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Abstract. It is shown that a nonlinear partial differential equation with complex coefficients
can be obtained through continuous shearlet transforms. We introduce a shearlet for con-
structing a nonlinear partial differential equation with complex coefficients and show that
the initial value obtained from the continuous shearlet transform coincides with solutions of
this equation.
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1. Introduction and Preliminaries

Partial differential equations (PDE’s) with complex coefficients have been established
as a powerful tool in several areas of mathematics, from harmonic analysis to geometry,
physics, electromagnetic waves and quantum mechanical systems. In recent years, numer-
ical methods have been applied to solve a class of nonlinear PDE’s. Nonlinear PDE’s play
an important role in the study of many problems in large varieties of physical, chemical,
geometrical and biological phenomena [9].

Hyperbolic partial differential equations are widely applied in many fields of science
and engineering such as fluid dynamics and aerodynamics, the theory of elasticity, optics,
electromagnetic waves, direct and inverse scattering and the general theory of relativity
[12]. One of the noteworthy topics in which hyperbolic partial differential equations are
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used, is the global optimal scheduling of unmanned aerial vehicle navigation channel.
Wave equations as a well-known type of hyperbolic partial differential equations have
been investigated by many authors, e.g. [1, 13], whereas in this paper, we present another
type of hyperbolic partial differential equations with its solutions.

One of the important issues in PDEs, which is used in image processing, is to find
an equation via its solution. In particular, an effective technique for processing irregular
signals and images is the smoothing them via convolution with a suitable filter. Most
practical devices for image analysis assume a preliminary step in the processing of the
pictures. This step consists in passing from the original picture to smoothed versions
via convolution, which still contain significant information. More obviously, we define a
”multiscale analysis” to be a family of transforms (Tt)t⩾0 which, when applied to the
original picture f(x), yield a sequence of pictures u(t, x) = (Ttf)(x). Ttf is a semi-local
version of f where a neighborhood of t around x has been scanned for determining the
value of Ttf(x). In accordance with the foregoing assumptions on a multiscale analysis Tt,
all sequences of pictures u(t, x) = (Ttf)(x) are solutions of a partial differential equation
of second order ∂u

∂t = F (D2u,Du, t) with u(0, x) = f(x).
In the past, the continuous wavelet transform was used for solving various PDE’s like

wave equations [8]. In recent times, several new representation systems, including the
complex wavelets [4], the ridgelets, the curvelets [7] and etclets [2, 6], are proposed to
solve the PDE’s. These representation systems often give rise to numerical solutions of
PDE’s. Shearlets are almost new representation systems that are equipped with a rich
mathematical structure similar to wavelets. In fact, theory and algorithms of shearlets
can be carried over the continuous wavelet transform. The continuous shearlet transform
is based on special affine systems generated by one single function ψ ∈ L2(R2).Moreover,
compared with wavelets, the continuous shearlet transform has a coherent matrix struc-
ture for n-dimensions so that it is useful for solving the higher dimensional PDE’s [3, 5].
In general, it is not easy to achieve initial values for the equation like (8) through ana-
lytical methods and they often are computed numerically. In [11], Postnikov with the aid
of wavelets, obtained an initial value for the simpler kind of PDE which is well-studied.
Using a proper shearlet, we gain an initial value for more complicated PDE’s with com-
plex coefficients (e.g. equation (8)). Changing the function in the shearlet transform, we
obtain various initial values for the equation defined in (8), (see example 2.1 below).

The paper is organized as follows. In the rest of this section, we recall required notation
and definitions about shearlets and linear partial differential equation of order 2. In
Section 2, we present a new shearlet and attain a PDE via this shearlet. We represent
two examples to obtain various initial values of this PDE in Section 3, to illustrate our
approach.

