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Abstract 

The fog computing layer demonstrates significant potential for processing data and executing tasks for various Internet of 

Things (IoT) applications that are sensitive to latency. However, the resource constraints in fog devices limit the deployment 

of multiple applications, primarily due to inefficient resource management and discovery mechanisms in heterogeneous IoT 

environments. An efficient resource allocation strategy is one of the most effective ways to enhance the quality of service (QoS) 

and improve system performance. However, identifying the optimal resource allocation strategy for IoT applications involving 

multiple QoS parameters presents a complex, NP-hard challenge. This study proposes a task scheduling algorithm called 

CLJSO (ConvLstm-Jellyfish Search Optimization) for the fog computing layer, designed to optimize three crucial parameters: 

task completion time, cost, and energy consumption. Due to the high complexity and dynamic nature of scheduling in the fog 

layer, combining ConvLSTM and metaheuristic algorithms is proposed as an efficient solution to improve prediction accuracy 

and optimal resource allocation. The task scheduling process begins with predicting the workload on machines based on 

resource characteristics and request volumes using a ConvLstm neural network. Subsequently, the initial population of 

machines is generated and input into the Jellyfish Search Optimization (JSO) algorithm to execute the scheduling. Experimental 

results indicate that the proposed CLJSO algorithm surpasses existing approaches regarding task scheduling efficiency within 

the fog layer, including CGO, AOS, CSA, JS, EHEO, FSPGSA, and HGSWC, achieving an improvement in the average 

objective function of 14.03% to 56.44% compared to these algorithms. 

Keywords: Task scheduling, Fog computing layer, Optimization algorithms, Deep Learning, Multi-objective, Internet of Things, 

Metaheuristic algorithms 

1. Introduction 

The Internet of Things (IoT) has experienced 

significant growth in recent years. One of the primary 

drivers of this evolution is the advancement of 

communication technologies and global computer 

networks [1]. IoT is applied in various sectors, 

including agriculture [2], healthcare [3], 

transportation [4], industry [5], and many others. 

According to research by Cisco, the number of 

 connected devices is expected to reach 2.5 billion by  

2025 [6,7], and estimates suggest that smart 

connected objects will continue to increase 

exponentially in the coming years [8]. This growing 

number of users and connected smart devices 

generate vast amounts of data, requiring distributed 

architectures to process the big data and handle tasks 

generated by IoT users and devices [9]. 

IoT devices typically have limited computational and 

energy capacities, often necessitating data offloading 

to more resource-rich computing layers for further 
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processing and execution. The cloud computing 

paradigm offers pay-per-use computation, storage, 

networking, and management resources. However, 

IoT devices' significant volume of data and the 

physical distance between IoT users and cloud data 

centers make it difficult to meet stringent Quality of 

Service (QoS) requirements [10–14]. To address 

these challenges and optimize QoS in IoT 

applications, a practical approach is mapping the set 

of services to available computing resources to meet 

at least one objective. In many cases, IoT users seek 

to optimize more than one objective simultaneously. 

One popular method for multi-objective task 

scheduling is the weighted sum method, which 

considers multiple objective functions with user-

defined weights [15]. Multi-objective task scheduling 

aims to find an optimal mapping between tasks and 

available computing resources while optimizing 

several objectives. 

In a fog computing environment, there is usually no 

order in server performance, resource utilization, or 

downtime patterns. The number of IoT applications 

and their resource demands are also almost random. 

As a result, metaheuristic solutions cannot efficiently 

address the scheduling problem for IoT applications 

in fog computing environments [23]. Deep learning 

can play a crucial role in task scheduling for fog 

systems due to its strong capability to learn complex 

patterns from data. The key reasons for utilizing deep 

learning include its ability to predict the behavior of 

cloud and fog systems using historical data, its 

capacity to automate decision-making in scheduling, 

and its adaptive nature to adjust to environmental 

changes and the varying requirements of different 

tasks. Combining neural network approaches with 

metaheuristic algorithms can lead to the development 

of an optimized and dynamic scheduling system. 

This paper proposes a task scheduling method that 

improves QoS by minimizing task completion time, 

energy consumption, and costs in the fog computing 

layer. The proposed approach combines profound 

learning predictions with metaheuristic algorithms, 

allowing the system to leverage previous data to 

enhance the performance of the metaheuristic 

algorithm. By utilizing data processed through deep 

learning, metaheuristic algorithms can navigate 

search spaces more efficiently, enabling the discovery 

of better and faster solutions. 

The important contributions of this article are as 

follows: 

1. Formulating the multi-objective task 

scheduling problem in fog computing 

environments to optimize makespan, cost, 

and energy consumption. 

2. Proposing a hybrid metaheuristic algorithm 

combined with deep learning for multi-

objective task scheduling in fog computing 

environments. 

