝑑𝑒𝑠 , �̇�𝑑𝑒𝑠 , �̇�𝑚 𝑑𝑒𝑠]
𝑇
∈ 𝑅4𝑛 

we can reformulate the dynamic model of the 

configuration error using the state-space dynamic 

model from (7) as follows: 

 

�̇̂� = �̇� − �̇�𝑑𝑒𝑠 = 𝐴𝑥 + 𝐵𝑈 + 𝐻(𝑥, 𝑡)
+ 𝛷(𝑥, 𝑡) −  �̇�𝑑𝑒𝑠 

(10) 

By substituting 𝑥 with 𝑥 = �̂� + 𝑥𝑑𝑒𝑠 from Eq. 

(9) into Eq. (10), we obtain: 

 

�̇̂� = 𝐴�̂� + 𝐵𝑈 +𝐻(𝑥, 𝑡) + 𝐴𝑥𝑑𝑒𝑠 + 𝛷(𝑥, 𝑡)
− �̇�𝑑𝑒𝑠 

(11) 

Finally, we propose a nonlinear error model for 

the generalized robot model with flexible joints, 

expressed as follows: 

�̇̂� = 𝐴�̂� + 𝐵𝑈 +𝐻(𝑥, 𝑡) + �̂�(𝑥, 𝑡) (12) 

where �̂� ∈ 𝑅4𝑛 is a known vector defined as 

follows: 

 
�̂�(𝑥, 𝑡) = 𝐴𝑥𝑑𝑒𝑠 + 𝛷(𝑥, 𝑡) −  �̇�𝑑𝑒𝑠 (13) 

B) Problem formulation and preliminaries 

In practical applications, the dynamic model of 

a flexible-joint manipulator (FJM) is subject to 

external disturbances, uncertainties in model 

parameters, and unmodeled dynamics. The dynamic 

parameters of an FJM system, such as inertia, mass, 

friction, and parameters related to the motors 

including motor inertia, damping, gear reduction, 

and armature resistance are often treated as 

uncertain by designers. 

Additionally, FJMs frequently encounter 

external disturbances like wind or other unknown 

forces, as well as undesirable fluctuations in the 

input voltage to the FJM motors. To address these 

challenges, the following remark provides a more 

accurate and applicable description of the FJM 

system: 

Remark 1: The model uncertainty 𝛥𝑓(𝑥) is 

dependent on the states of the FJM system. 

Furthermore, external disturbances are also 

influenced by the end-effector position of the FJM 

robot. Thus, for the first time, this study posits that 

the upper bound of external disturbances and model 

uncertainties, denoted as 𝐻(�̂�, 𝑡), is not merely a 

scalar value but a nonlinear function of the FJM state 

variables. Moreover, it is assumed that the 

coefficients of this upper bound function are 

unknown, and stable adaptive laws will be 

developed to estimate these coefficients. This leads 

to more realistic and applicable assumptions 

regarding the FJM trajectory tracking problem. 

Therefore, consider the following applicable 

assumption: 
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Assumption 1: Assume that the upper bound 

of the vector of model uncertainties and external 

disturbances in the FJM model, as indicated in (12), 

is constrained as follows: 

 
‖𝐻(𝑥(𝑡), 𝑡)‖ ≤ 𝛼ℎ(𝑥(𝑡), 𝑡) + 𝛽 (14) 

in which 𝛼 and 𝛽 refer to the unknown values 

and ℎ(𝑥(𝑡), 𝑡) refers to an arbitrary nonlinear 

function of the FJM system state variables.  

Remark 2: Using assumption 1, the only 

constraint on the type and shape of uncertainties and 

disturbances is that they must have functional upper 

bounds that are nonlinear functions of the system 

states. However, while the disturbances are allowed 

to grow unbounded in magnitude, their growth rate 

must not exceed the capacity of the adaptive laws to 

estimate and compensate for them. The disturbance 

functions are generally assumed to be smooth (e.g., 

Lipschitz continuous or continuously 

differentiable). This ensures that the adaptive 

estimation and control laws remain stable. 

Completely arbitrary, highly oscillatory, or 

stochastic disturbances that do not fit within a 

structured bound framework may not be effectively 

attenuated by this method. 

This paper aims to develop Robust Adaptive 

Finite-Time Sliding Mode Control (RAFSMC) laws 

for the nonlinear flexible-joint manipulator (FJM) 

system, which encounters external disturbances and 

model uncertainties as described in (12). By 

considering Assumption 1 and designing the 

proposed controllers, the convergence of �̂� = 𝑥 −
 𝑥𝑑𝑒𝑠 to zero within a predefined finite time will be 

achieved. Additionally, adaptive rules are 

formulated to estimate the functional upper bound 

coefficients of the external disturbances and model 

uncertainties indicated in (14). 

In contrast to previous research, we introduce 

two key assumptions in this article: firstly, we do not 

possess knowledge of the actual values of 

uncertainties and disturbances, nor their upper 

bounds; secondly, convergence occurs in a 

predefined finite time, rather than asymptotically, as 

seen in other studies that theoretically suggest 

convergence in an infinite and unknown timeframe. 

These assumptions enhance the practicality of 

addressing the stabilization problem for the FJM 

system under more realistic conditions. 

Before we proceed with the design of the 

finite-time adaptive robust sliding mode control law 

in the following section, we will present the two 

lemmas: 

Lemma 1 [41]: Suppose there exists a 

Lyapunov function with initial conditions such that: 
�̇�(𝑥) + 𝛼𝑉(𝑥)
+ 𝛽𝑉𝛾(𝑥) ≤ 0 

(15) 

in which𝛼, 𝛽 > 0 and 0 < 𝛾 < 1 . Then this 

Lyapunov function tends to zero in finite time with 

the following settling time: 

𝑇

≤ 𝛼−1(1 − 𝛾)−1 𝑙𝑛( 1

+ 𝛼𝛽−1𝑉0
1−𝛾

) 

(16) 

Lemma 2 [42]: in the following non-linear 

differential equation: 

�̇� + 𝜆𝑠𝑖𝑔(𝑥)𝛽 = 0 17) ) 

where 𝑥 ∈ ℛ𝑛, 𝜆 = 𝑑𝑖𝑎𝑔(𝜆𝑖) is a positive 

definite matrix with elements 𝜆𝑖 ∈ ℛ
+for

1,2,...,i n=  and 𝑠𝑖𝑔(𝑥)𝛽 =

[|𝑥1|
𝛽𝑠𝑖𝑔𝑛(𝑥1), … , |𝑥𝑛|

𝛽𝑠𝑖𝑔𝑛(𝑥𝑛)]
𝑇and 0 < 𝛽 <

1. The state vector of the system i.e. 𝑥 ∈
ℛ𝑛converges to zero in the finite time 𝑇 =
max(𝑇𝑖), 𝑖 = 1,… , 𝑛 where we have: 

𝑇𝑖 =
1

𝜆(1 − 𝛽)
|𝑥0𝑖|

1−𝛽 
 

(18)  

3. Robust-adaptive finite time sliding mode 

controller design 

In this section, we present a sliding mode 

control law aimed at achieving the specified 

configuration for the flexible robot, as defined in 

(12). The primary objective of this control law is to 

guide the flexible-joint robot to the desired 

configuration within a finite timeframe. To facilitate 

system stabilization, we employ the adaptive 

terminal sliding mode control rule in the controller 

design. This approach involves first creating a stable 

finite-time sliding surface, followed by the 

application of the control rule to reach this sliding 

surface, ultimately ensuring the stabilization of the 

system within a finite time. 