We commence recalling some notation and definitions on shearlets. For ψ ∈ L2(Rn), we
take the shearlet family {ψa,s,b(·)}a,s,b by ψa,s,b(·) = |detAa|−

1

2ψ(A−1
a S−1

s (· − b)), where

a ∈ R \ {0}, s ∈ Rn−1, b ∈ Rn and Aa =

[
a 0Tn−1

0n−1 sgn(a)|a|(1/n)In−1

]
, Ss =

[
1 sT

0n−1 In−1

]
.

Especially, let ψ ∈ L2(R2). Shearlets in 2-dimensions are given by

ψa,s,t,t′(·) = a−
3

4ψ(A−1
a S−1

s (· − (t, t′))), (1)

where a ∈ R+, s ∈ R, (t, t′) ∈ R2 and Aa =

[
a 0
0
√
a

]
, Ss =

[
1 s
0 1

]
, and ψ is admissible in

the sense that
∫
R2

|ψ̂(ξ1,ξ2)|2
|ξ1|2 dξ2dξ1 <∞.
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The continuous shearlet transform is the mapping

f → SHψf(a, s, t, t
′) = ⟨ψa,s,t,t′ , f⟩. (2)

For more details about shearlets, see [5]. Furthermore, the general linear partial differ-
ential equation of order 2 in two independent variables has the form

A
∂2u

∂x2
+B

∂2u

∂x∂y
+ C

∂2u

∂y2
+D

∂u

∂x
+ E

∂u

∂y
+ Fu = G, (3)

where A,B,C,D,E, F and G may depend on x and y (but not u) [10]. If a second-order
equation with independent variables x and y does not have the form of (3), it is nonlinear.
If G = 0, the equation is homogeneous; otherwise it is nonhomogeneous. The equation
(3) is

(i) elliptic if B2 − 4AC < 0,
(ii) hyperbolic if B2 − 4AC > 0,
(iii) parabolic if B2 − 4AC = 0.

The hyperbolic partial differential equations are usually introduced by the equations
which have the coefficients A,C ̸= 0 and B = 0, for example the wave equation. Here, we
consider an equation with A,C = 0 and B ̸= 0. It may be claimed that we have created
a different sample of the hyperbolic partial differential equations with its solution.

2. Main result: PDE’s based on shearlet transforms

To construct suitable shearlets, we introduce a continuous function ψ ∈ L2(R2) which
is admissible. Consider

ψ(x1, x2) =
1√
2πi

· e
−ix1 − e−2ix1

x1
· e−x2

2 ,

(see fig. 1). Then according to (1), the shearlets will be given by

ψa,s,t,t′(x1, x2) = a−
3

4ψ(A−1
a S−1

s ((x1, x2)− (t, t′)))

= a−
3

4ψ(
(x1 − t)− s(x2 − t′)

a
,
x2 − t′√

a
)

=
a−

3

4

√
2πi

· e
−i( (x1−t)−s(x2−t′)

a
) − e−2i(

(x1−t)−s(x2−t′)
a

)

( (x1−t)−s(x2−t′)
a )

· e−(
x2−t′
√

a
)2

=
a

1

4

√
2πi

· e
−i( (x1−t)−s(x2−t′)

a
) − e−2i(

(x1−t)−s(x2−t′)
a

)

(x1 − t)− s(x2 − t′)
· e−(

x2−t′
√

a
)2

= a
1
4√
2πi

[
e−i(

(x1−t)−s(x2−t′)
a

)

(x1−t)−s(x2−t′) − e−2i(
(x1−t)−s(x2−t′)

a
)

(x1−t)−s(x2−t′)

]
e−(

x2−t′
√

a
)2

= ψ1(y1, y2)− ψ2(y1, y2),

(4)
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Figure 1.

where y1 =
x1−t
a , y2 =

x2−t′
a and

ψ1(y1, y2) =
a−

3

4

√
2πi

e−i(y1−sy2)

y1 − sy2
e−ay

2
2 , ψ2(y1, y2) =

a−
3

4

√
2πi

e−2i(y1−sy2)

y1 − sy2
e−ay

2
2 .