3. Predicting user request demand in the fog 

layer using ConvLSTM neural networks. 

4. Implement the algorithm and compare it with 

other algorithms using various parameters. 

5. Demonstrating that the hybrid algorithm 

outperforms other state-of-the-art algorithms. 

The paper is organized as follows: Section II reviews 

task scheduling concepts and related works. Section 

III presents the proposed method for task scheduling 

in the fog layer. Section IV describes the 

implementation parameters of the proposed 

algorithm, the evaluation criteria, and a comparison 

of experimental results with existing methods. 

Finally, Section V provides conclusions, key findings, 

and potential future directions. 
 

2. Related Works 

Given the rapid adoption of IoT applications across 

various sectors and the limited resource capacities of 

IoT devices, optimizing computational resources has 

become crucial to maximizing their utilization. Over 

the past few decades, researchers have extensively 

studied resource allocation and task scheduling in the 

fog computing environment. This section reviews 

notable works related to task scheduling in fog 

computing. 

Scheduling algorithms generally evaluate vital 

parameters such as makespan, energy consumption, 

cost, resource utilization, efficiency, throughput, 

security, and availability. Recently, many researchers 

from academia and industry have leveraged heuristic 

optimization algorithms to discover optimal solutions 

for resource allocation. These algorithms aim to 

optimize various factors, including minimizing power 

consumption, reducing latency in delay-sensitive 

applications (e.g., intelligent healthcare and smart 

traffic), increasing network bandwidth, improving 

throughput, and distributing tasks to prevent the 

overutilization or underutilization of fog computing 

resources. Population-based metaheuristic algorithms 

have been proposed to maximize fog computing 
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resource utilization and optimize task scheduling for 

IoT applications [15]. 

In [15], the authors formulated a classic weighted 

multi-objective model to allocate IoT services, 

optimizing three key scheduling parameters: 

makespan, cost, and energy. The results demonstrated 

that the hybrid GA-SA (Genetic Algorithm-Simulated 

Annealing) approach outperformed other advanced 

algorithms. In [16], the authors sought to balance 

energy consumption and service delay when placing 

services on fog nodes. They introduced the NSGA-II 

genetic algorithm to minimize both parameters. In 

[17], the authors developed a task scheduling 

approach using Ant Mating Optimization (AMO) to 

minimize makespan and energy consumption as part 

of the optimization problem. In [18], a multi-objective 

optimization algorithm was formulated for system 

load balancing to improve overall system 

performance. The proposed Opposition-based 

Sparrow Search with Gravitational Search Algorithm 

(OSS-GSA) successfully enhanced energy 

consumption and reduced response time, performing 

efficiently in terms of quick response time. 

In [19], the authors proposed a multi-objective 

scheduling problem to optimize energy, cost, delay, 

and load balancing in a three-layer IoT fog-cloud 

architecture. They implemented the Multi-Objective 

Particle Swarm Optimization (MS-PSO) algorithm 

and compared it with advanced algorithms such as 

standard PSO, GA, Differential Evolution (DE), and 

hybrid GA-PSO. Results indicated that MS-PSO 

outperformed standard PSO for workflow-based 

scientific applications. In [20], the authors introduced 

a scheduling model using Adaptive Optimal Deep 

Learning in cloud computing, proposing a modified 

Butterfly Optimization Algorithm combined with a 

Convolutional Neural Network (CNN) for task 

scheduling. This model aimed to maximize 

throughput and minimize latency. 

Tong et al. [21] introduced an artificial intelligence-

based algorithm called Deep Q-learning task 

Scheduling (DQTS), which integrates Q-learning 

with deep neural networks for task scheduling 

optimization. In [22], a novel algorithm named QL-

HEFT was proposed, combining Q-learning with the 

Heterogeneous Earliest Finish Time (HEFT) 

algorithm. This method utilizes the ranking values 

(Ranku) from the HEFT algorithm as intermediate 

rewards within the Q-learning framework, improving 

task scheduling efficiency. 

[33], This article focuses on optimizing the placement 

of high-demand services near data generation sources 

to enhance scheduling efficiency in fog computing 

environments. This approach is divided into three 

interconnected modules. The first module is the 

service type estimator, responsible for distributing 

services to appropriate nodes; the second module is 

the service dependency estimator, which manages 

service dependencies; and the third module is 

resource demand scheduling, which estimates 

resource demand to facilitate optimal scheduling. 

In [34], a fog computing scheduler for executing bag-

of-tasks (BoT) IoT applications in fog environments 

to minimize makespan and maximize reliable 

execution simultaneously. To this end, a new 

reliability model is introduced. Then, the BoT 

scheduling problem is formulated as a multi-objective 

discrete optimization problem with makespan and 

reliability optimization perspectives. To solve this 

combinatorial problem, a multi-objective discrete 

cuckoo search algorithm (MoDCSA) is developed. 