It should be noted that the process of designing 

the adaptive robust sliding mode control law 

meaning RAFSMC design procedure in this paper is 

carried out step by step in the following: 

₋ Sliding surface design: Selecting a finite time 

sliding surface consists of a stability equation 

for tracking error (Subsection A) 

₋ Finite time stability of error in sliding mode: 

Prove that with this sliding surface, the tracking 

error becomes zero in finite time in sliding 

mode of system and also finding this finite time 

(Lemma 3). 

₋ RAFSMC controller design: By setting the 

reaching law in sliding mode concept equal to 

the derivative of the sliding surface (Subsection 

B). 

₋ RAFSMC Stability Proof: Choosing a 

Lyapunov function and showing that by 

applying the final designed control rule and 

adaptive rules, the derivative of the Lyapunov 

function will be negative (Theorem 1). 

₋ Adaptive rules design: Adaptive rules are also 

designed to help make the derivative of the 

Lyapunov function negative (Proof of Theorem 

1) 

₋ Finite Time Stability of sliding surface: 

Showing the system to transition from the initial 
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conditions to the sliding surface (enter the 

sliding mode) in finite time. Choosing another 

Lyapunov function consists of only the sliding 

surface norm. 

₋ Chattering reduction: Presenting a new method 

for improvement of Discontinuity (Chattering) 

in the Controller by modifying the sign function 

(Subsection C) 

A) Finite Time Sliding Surface Design 

Given the error model in (12), we define the 

following sliding surface: 

𝑠(𝑡) = 𝐶�̂�(𝑡) + 𝑘𝐶 ∫(�̂�(𝑡) + 𝑠𝑖𝑔(�̂�)𝛾) 
(19) 

where 𝐶 ∈ 𝑅2𝑛×4𝑛 is a design parameter 

matrix, chosen based on the subsequent excitation 

and determined later. The vector 𝑠(𝑡) ≜
[𝑠1, 𝑠2, … , 𝑠2𝑛] ∈ 𝑅

2𝑛 represents the sliding surface, 

𝑘 ∈ 𝑅+ is a constant positive real number, 𝛾 ∈
(0,1)and 𝑠𝑖𝑔(�̂�)𝛾 are defined as 

 
𝑠𝑖𝑔(�̂�)𝛾

= [|�̂�1|
𝛾𝑠𝑖𝑔𝑛(�̂�1), … , |�̂�4𝑛|

𝛾𝑠𝑖𝑔𝑛(�̂�4𝑛)]
𝑇 

(20) 

In accordance with the principles of sliding 

mode control, both the sliding surface and its 

derivative must be set to zero. Thus, it is essential to 

satisfy the following conditions 

 
𝑠(𝑡) = 0 , �̇�(𝑡) = 0 (21) 

By combining the two aforementioned 

relationships, the dynamics of the system in the 

sliding mode can be expressed as: 

𝐶�̇̂�(𝑡) + 𝑘𝐶(�̂�(𝑡) + 𝑠𝑖𝑔(�̂�)𝛾) = 0, (22) 

Hence, it follows: 

 

�̇̂�(𝑡) = −𝑘(�̂�(𝑡) + 𝑠𝑖𝑔(�̂�)𝛾) (23) 

In the subsequent analysis, we first establish 

the finite-time stability of the sliding surface (19). 

Specifically, we will demonstrate that in the sliding 

mode of the flexible-joint robot system, once the 

system reaches the sliding plane, it achieves 

asymptotic stability, with the value converging to 

zero within a finite time. In essence, �̂�(𝑡) will 

achieve convergence within a defined duration. 

To begin, consider the following lemma: 

Lemma 3: The sliding mode dynamics 

described in (23) exhibit asymptotic stability, and 

�̂�(𝑡) converges to the equilibrium point �̂�(𝑡) =0 

within a finite time. 

Proof: 

We consider the subsequent candidate 

Lyapunov function: 
𝑉(𝑡) = ‖�̂�(𝑡)‖ (24) 

The derivative of this function along the 

trajectory of the system (23) is: 

 

�̇�(𝑡) = 𝑠𝑖𝑔𝑛(�̂�)𝑇 �̇̂� = 𝑠𝑖𝑔𝑛(�̂�)𝑇(−𝑘(�̂�(𝑡)
+ 𝑠𝑖𝑔(�̂�)𝛾)) 

(25) 

= −𝑘(𝑠𝑖𝑔𝑛(�̂�)𝑇�̂�
+ 𝑠𝑖𝑔𝑛(�̂�)𝑇𝑠𝑖𝑔𝑛(�̂�)𝛾)
= −𝑘(‖�̂�‖ + ‖�̂�‖𝛾) 

Owing to the positive terms‖�̂�‖ and ‖�̂�‖𝛾, it 

can be straightforwardly expressed as: 

 
�̇�(𝑡) ≤ −𝑘‖�̂�‖ (26) 

Up to this point, we have established the 

asymptotic stability of 𝑥 toward zero. Now, we will 

examine its finite-time convergence. By utilizing 

(25), we can derive: 

 

�̇�(𝑡) =
𝑑‖�̂�‖

𝑑𝑡
= −𝑘(‖�̂�‖ + ‖�̂�‖𝛾), 

(27) 

and we continue: 

 

𝑑𝑡 = −
𝑑‖�̂�‖

𝑘(‖�̂�‖ + ‖�̂�‖𝛾)
= −

‖�̂�‖−𝛾𝑑‖�̂�‖

𝑘(‖�̂�‖1−𝛾 + 1)

= −
𝑑‖�̂�‖1−𝛾

𝑘(1 − 𝛾)(‖�̂�‖1−𝛾 + 1)
 

(28) 

 

By integrating both sides of Eq. (28) from time 

𝑡1 (the moment when the state �̂� reaches the sliding 

surface 𝑠(𝑡) = 0) to the time 𝑡2 (when  �̂� converges 

to zero) and considering �̂�(𝑡2), we can readily 

deduce: 

𝑡2 − 𝑡1 = −
1

𝑘(1 − 𝛾)
∫

𝑑‖�̂�‖1−𝛾

(‖�̂�‖1−𝛾 + 1)

𝑥(𝑡2)

𝑥(𝑡1)

= −
1

𝑘(1 − 𝛾)
𝑙𝑛( ‖�̂�‖1−𝛾 + 1) | 𝑥(𝑡1)

𝑥(𝑡2)

= −
1

𝑘(1 − 𝛾)
(𝑙𝑛( ‖�̂�(𝑡2)‖

1−𝛾 + 1)

− 𝑙𝑛( ‖�̂�(𝑡1)‖
1−𝛾 + 1))

=
1

𝑘(1 − 𝛾)
𝑙𝑛( ‖�̂�(𝑡1)‖

1−𝛾 + 1) 

(29) 

Consequently, the trajectory of the state �̂� from 

the instant of reaching the sliding surface converges 

to zero within the finite time 𝑡2: 

 

𝑡2 = 𝑡1 +
1

𝑘(1 − 𝛾)
𝑙𝑛( ‖�̂�(𝑡1)‖

1−𝛾 + 1) 
(30) 

And this end the proof. 