By the definition of continuous shearlet transforms (2) and (4), we have

SHψf(a, s, t, t
′) =

∫
R2

f(x1, x2)ψa,s,t,t′(x1, x2)dx1dx2

=

∫
R2

f(x1, x2)(ψ1(y1, y2)− ψ2(y1, y2))dx1dx2

=W1 −W2,

(5)

in which

W1 =

∫
R2

f(x1, x2)ψ1(y1, y2)dx1dx2, (6)

W2 =

∫
R2

f(x1, x2)ψ2(y1, y2)dx1dx2. (7)
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First, we consider s, t′ = 0. Differentiating W1 with respect to t and a yields

∂W1

∂t
=

∫
R2

f(x1, x2)ψ1(y1, y2)

(
i

a
+

1

(x1 − t)

)
dx1dx2,

∂W1

∂a
=

∫
R2

f(x1, x2)ψ1(y1, y2)

(
1

4a
+
i(x1 − t)

a2
+
x22
a2

)
dx1dx2,

∂2W1

∂t∂a
=

∫
R2

f(x1, x2)ψ1(y1, y2)

(
i

4a2
+

1

4a(x1 − t)
+
ix22
a3

− (x1 − t)

a3
+

x22
a2(x1 − t)

)
dx1dx2.

Then we have

∂2W1

∂t∂a
− 5

4a

∂W1

∂t
− i

a

∂W1

∂a
+

5i

4a2
W1

=

∫
R2

f(x1, x2)ψ1(y1, y2)(
−1

a(x1 − t)
+

x22
a2(x1 − t)

)dx1dx2.

(8)

Put f(x1, x2) = f1(x1).f2(x2) for an arbitrary f1 ∈ L2(R), f2(x2) = 2x2 for x2 > 0.
Hence ∫

R2

f(x1, x2)ψ1(y1, y2)(
−1

a(x1 − t)
+

x22
a2(x1 − t)

)dx1dx2

=

∫
R
f1(x1)

a
1

4

√
2πi

e−i(x1−t)

x1 − t

(
−1

a(x1 − t)

)
dx1

∫ ∞

0
2x2e

− x2
2
a dx2

+

∫
R
f1(x1)

a
1

4

√
2πi

e−i(x1−t)

x1 − t

(
1

a2(x1 − t)

)
dx1

∫ ∞

0
2x32e

− x2
2
a dx2

=

∫
R
f1(x1)

a
1

4

√
2πi

e−i(x1−t)

x1 − t

(
−1

a(x1 − t)

)
(a)dx1

+

∫
R
f1(x1)

a
1

4

√
2πi

e−i(x1−t)

x1 − t

(
1

a2(x1 − t)

)
(a2)dx1 = 0.

By the way, (8) is a hyperbolic partial differential equation with complex coefficients.
In the following example, we calculate two initial values for the equation (8).

Example 2.1 First of all, we consider the function f in (6) as

f(x1, x2) = eix1 .2x2, x2 ⩾ 0,

in which a > 1 (see fig. 2).
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Figure 2.

Using the Cauchy principal value sense, we have

W1(t, a) =

∫
R2

f(x1, x2).ψ1(y1, y2)dx1dx2

=

∫
R2

f(x1, x2).ψ1(
x1 − t

a
,
x2
a
)dx1dx2

=
1

√
2πia

3

4

∫
R

∫
R
f(x1, x2).

e−i(
x1−t

a
)

x1−t
a

.e−
x2
2
a dx1dx2

=
a

1

4

√
2πi

(∫ ∞

0
2x2e

− x2
2
a dx2

)(
P.V.

∫ +∞

−∞
eix1

e−i(
x1−t

a
)

x1 − t
dx1

)

= a
5

4

√
π
2 eit.