The MoDCSA optimization algorithm leverages 

several discrete operators that are intelligently 

invoked. 

In [35], mathematically formulates the task 

scheduling problem to optimize by reducing energy 

consumption and cost while improving QoS through 

decreasing response time and the number of deadline 

violations for IoT tasks. Then, a method called 

Energy-efficient and Deadline-aware Task 

Scheduling (ETFC) in fog computing is proposed, 

which predicts the traffic of fog nodes using a Support 

Vector Machine (SVM) and divides them into low-

traffic and high-traffic groups. The ETFC method 

schedules the low-traffic section using a 

reinforcement learning-based algorithm and the 

proposed ICLA-SOA algorithm, which is based on 

irregular cellular learning automata, and schedules the 

tasks of the high-traffic section with a metaheuristic 

algorithm based on the Non-dominated Sorting 

Genetic Algorithm (NSGA-III). 

[36], This paper presents an architecture that utilizes 

a multi-criteria scheduling algorithm and multi-level 

queues. The proposed architecture determines a 

duplication coefficient for each queue, and tasks are 

placed in these queues using a triple-tuple approach 

composed of task priority, time pressure, and 

workload prediction of required resources. The 

proposed architecture employs various methods to 

calculate the desired parameters. CPE is used to 

compute the priority of tasks. Workload prediction is 

carried out using Long-Short Term Memory (LSTM) 

neural networks. 

[37], This study proposes a multi-objective virtual 

machine placement method to jointly minimize 

energy costs and scheduling. The paper presents a 
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modified memetic algorithm, demonstrating that this 

proposed approach can reduce energy costs, carbon 

footprint, service-level agreement (SLA) violations, 

and the overall response time of IoT requests. 

[38], In this paper, the IGWO algorithm, an improved 

version of GWO that utilizes the "hill-climbing" 

method and chaos theory to achieve better results, is 

proposed. The proposed algorithm can increase the 

convergence speed of GWO and prevent it from 

getting trapped in local optima. Then, a binary version 

of the IGWO algorithm is introduced using various S 

and V functions to address the workflow scheduling 

problem in cloud computing data centers, aiming to 

minimize execution cost, makespan, and power 

consumption. 

3. Proposed Method 

This section outlines the proposed method for 

optimizing task scheduling in the fog computing 

layer. 

3.1 The Framework of the Proposed Method 

The task scheduling problem in fog computing is 

classified as NP-hard, meaning that finding an 

optimal solution in a reasonable time frame becomes 

increasingly difficult as the problem grows. 

Metaheuristic solutions are commonly used to 

address NP-hard problems, but they often rely on 

complete global information and require solution 

designers to handle variability. However, server 

performance, resource utilization, and downtime are 

unpredictable in fog and cloud computing 

environments. Additionally, the number of IoT 

applications and their corresponding resource 

demands are often random and volatile. For these 

reasons, traditional metaheuristic solutions struggle to 

efficiently manage the scheduling of IoT applications 

in fog computing environments [24]. 

Deep learning has emerged as a powerful tool in task 

scheduling for cloud and fog systems due to its ability 

to learn from complex patterns within large datasets. 

Critical advantages of deep learning in scheduling 

include: 

Accurate Prediction: Deep learning can predict the 

behavior of fog and cloud systems based on historical 

data, such as workload patterns or the time required 

to execute different tasks. 

Automated Decision-Making: Deep learning can 

automate decision-making by learning from 

environmental conditions and available resources, 

dynamically adjusting task scheduling. 

Adaptive Management: Deep neural networks can 

adapt to changing environments and the varying 

requirements of different tasks, ensuring efficient 

scheduling. 

 

 

Fig. 1. Task Scheduling Framework 
A more optimal and dynamic scheduling system can 

be developed by combining neural networks with 

metaheuristic algorithms. 

The proposed task scheduling framework for the fog 

layer is depicted in Figure 1. The framework 

comprises two main modules: prediction, scheduler, 

and monitoring systems. In the fog layer, the 

prediction module uses ConvLSTM (Convolutional 

Long Short-Term Memory), a deep learning 

architecture, to forecast future task requests based on 

historical data from user requests and resource 

characteristics. The workload prediction generated by 

ConvLSTM serves as the initial input to the scheduler 

module. 

Task scheduling is then performed using the Jellyfish 

Search Optimization (JSO) algorithm, an 

optimization method that searches for the best 

scheduling solutions based on workload predictions. 

These two components, deep learning for workload 

prediction and JSO for optimization, work in tandem 

to improve the efficiency of task scheduling in the fog 

layer. 

Deep learning, intense neural networks, is highly 

efficient in predicting future events and is critical in 

managing dynamic environments like fog computing. 

In the proposed method, the ConvLSTM neural 

network is employed to predict the number of 

machines required to meet the demand in the fog 

layer. 