Remark 3: It is crucial to note that the value 

of �̂� converges to zero within the finite time as per 

Eq. (30). According to Lemma 3, this implies that 

reaching the sliding surface at time 𝑡1, results in the 

convergence to the desired configuration and the 

reduction of the tracking error to zero within the 

limited time 𝑡2 expressed in Eq. (30). 

 

B) Design of the Robust Adaptive Finite-time 

Sliding Mode Controller (RAFSMC) 

To design the RAFSMC controller, we first 

derive the derivative of the sliding surface as defined 

in equation (19): 

�̇�(𝑡) = 𝐶�̇̂�(𝑡) + 𝑘𝐶(�̂�(𝑡) + 𝑠𝑖𝑔(�̂�(𝑡))𝛾) (31) 
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By substituting the FJM system from equation 

(12) into (31), we have: 

 
�̇�(𝑡) = 𝐶{𝐴𝑥 + 𝐵𝑈 + 𝐻(𝑥, 𝑡) + �̂�(𝑥, 𝑡)} + 𝑘𝐶(�̂�(𝑡)

+ 𝑠𝑖𝑔(𝑥(𝑡))𝛾) 
(32) 

We now propose the finite-time adaptive 

sliding mode control law, formulated as follows:  
𝑈(𝑡) = (𝐶𝐵)−1{−𝜇𝑠

− (𝜌 + ‖𝐶‖�̂�

+ ‖𝐶‖�̂�ℎ(𝑥(𝑡), 𝑡)) 𝑠𝑔𝑛(𝑠) 

−𝐶�̂� − 𝑘𝐶(�̂�(𝑡) + 𝑠𝑖𝑔(�̂�(𝑡))𝛾)

− 𝐶𝐴�̂�} 

(33) 

where the values of �̂� and �̂� are estimating and 

obtaining from the following adaptive laws: 

�̇̂�(𝑡) = 𝑘1‖𝐶‖𝑠
𝑇 𝑠𝑔𝑛(𝑠)ℎ(𝑥(𝑡), 𝑡) 

�̇̂�(𝑡) = 𝑘2‖𝐶‖𝑠
𝑇 𝑠𝑔𝑛(𝑠) 

(34)  

where 𝑘1, 𝑘2 > 0 are two positive values 

which known as adaptive gains. The conclusion 

reached in this section is presented in the following 

theorem. 

Theorem 1: Consider the flexible-joint 

manipulator (FJM) model outlined in (12), which is 

subjected to faults, modeling uncertainties, and 

external disturbances, along with Assumption 1. By 

implementing the control law (33) in conjunction 

with the adaptation laws (34), if the constants 𝑘, 𝜌   ،

𝛽  and 𝜇 are selected such that 𝜌 > 0, 𝑘 > 0 and 

𝜇, 𝜆 > 0, 0 < 𝛽 < 1 the flexible robot manipulator 

system will achieve stabilization, and the system 

states, including the robot joints, will converge to 

the desired values within a finite time. 

 

Proof: To establish stability, we initially 

choose the Lyapunov function as follows: 

𝑉 =
1

2
𝑠(𝑡)𝑇𝑠(𝑡) +

1

2𝑘1
�̃�(𝑡)2 +

1

2𝑘2
�̃�(𝑡)2 (35) 

where 𝑘 > 0  and �̃�(𝑡) = �̂�(𝑡) − 𝛼  and 

𝛽(𝑡) = �̂�(𝑡) − 𝛽   are the errors between the true 

values and estimations of the perturbation’s 

functional upper bounds.  Then by derivation of (35) 

with respect to time and substituting from (32) we 

have, given that �̇̃� = �̇̂� and �̇� = �̇̂�, results in 

 

�̇� = 𝑠(𝑡)𝑇�̇�(𝑡) +
1

𝑘1
�̃��̇̂� +

1

𝑘2
𝛽�̇̂� 

= 𝑠(𝑡)𝑇{𝐶{𝐴�̂� + 𝐵𝑈 + 𝐻(𝑥, 𝑡) + �̂�(𝑥, 𝑡)}

+ 𝑘𝐶(�̂�(𝑡) + 𝑠𝑖𝑔(�̂�(𝑡))𝛾)

+
1

𝑘1
(�̂�(𝑡) − 𝛼)�̇̂� +

1

𝑘2
(�̂�(𝑡)

− 𝛽)�̇̂� 

  

Next, by replacing the designed controller in 

(33) and the adaptive laws (34) into (36), we have: 

�̇�

= 𝑠𝑇 (−𝜇𝑠

− (𝜌 + ‖𝐶‖�̂� + ‖𝐶‖�̂�ℎ(𝑥(𝑡), 𝑡)) 𝑠𝑔𝑛(𝑠)

+ 𝐶𝐻(𝑥, 𝑡))

+ (�̂�(𝑡) − 𝛼)‖𝐶‖𝑠𝑇 𝑠𝑔𝑛(𝑠)ℎ(𝑥(𝑡), 𝑡)

+ (�̂�(𝑡) − 𝛽)‖𝐶‖𝑠𝑇 𝑠𝑔𝑛(𝑠) 

= −𝜇‖𝑠‖2 − 𝜌‖𝑠‖ − ‖𝐶‖�̂�‖𝑠‖
− ‖𝐶‖�̂�ℎ(𝑥(𝑡), 𝑡)‖𝑠‖

+ 𝑠𝑇𝐶𝐻(𝑥, 𝑡)
+ �̂�‖𝐶‖‖𝑠‖ℎ(𝑥(𝑡), 𝑡)
− 𝛼‖𝐶‖‖𝑠‖ℎ(𝑥(𝑡), 𝑡)

+ �̂�(𝑡)‖𝐶‖‖𝑠‖
− 𝛽‖𝐶‖‖𝑠‖ 

(36)     

where removing the similar terms simplifies 

(37) as follows 
�̇� = −𝜇‖𝑠‖2 − 𝜌‖𝑠‖ + 𝑠𝑇𝐶𝐻(�̂�, 𝑡)