(9)

According to (9), we have the initial value of W1, as

W1(t0, a0) = a
5

4

0

√
π

2
eit0 . (10)
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We obtain the partial derivatives of W1(t, a) with respect to a and t, as follows

∂W1

∂t
= a

5

4

√
π

2
ieit,

∂W1

∂a
=

5

4
a

1

4

√
π

2
eit,

∂2W1

∂a∂t
=

5

4
a

1

4

√
π

2
ieit. (11)

By substituting (11) in (8), we have

∂2W1

∂t∂a
− 5

4a

∂W1

∂t
− i

a

∂W1

∂a
+

5i

4a2
W1

= 5
4a

1

4

√
π
2 ie

it − 5
4aa

5

4

√
π
2 ie

it − i
a
5
4a

1

4

√
π
2 e
it + 5i

4a2a
5

4

√
π
2 e

it

= 0.

(12)

Hence, (10) is one of the solutions of (8).

To find another initial value for (8), we put f in (6) as f(x1, x2) = χ[0,1](x1).2x2 with
x2 ⩾ 0, (see fig. 3). Then

Figure 3.

W1(t, a) =

∫
R2

f(x1, x2).ψ1(
x1 − t

a
,
x2
a
)dx1dx2

=
1

√
2πia

3

4

∫
R

∫
R
f(x1, x2).

e−i(
x1−t

a
)

x1−t
a

.e−
x2
2
a dx1dx2

=
a

1

4

√
2πi

∫ ∞

0
2x2e

− x2
2
a dx2

∫ 1

0

e−i(
x1−t

a
)

x1 − t
dx1

=
a

5

4

√
2πi

[Γ(0,
ti

a
) + Γ(0,

(1− t)i

a
)],

(13)
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where Γ is the gamma function. According to (13), we have the initial value of W1, as

W1(t0, a0) =
a

5

4

0√
2πi

[Γ(0,
t0i

a0
) + Γ(0,

(1− t0)i

a0
)]. (14)

Differentiating W1 in (13) with respect to a, t, we obtain

∂W1

∂t
=

a
5

4

√
2πi

(
e

it

a

t
+
e

−(1−t)i

a

1− t

)
,

∂2W1

∂a∂t
=

1√
2πi

[
5

4
a

1

4

(
e

it

a

t
+
e

−(1−t)i

a

1− t

)
+ a

5

4

(
− it

a2
e

it

a

t
+

(1− t)i

a2
e

−(1−t)i

a

1− t

)]
,

∂2W1

∂t2
=

a
5

4

√
2πi

(
ie

it

a

at
− e

it

a

t2
+
ie

−(1−t)i

a

a(1− t)
+
e

−(1−t)i

a

(1− t)2

)
,

∂3W1

∂a∂t2
=

a
1

4

√
2πi

[
e

it

a

(
−5

4

1

t2
+

5

4

i

at
+

1

a2

)

+ e
−(1−t)i

a

(
5

4

1

(1− t)2
+

5

4

i

a(1− t)
− 1

a2

)]
.

(15)

By substituting (15) in (8), we have

∂3W1

∂t2∂a
− 5

4a

∂2W1

∂t2
− i

a

∂2W1

∂t∂a
+

5i

4a2
∂W1

∂t
= 0. (16)

Hence, (14) is one of the solutions of (8).

Remark 1 In the same way as in the above example, we obtain an equation for W2 in
(7), then choosing suitable f1(x), f2(x), we get

∂3W2

∂t2∂a
− 5

4

1

a

∂2W2

∂t2
− i

a

∂2W2

∂t∂a
+

5

4

i

a2
∂W2

∂t
= 0. (17)

3. Conclusion

In this paper, we constructed a proper shearlet and its continuous shearlet transform
to obtain a solution of PDE’s like (16). Meanwhile, Changing f in (6), one may obtain
various amounts for the right hand side of the equation (8), whereby some novel PDE’s
with their solutions can be acquired. One might also consider other shearlets, to develop
several higher dimensional PDE’s. Besides that, by derivation (6) with respect to the
four parameters t, t′, s, a, one can reach different PDE’s.
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