− 𝛼‖𝐶‖‖𝑠‖ℎ(𝑥(𝑡), 𝑡)
− 𝛽‖𝐶‖‖𝑠‖ 

(37)    

On the other hand, by using equation (14) in 

Assumption 1, it can be written: 
𝑠𝑇𝐶𝐻(�̂�, 𝑡) ≤ ‖𝑠‖‖𝐶‖‖𝐻(�̂�, 𝑡)‖

≤ ‖𝑠‖‖𝐶‖(𝛼ℎ(𝑥(𝑡), 𝑡)

+ 𝛽)

= ‖𝐶‖‖𝑠‖𝛼ℎ(𝑥(𝑡), 𝑡)

+ ‖𝐶‖‖𝑠‖𝛽 

(38)  

By merging equations (37) and (38), the upper 

bound of the derivative of the Lyapunov function is 

obtained as follows: 

�̇� ≤ −𝜇‖𝑠‖2 − 𝜌‖𝑠‖ ≤ 0 (39) 

Consequently, under the conditions 𝜇, 𝜌 > 0,  

the derivative of the Lyapunov function becomes 

negative. Therefore, since the Lyapunov function is 

positive definite and its time derivative is negative, 

we can conclude, in accordance with the Lyapunov 

stability theorem and Barbalat's lemma, that the 

value of the sliding surface 𝑠(𝑡) tends to zero. As 

𝑠(𝑡)approaches zero, based on equation (23) and 

Lemma 3, we can conclude that �̂�(𝑡) = 0. 

Consequently, within the finite time specified in 

Lemma 3, the convergence of 𝑥 → 𝑥𝑑𝑒𝑠 is achieved, 

which we denote as 𝑇𝑒. 

However, the proof does not conclude here. 

We must now demonstrate that by employing the 

control laws (33) and (34), the system itself also 

reaches the sliding surface within a finite time, 

which we refer to as 𝑇𝑠 (the time taken for the system 

to transition from the initial conditions to the sliding 

surface and enter the sliding mode). As a result, we 

can conclude that the total error �̂� converges to zero 

within a finite time, 𝑇𝑓𝑖𝑛𝑎𝑙 = 𝑇𝑠 + 𝑇𝑒. For this 

purpose, we will consider the following new 

Lyapunov  

𝑉𝑠 =
1

2
𝑠𝑇𝑠 (40)  

Differentiating from (40) and substituting from 

(32) and then (33) we have 
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�̇�𝑠 = 𝑠(𝑡)
𝑇�̇�(𝑡)

= 𝑠(𝑡)𝑇 (−𝜇𝑠

− (𝜌 + ‖𝐶‖�̂� + ‖𝐶‖�̂�ℎ(𝑥(𝑡), 𝑡)) 𝑠𝑔𝑛(𝑠)

+ 𝐶𝐻(𝑥, 𝑡))

≤ −𝜇‖𝑠‖2 − 𝜌‖𝑠‖ − ‖𝐶‖�̂�‖𝑠‖
− ‖𝐶‖�̂�ℎ(𝑥(𝑡), 𝑡)‖𝑠‖ + 𝑠𝑇𝐶𝐻(𝑥, 𝑡)  

(41) 

Using (38), we have 

�̇�𝑠 ≤ −𝜇‖𝑠‖
2 − 𝜌‖𝑠‖ − ‖𝐶‖�̂�‖𝑠‖

− ‖𝐶‖�̂�ℎ(𝑥(𝑡), 𝑡)‖𝑠‖
+ ‖𝐶‖‖𝑠‖𝛼ℎ(𝑥(𝑡), 𝑡)
+ ‖𝐶‖‖𝑠‖𝛽  

(42) 

Now, according to the definitions �̃�(𝑡) =

�̂�(𝑡) − 𝛼  and 𝛽(𝑡) = �̂�(𝑡) − 𝛽 , one can write 

inequality in (42) as follows 

�̇�𝑠 ≤ −𝜇‖𝑠‖
2 − 𝜌‖𝑠‖ − �̃�‖𝐶‖‖𝑠‖

− ‖𝐶‖�̃�ℎ(𝑥(𝑡), 𝑡)‖𝑠‖  
(43)    

Now, from stability of Lyapunov function in 

(35) and stability of adaptive laws in (34), its easy to 

conclude that: 
|�̃�| ≤ �̅�  ,   |�̃�| ≤ �̅�   

(44)    

where �̅� and �̅�   are two finite real positive 

numbers. Therefore from (43) it is concluded that 
�̇�𝑠 ≤ −𝜇‖𝑠‖

2 − 𝜌‖𝑠‖ + �̅� ‖𝐶‖‖𝑠‖
+ ‖𝐶‖�̅�ℎ(𝑥(𝑡), 𝑡)‖𝑠‖

= −𝜇‖𝑠‖2 − 𝜌‖𝑠‖

+ ‖𝐶‖‖𝑠‖(�̅�ℎ(𝑥(𝑡), 𝑡)

+ �̅�)  

(45) 

From boundedness of �̅�, �̅�   and ℎ(𝑥(𝑡), 𝑡) and 
‖𝐶‖ and considering their upper bound as 

‖𝐶‖‖�̅�ℎ(𝑥(𝑡), 𝑡) + �̅�‖ ≤ 𝛿 , (45) can be 

expressed as follows: 
�̇�𝑠 ≤ −𝜇‖𝑠‖

2 − 𝜌‖𝑠‖ + 𝛿‖𝑠‖ 
(46) 

By defining 𝜌𝑛 = 𝜌 − 𝛿 and selecting 𝜌 > 𝛿 and 

therefore 𝜌𝑛 > 0, we can write the relation (46) as 

follows: 
�̇�𝑠 ≤ −𝜇‖𝑠‖

2 − 𝜌𝑛‖𝑠‖ (47) 

According to (40) and replacing ‖𝑠‖ = √2𝑉𝑠 

in (47) we have: 

�̇�𝑠 ≤ −𝜇2𝑉𝑠 − 𝜌𝑛√2𝑉𝑠
1
2 (48) 

As a result, using Lemma 1 and (45), the 

Lyapunov function defined in (40) confirms that the 

sliding surface converges to zero within a finite 

time: 

𝑇𝑠 ≤ (𝜇)
−1 𝑙𝑛( 1 + √2𝜇(𝜌𝑛)

−1𝑉0

1
2) (49) 

Finally, the zeroing of the error and the 

convergence of 𝑥 → 𝑥𝑑𝑒𝑠 is achieved in the finite 

time 𝑇𝑓𝑖𝑛𝑎𝑙 = 𝑇𝑠 + 𝑇𝑒 .∎ 

Using 𝑇𝑒 from equation (30) and 𝑇𝑠 from 

equation (49), the finite time of convergence of 

robot joints to their desired values can be calculated 

as  𝑇𝑓𝑖𝑛𝑎𝑙 = 𝑇𝑠 + 𝑇𝑒 = (𝜇)
−1 𝑙𝑛( 1 +

√2𝜇(𝜌𝑛)
−1
𝑉0

1

2) +
1

𝑘(1−𝛾)
𝑙𝑛( ‖�̂�(𝑡1)‖

1−𝛾 + 1). 

The Robust-Adaptive Finite-Time Sliding 

Mode Control (RAFSMC) which is proposed in 

Theorem1 for Flexible Joint Manipulators (FJMs) is 

designed to address a broad range of disturbances, 

provided they meet certain criteria.  

 The only constraint on model uncertainties 

and external disturbances in the FJM model is 

Assumption 1, where it is assumed that upper bound 

of perturbations is constraint by a nonlinear function 

like 𝛼ℎ(𝑥(𝑡), 𝑡) + 𝛽.  Nevertheless, the types of 

disturbances and uncertainties that can be attenuated 

by RAFSMC, can be presented as follows: 

₋ Unknown and Unbounded Disturbances: The 

controller can manage external disturbances 

and faults whose amplitudes may grow without 

bound over time. These disturbances are 

modeled such that their upper bounds are 

nonlinear functions of the system states. The 

parameters of these bounds are unknown but 

estimated adaptively by the controller. 

₋ Model Uncertainties: The RAFSMC is robust 

against uncertainties in the dynamic model of 

the manipulator, such as parameter variations or 

unmodeled dynamics. It does not require 

precise knowledge of the uncertainties, as the 

adaptive mechanism compensates for their 

effects. 

₋ External Disturbances: Environmental forces, 

payload changes, and interaction-induced 

vibrations are effectively handled. The 

disturbances must conform to the assumption 

that their upper bounds can be expressed as a 

functional relationship with system states. 

₋ Unknown Faults: Mechanical or actuator faults 

are included in the class of disturbances the 

controller can handle, as long as their impact on 

the system is representable within the assumed 

bound framework. 

C) Improvement of Discontinuity (Chattering) 

in the Controller 

The existing discontinuity due to the presence 

of the sign function in the control law leads to a 

phenomenon known as chattering. This chattering 

causes high-frequency fluctuations in the input to 

the robot system, potentially damaging its 

mechanical components. To mitigate this 

phenomenon, it is essential to modify the sign 

function in 𝑢 within the control law to ensure 

continuity and avoid discontinuities. 

Several suggestions have been proposed to 

address this issue, such as using the hyperbolic 

tangent function 𝑡𝑎𝑛 ℎ(𝑠) or a saturation function, 

denoted as 𝑠𝑎𝑡(𝑠),. While these solutions reduce 

chattering, they can also diminish control efficiency 

due to alterations in the controller's nature. 
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This article introduces a novel approach to 

resolve this issue. Recognizing that discontinuity 

occurs when 𝑠 converges to zero or is near zero, we 

propose adding a term to the control input 𝑢. 

Specifically, we consider the term 𝜌𝑠𝑖𝑔𝑛(𝑠) seen in 

the control laws and adaptive laws as follows: 

𝑢 = 𝜌𝑠𝑖𝑔𝑛(𝑠) ≅
𝜌2𝑠

𝜌‖𝑠‖ + 𝜎(𝑡)
   

 
(50) 

In this relation, 𝜎(𝑡) is a positive function such 

that ∫ 𝜎(𝑡)𝑑𝑡
∞

0
< ∞. This modification addresses 

the discontinuity issue in the control law. The choice 

of the function 𝜎(𝑡)  is arbitrary; for example, one 

option can be: 

𝜎(𝑡) =
1

1 + 𝑡𝑛
  𝑛 ≥ 2  (51) 

It is noteworthy that when 𝜎(𝑡)  approaches 

zero, the value of 𝑢 in (50) will behave similarly to 

the previous state 
𝑠

‖𝑠‖
 

Remark 4. It is essential to clarify that the 

parameters are chosen based on the conditions 

established in Theorem 1, and during the discussion 

of the sliding surface and control law and also 

adaptive equations. The parameters must therefore 

satisfy the following conditions:  

0,  0,  0 1k     , 

1 2( , 0),  0 1,  , 0k k      . 

While these conditions are sufficient for the 

control law to be applicable for achiving finite time 

stability in FJM, it is crucial to understand that any 

adjustment to these parameters will affect the 

system's response. For example k influences the 

convergence rate of �̂�(𝑡), as demonstrated in 

Equation (23). Furthermore, the finite time of 

convergence derived in Equations (30) and (49) and 

finally 𝑇𝑓𝑖𝑛𝑎𝑙 = 𝑇𝑠 + 𝑇𝑒 = (𝜇)−1 𝑙𝑛( 1 +

√2𝜇(𝜌𝑛)
−1𝑉0

1

2) +
1

𝑘(1−𝛾)
𝑙𝑛( ‖�̂�(𝑡1)‖

1−𝛾 + 1), is 

dependent on these parameters and may be tailored 

according to the desired convergence behavior. 

4. Simulations results 

In this section, the RAFSMC designed in the 

previous segment is demonstrated through several 

numerical examples. By considering disturbances, 

faults, and other uncertainties in the model of a 

flexible-joint robotic arm, we utilize the finite-time 

adaptive sliding mode control (SMC) to show that 

the established stable finite-time sliding mode 

control law enables effective trajectory tracking 

within a finite time frame. 

For the sake of demonstration, a numerical 

example is set up to simulate the performance of the 

RAFSMC under various operating conditions. The 

flexible-joint robotic arm model is subjected to 

unmodeled dynamics and external disturbances, 

simulating real-world scenarios that a robotic 

system may encounter. 

For the simulation, we utilize the single-RLFJ 

(Rotary-Linear-Flexible-Joint) robotic arm model 

presented in [43], incorporating its dynamic 

parameters. The specifications of this robot are 

outlined as follows [43]: 

(𝐽𝑒𝑞 + 𝐽𝐴𝑟𝑚)�̈�𝑚 + 𝐽𝐴𝑟𝑚�̈�

− 𝑚𝑔ℎ𝑠𝑖𝑛(𝜃𝑚 + 𝛼)

+ 𝐵𝑒𝑞�̇�𝑚 = 𝜏𝑚 

𝐽𝐴𝑟𝑚(�̈�𝑚 + �̈�) −𝑚𝑔ℎ𝑠𝑖𝑛(𝜃𝑚 + 𝛼)

+ 𝐵𝐴𝑟𝑚(�̇�𝑚 + �̇�)

= −𝐾𝑠𝛼 

(52) 

 

where  𝛼 =   𝜃 – 𝜃𝑚 is defined as link 

deflection and 

 
 

𝜏𝑚 = 𝐾1𝑈1 − 𝐾2�̇�𝑚 

{
 
 

 
 𝐾1 =

𝜂𝑔𝐾𝑔𝜂𝑚𝐾𝑡

𝑅𝑚
     

𝐾2 =
𝜂𝑔𝐾𝑔

2𝜂𝑚𝐾𝑚𝐾𝑡

𝑅𝑚

 

(53) 

 

This can be expressed as follows: 
 

�̈�𝑚 =
(−𝐾2 − 𝐵𝑒𝑞 + 𝐵𝐴𝑟𝑚)

𝐽𝑒𝑞
�̇�𝑚 +

𝐵𝐴𝑟𝑚
𝐽𝑒𝑞

�̇�

+
𝐾𝑠
𝐽𝑒𝑞

𝛼 +
𝐾1
𝐽𝑒𝑞

𝑈1 

�̈� =
𝑚𝑔ℎ𝑠𝑖𝑛(𝜃𝑚 + 𝛼)

𝐽𝐴𝑟𝑚

+ (
𝐾2 + 𝐵𝑒𝑞 − 𝐵𝐴𝑟𝑚

𝐽𝑒𝑞

−
𝐵𝐴𝑟𝑚
𝐽𝐴𝑟𝑚

) �̇�𝑚

− 
𝐵𝐴𝑟𝑚(𝐽𝐴𝑟𝑚 + 𝐽𝑒𝑞)

𝐽𝐴𝑟𝑚𝐽𝑒𝑞
 �̇� 

−
𝐾𝑠(𝐽𝐴𝑟𝑚 + 𝐽𝑒𝑞)

𝐽𝐴𝑟𝑚𝐽𝑒𝑞
𝛼 −

𝐾1
𝐽𝑒𝑞

𝑈1 

(54) 

Taking into account the transformation of the 

following variables, similar to the explanation 

provided in the previous section: 

 
𝑥1 = 𝛼, 𝑥2 = 𝜃𝑚 

𝑥3 = �̇�, 𝑥4 = �̇�𝑚 

(55) 

Additionally, incorporating 𝐹𝑎𝑓𝑎 as actuator 

fault, and ∆𝑓 as unknown dynamics and modeling 

uncertainties into the robot model in (54), we obtain: 
 

{

�̇�1 = 𝑥3
�̇�2 = 𝑥4

                              

�̇�3 = 𝑓1 + 𝑏1𝑈1 + ∆𝑓(𝜃)

�̇�4 = 𝑓2 + 𝑏2𝑈1 + 𝐹𝑎𝑓𝑎    

 

(56) 

 

where we have: 

{
 
 
 
 

 
 
 
 𝑓1 =

𝑚𝑔ℎ𝑠𝑖𝑛(𝑥1 + 𝑥2)

𝐽𝐴𝑟𝑚
+ (

𝐾2 + 𝐵𝑒𝑞 − 𝐵𝐴𝑟𝑚

𝐽𝑒𝑞
−
𝐵𝐴𝑟𝑚

𝐽𝐴𝑟𝑚
)𝑥4 −

𝐵𝐴𝑟𝑚(𝐽𝐴𝑟𝑚 + 𝐽𝑒𝑞)

𝐽𝐴𝑟𝑚𝐽𝑒𝑞
𝑥3 −

𝐾𝑠(𝐽𝐴𝑟𝑚 + 𝐽𝑒𝑞)

𝐽𝐴𝑟𝑚𝐽𝑒𝑞
𝑥1

𝑓2 =
(−𝐾2 − 𝐵𝑒𝑞 + 𝐵𝐴𝑟𝑚)

𝐽𝑒𝑞
𝑥4 +

𝐵𝐴𝑟𝑚

𝐽𝑒𝑞
𝑥3 +

𝐾𝑠

𝐽𝑒𝑞
𝑥1                                                                                                        

𝑏2 =
𝐾1

𝐽𝑒𝑞
                                                                                                                                                                                  

𝑏1 = −
𝐾1

𝐽𝑒𝑞
                                                                                                                                                                              

 

(57) 
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The dynamic parameters of the robot are 

provided in Table 1. Additionally, we assume the 

values of the uncertainties and disturbance or faults 

as follows: 
 

∆𝑓 = 0.5 sin(0.3𝑡) + 0.7𝑠𝑖𝑔𝑛(𝑥1) + 2‖�̂�‖ 

 

𝑑(𝑡) = {
4                 4 ≤ 𝑡 ≤ 9
0                         𝑜𝑡ℎ𝑒𝑟

 

 

(58) 

It is also worth to mention that in order to 

address the verification of our mathematical model 

in this paper, for the flexible joint manipulator 

(FJM), we conducted a validation procedure, which 

includes: 

Comparison with Existing Literature: We 

compared our model with established models from 

previous studies, demonstrating consistency in 

dynamic behavior and performance metrics. 

Simulation Results: Additional simulations 

using both our state-space model and reference 

models confirmed the robustness and accuracy of 

our mathematical representation. 

Future Work on Experimental 

Validation: We acknowledge the importance of 

experimental validation and plan to implement 

physical prototyping in future research to further 

confirm the model's reliability. 

The initial conditions are set as 𝑥(0) =
[1,2,0,0]𝑇 for the angles of the robot and the motor 

in the robot. All the dynamic parameters of the 

simulated flexible joint robot are detailed in Table 1. 

Also, for simulation purposes, the parameters of the 

controller are chosen as follows, guided by 

Theorems 1 from the previous sections: 
𝜌 = 2, 𝛾 = 0.7, 𝑘 = 4  , 𝜇 = 0.8 

In order to show the performance of close loop 

system, a desired sinusoidal path is considered for 

the flexible joint as a desired trajectory to be tracked. 

This is done to investigate whether the designed 

control law can effectively facilitate the sinusoidal 

movement and reciprocation of the joint angle in a 

flexible robot. 
 𝑥𝑑𝑒𝑠 = [5 𝑠𝑖𝑛(0.3𝑡) 0 0 1.5 cos(0.3𝑡)]𝑇 (59) 

The simulation results for this scenario are 

presented in following figures. 

 
Fig. 1. Convergence of the robot modes to the desired 

values in simulation 
 

Table.1. 
Dynamic parameters of the simulated flexible joint robot [43] 

 
 

Figure 1 illustrates the convergence of the 

robot system states, specifically, the values of the 

angles and the derivatives of the angles including 

rotor position, joint angle, link deflection and joint 

velocity to the desired values in the regulation mode. 

Clearly, the designed finite-time sliding mode 

control law has effectively driven the first two state 

variables, representing the angles of the joints and 

the motor, towards fixed values. Simultaneously, the 

derivatives in the next two angles have converged to 

their desired values. 

The illustrated sliding surfaces in Figure 2 

unequivocally demonstrate the anticipated finite-

time convergence of the sliding surfaces to zero. 

Upon closer inspection of the chart, the presence of 

chattering in the sliding mode becomes apparent. 

Employing chattering reduction methods proves 

effective in mitigating this phenomenon. 

Furthermore, these methods play a crucial role in 

attenuating disturbances when they occur. Notably, 

the convergence is discontinuous (non-smooth) at 

the point of convergence to zero is sliding surfaces, 

as highlighted in Figure 2. 
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Fig. 2. Sliding surfaces in RAFSMC 

 
Fig. 3. Adaptive parameters in using ROFOSMC 

 

In the tracking mode, with the convergence of 

the FJM system states to the desired values, 

satisfactory results are observed. It is important to 

note that in such robotic systems, the primary 

objective is to control the angle of the flexible joint 

and the angle of the motor, both of which are 

inherently interconnected. However, as it is clear 

from figures, all of the robot joint states closely 

follow the desired sinusoidal values ad their 

derivatives. In figure 3, the adaptive parameters are 

shown. According to the Theorem 1, it was expected 

that given that we have two stable adaptive laws, 

these two values converge to some bounded fixed 

values. This is proved in figure 3. 

Finally, the input control signal is shown in 

figure 4. Figure 4 reveals that the input of the system 

does not reach zero when the states converge to the 

desired values. This observation aligns with physical 

principles, as the angles of the robot with flexible 

joints are required to converge to the sinusoidal 

signal. Consequently, a continuous control effort 

along the sinusoidal path is imperative and should 

not become zero. 

As more explanations, in figure 1, unlike in the 

regulation scenarios, both angles and as a result their 

derivatives do not converge to zero. In this case, the 

arm with flexible joints is following a reciprocating 

and periodic trajectory. As a result, the system is 

under excitation and unlike the regulation case, it 

does not reach the equilibrium point. Therefore, we 

expect energy to be continuously injected into the 

robot system, which is equivalent to a non-zero input 

signal, which we also expect to have a periodic and 

sinusoidal form due to the reciprocating path. An 

event that is well confirmed by Figure 4.  

The most important problem in input control 

signal in Figure 4 is the chattering phenomena. 

Therefore, in the next simulations, we can see that 

using the chattering avoidance idea presented in this 

paper, the chattering will be decreased 

cconsiderably. The simulation results in figures 5 to 

8, shows the effect of using the chattering avoidance 

idea presented in this paper. 

 
Fig. 4. System input signal 

 

 
Fig. 5. System input signal using chattering avoidance idea 

 
Fig. 6. Convergence of the robot modes to the desired 

values using chattering avoidance idea 
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As it is clear from Figure 5, the chattering in 

the input signal is decreased too much that makes 

the input control signal to be smoother and therefore 

realistic and applicable for using in experimental 

situations. In Figure 6, it is shown that by using the 

chattering avoidance idea,  

It can be seen in Figure 6 that by applying the 

idea of chattering reduction presented in this article, 

the convergence of almost all the state variables in 

the system is achieved well in the same limited time 

as before. However, the price we have to pay to 

reduce chattering is the fluctuations in the fourth 

state variable, i.e. the derivative of the joint’s 

positions meaning joint velocities. This price, of 

course, is not a big cost because basically the aim in 

controlling the FJM systems was achieving finite 

time trajectory tracking in Joint Position and joint 

velocities are less important. 

In Figure 7, the results of convergence of 

sliding surfaces to zero is shown. Comparing with 

Figure 2, shows a later convergence of the first two 

sliding surfaces, although chattering is significantly 

reduced in return. Finally, if we look at the estimated 

adaptive parameters in Figure 8, we can see that the 

result of their convergence to a fixed and limited 

value is still acceptable, although the final value of 

their convergence is reduced. The only importance 

of which is the reduction of the amplitude of the 

input signal, which is using these parameters as 

some coefficients. As a result, using the presented 

RAFSMC control law along with the proposed 

chattering reduction method provides finite time 

convergence while eliminating chattering and in the 

presence of uncertainties, disturbances and faults. 

This is an important achievement in this field. 

A) Sensitivity Analysis of Parameter 

Uncertainties  

To evaluate the robustness of the proposed 

Robust-Adaptive Finite-Time Sliding Mode Control 

for Flexible Joint Manipulators, we conducted a 

comprehensive sensitivity analysis focusing on 

three dynamic parameters: joint stiffness, mass of 

the link, and equivalent viscous damping. We 

applied variations of +20% for joint stiffness, -20% 

for mass, and +15% for equivalent viscous damping 

to assess the impact of these parameter uncertainties 

on performance. Figures 9.a, 9.b, and 9.c 

collectively illustrate the results of the sensitivity 

analysis, presenting the rotor position tracking and 

link deflection against the variations in parameters. 

The results indicate that, despite minor fluctuations 

in tracking performance—mostly noticeable in 

Figure 9.c—the overall stability of the manipulator 

is preserved throughout the parameter variations. 

This stability demonstrates the robustness of our 

control strategy, as both rotor position tracking and 

link deflection remain largely unaffected by the 

introduced uncertainties.  

 
Fig. 7. Sliding surfaces in RAFSMC using chattering 

avoidance idea 

 
Fig. 8. Adaptive parameters by applying ROFOSMC 

considering chattering avoidance idea 

 
(a) 

 
(b) 

 
(c) 

Fig. 9. Rotor position and link reflection tracking in 

Sensitivity Analysis of dynamic Parameters Uncertainties.a) 

Variations in joint stiffness. b) Variations in the mass of the link 
and c) variations in equivalent viscous damping 
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Table 2 presents the Root Mean Square (RMS) 

values for the input control signal, rotor tracking 

error, and link deflection error under varying 

parameter uncertainties. RMS is a statistical 

measure that quantifies the magnitude of a varying 

signal, providing valuable insights into the 

performance of the control system for a one-link 

robot manipulator. 

Input Control Signal RMS: This value 

reflects the average power exerted by the controller 

over the simulation period. Lower RMS values 

indicate that the controller is using less energy to 

maintain the desired rotor angle, which is favorable 

for both efficiency and stability. In our analysis, the 

RMS values of the input control signal for the three 

scenarios are approximately 3.2, 2.7, and 2.9, 

respectively, demonstrating a consistent energy 

requirement across varying parameter uncertainties. 

Tracking Error Signal RMS: This metric 

quantifies the average deviation of the actual rotor 

angle from the desired angle over time. Lower RMS 

values for the tracking error indicate superior 

tracking performance, signifying that the 

manipulator closely follows the desired trajectory. 

In this study, the RMS values for both the rotor 

tracking error and the link deflection error are 

notably small and near zero, confirming the 

effectiveness of the control strategy in maintaining 

accurate positioning despite the applied 

uncertainties. Overall, the small RMS values for the 

rotor tracking error and link deflection error, 

combined with the moderate RMS values for the 

input control signal, highlight the robustness and 

stability of our proposed control approach under 

varying dynamic conditions. 

B) Comparison with other references 

In the following, a Comparison with a recent 

reference paper is presented. To do this, the 

simulation results obtained in this paper are 

compared with those obtained from reference [43]. 

In [43], a robust-adaptive sliding mode control is 

designed for flexible joint manipulator system in 

(1)-(2) by considering uncertainties, disturbances 

and unmodeled dynamic in which first the FJM 

system is divided to n error subsystem and then and 

for each one a separated sliding surface and SMC 

controller is designed. The error system of FJM and 

controller designed in [43] are presented in Table 3. 

Considering the fault, uncertainties and 

unmodeled dynamic as in previous simulation and 

selecting a regulation scenario for simulation with 

the following desired point. the simulation results of 

this comparison are shown in Figure 10, when the 

control parameters are considered for both 

controllers same as previous simulation. 

𝑥𝑑𝑒𝑠 = [0
2𝜋

3
0 0]

𝑇

 (60) 

Table.2. 
Root Mean Square (RMS) values under parameter uncertainties 

RMS 

 

Joint 

stiffness 

 

Mass of the 

link 

 

Equivalent 

viscous damping 

Rotor Tracking 

error RMS 
0.0372 0.0427 0.0594 

Link Deflection 
Tracking error 

RMS 

0.219 0.011 0.199 

Input Signal 
RMS 

3.231 
 

2.718 2.947 

Table.3. 
System and controller designed for stabilizing flexible joint 

robots in [43] 

FJM n order error system 

in [43] 

Adaptive SMC method 

in [43] 

 

 

 

 

As it is clear from figure 9, the trajectory 

tracking is not satisfactorily obtained using the 

method in [43] and for the time in which the 

disturbance is accrue, both joint and motor position 

are affected by disturbance and uncertainties.  

The comparison shows that when the range of 

disturbances increases and fault happens, the 

method presented in [43] did not cope well with the 

uncertainties, disturbances and fault and the 

performance of the method presented in the current 

paper is much better. 

This is not the whole issue, the more important 

point is that in reference [43], it is supposed that the 

upper bounds of the uncertainties and disturbances 

must be a scaler fixt bounded and known value for 

the designer. In [43] there exist this assumption: 

|𝑑𝑖| ≤ 𝐷𝑖 ,   𝑖 = 1,2,… 2𝑛 (61) 

In addition to that, the condition for proving 

the stability of the control law presented in [43] in 

Table 2 is that the parameter 𝜌𝑖 in the control law is 

necessary and must be larger than the upper bands 

of disturbances, i.e.: 
𝜌𝑖 > (𝛾𝑖𝐷𝑖 + 𝐷𝑛+𝑖),   𝑖 = 1,2,… 2𝑛 (62) 

This means that the disturbances upper bounds 

𝐷𝑖  must be completely known for the designed and 

should also be scaler fixt and bounded values. The 

assumptions in (61) for FJM system and (62) for 

controller are two very conservative conditions that 

are not exist in our paper and this advantage is much 

more important than comparisons in Figure 10. 
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Fig. 10. Comparison of the convergence of the robot modes to 

the desired values using the RAFSMC method presented in this 

paper with robust-adaptive SMC method presented in [43].VB-
ASMC method proposed in [43] and The RAFSMC method in 

current paper. 

Another very important issue is that, firstly, in 

reference [43], convergence to the desired values of 

robot is obtained asymptotically and therefore in 

infinity time and not finite time. While in the 

RAFSMC method proposed in current paper, apart 

from guaranteeing the convergence in a specific 

finite time, the upper bounds of uncertainties, 

disturbances and faults is an unknown functional 

upper bound of system states where the coefficients 

of this function are estimated via some stable 

adaptive laws. 

At the end of this section, in order to better 

understand the methodology presented in this paper, 

the complete control system block diagram 

proposed in the previous section to achieve finite 

time convergence in nonlinear model of FJM root is 

presented in Fiure. 10. The RAFSMC controller 

block diagram generates the stabilizing finite time 

control law using: The feedback of the state 

variables of the flexible manipulator, output of 

adaptive laws and also sliding surface. In simpler 

words, the designed controller guarantees finite time 

stability for flexible joint manipulator in such 

condition that robot system is exposed to unknown 

unbounded perturbations with functional upper 

bund. The coefficients of this functional upper 

bound that are estimated in adaptive block, are used 

in input controller as controller parameters. 

 
Fig. 11. Fig. 10. The RAFSMC control system block diagram 

proposed in Section 4 

C) Practical Implications of Simulation 

Results 

The simulation results presented in this study 

not only validate the effectiveness of the Robust-

Adaptive Finite-Time Sliding Mode Control 

(RAFSMC) for Flexible Joint Manipulators (FJMs) 

but also highlight several potential real-world 

applications. The proposed control strategy can be 

particularly beneficial in industries where precision 

and adaptability are crucial, such as robotics, 

automation, and aerospace engineering. 

For instance, in robotic applications, the ability 

to handle unknown disturbances and uncertainties 

makes the RAFSMC an ideal candidate for tasks 

requiring high levels of accuracy and reliability, 

such as surgical robots or collaborative robots 

(cobots) working alongside humans. Additionally, 

the adaptive nature of the controller allows for 

seamless adjustments to varying operational 

conditions, thereby enhancing the overall 

performance of robotic systems in dynamic 

environments. While we recognize that 

experimental validation is essential for confirming 

the real-world applicability of our approach, our 

simulations have been conducted under conditions 

that closely resemble practical scenarios. By 

incorporating unknown disturbances and modeling 

uncertainties, we aim to ensure that the findings are 

relevant and applicable to real-world applications. 

Future work will focus on experimental validation to 

further substantiate these results. 

5. Conclusion 

This paper delves into the finite time trajectory 

tracking in n order flexible joint manipulators by 

designing a finite time terminal robust adaptive 

sliding mode control in which the upper bounds of 

system perturbations including external 

disturbances, modelling uncertainties and faults is 

not just a known scaler bounded value, but a 

nonlinear unknown functional upper bound of FJM 

states with unknown coefficients that can even be 

unbounded. To do this, a finite time sliding mode 

control law is designed using a finite time sliding 

surface and a RAFSMC method which can provide 

convergence in a predetermined bounded time in the 

presence of perturbations and adaptive rules that are 

used for estimating the perturbations’ upper bound 
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function. The stability proof of whole controller is 

validated through the application of the Lyapunov 

method, ensuring stability within a finite period. 

This control law, operating in the presence of faults 

and nonlinear components within the flexible joint 

manipulator system, facilitates the attainment of 

stability within a constrained timeframe. Ultimately, 

the simulation results, elucidated through numerical 

examples, distinctly illustrate the effective 

functioning of RAFSMC method. At the end of the 

simulation, the superiority of this method compared 

to one of the recent references is clearly shown in 

terms of the problem conditions as well as the 

convergence of FJM states to their desired values. 

The proposed RAFSMC approach of this paper can 

solve the FJM trajectory tracking problem in a more 

realistic situation when the system is exposed to 

model uncertainties and external disturbances that 

are dependent to situation and attitude of a flexible 

joint manipulator. 
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