ConvLSTM is an extension of the traditional Long 

Short-Term Memory (LSTM) network, which 

incorporates convolutional operations into the LSTM 

framework. This integration allows ConvLSTM to 

capture long-term dependencies in sequential data 

while leveraging convolutional layers to extract 

spatial features. ConvLSTM is particularly effective 
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for processing spatiotemporal data, making it well-

suited for predicting sequences of events across 

various fields. Applications of ConvLSTM include 

computer vision, meteorology, and autonomous 

driving, which have demonstrated superior 

performance in analyzing sequential data. Its ability 

to understand both temporal and spatial dependencies 

makes it ideal for video prediction, weather 

forecasting, and trajectory analysis. 

Compared to traditional LSTM networks, 

ConvLSTM manages spatial information within 

sequences more effectively, resulting in improved 

prediction accuracy and better generalization 

capabilities. Figure 2 provides an overview of the 

ConvLSTM model's process. 

 

  
Fig.2. Structure of ConvLSTM model. [25] 

3.2. Model for Predicting User Request Demand 

One of the critical challenges in managing data 

centers is the high energy consumption associated 

with their operations. A practical approach to 

optimizing energy use in physical machines involves 

minimizing the number of active machines, thereby 

reducing overall electricity consumption. Ideally, the 

system should aim to run as few physical machines as 

possible, powering down unused machines to 

decrease energy usage. In the proposed method for the 

fog computing layer, the ConvLSTM model is used 

due to its superior ability to predict computational 

load compared to other methods. 

The proposed system begins by using a prediction 

module to estimate the computational load, which 

enables efficient resource allocation to meet user 

demands. The ConvLSTM network forecasts future 

demand patterns by analyzing historical data on user 

requests and resource usage.{ , , }used used usedS C P  The 

critical resources analyzed include memory 

consumption per number of requests (in gigabytes), 

processing power consumption (in Million 

Instructions Per Second, or MIPS), and power 

consumption per request (in watts). By examining 

these historical data points, the prediction module can 

accurately estimate the number of physical machines 

required to handle future demand. 

3.3. Input Features for the ConvLSTM Model 

The input features used in the ConvLSTM 

prediction module include the following parameters, 

which capture essential aspects of computational 

load: 

Number of requests per second (MIPS): The range 

of requests handled by the system falls between 1,000 

and 10,000 MIPS. 

Memory consumption per number of requests 

(MB): Memory usage typically ranges between 8,000 

and 32,000 megabytes. 

Processing power consumption per number of 

requests (MIPS): This parameter varies from 500 to 

8,000 MIPS, depending on the number of requests. 

Power consumption per number of requests 

(Watts): The energy consumption per request ranges 

from 1,000 to 60,000 watts. 

The output of this model is the number of physical 

machines required in the fog layer. Based on the 

predicted computational load, the number of fog 

machines typically varies between 1 and 10. 

By accurately predicting user request demand, the 

model helps optimize resource allocation, ensuring 

that only the necessary number of physical machines 

is active, ultimately reducing energy consumption in 

the fog computing layer. This prediction-based 

approach ensures efficient management of resources 

while maintaining a balance between performance 

and energy efficiency. 

3.4. Task Scheduling in the Fog Layer 

The multi-objective task scheduling problem is an 

optimization problem that involves finding a set of 

optimal computing resources for various IoT tasks 

while optimizing more than one QoS parameter, 

subject to constraints. The three optimization 

objectives in our case are minimizing task completion 

time, energy consumption, and cost. The architecture 

assumes two layers, where the lower layer consists of 

intelligent hardware and IoT devices. The devices 

generate data and requests in this layer as tasks are 

sent to the fog layer. Each task 𝑡𝑖  is described using a 

set of features 𝑡𝑖 = {𝐷𝐸𝑖 , 𝐿𝑖 , 𝐷𝑖}, where 

  𝐷𝐸𝑖 , 𝐿𝑖𝑎𝑛𝑑𝐷𝑖 represent the deadline (seconds), task 

length (MI - Million Instructions), input data size 

(bits), and priority, respectively. 
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The total number of fog nodes is m, represented by 

𝐹 = {𝑓1, 𝑓2, 𝑓3, . . . , 𝑓𝑚}.. The characteristics of each fog 

device  are defined as 
max max max max, , ,j j j jS C E P

 where
max max max max, , ,j j j jS C E P

 represent the maximum 

memory capacity (in GB), computational capacity (in 

MIPS), total battery capacity (in watt-hours), and 

power consumption (in watts), respectively. 

The task scheduling problem involves assigning n 

IoT tasks to m fog nodes to optimize QoS parameters. 

Assigning a task  𝑡𝑖  to a fog node 𝑓𝑗 is denoted as 𝑎𝑖𝑗, 

representing a mapping. We use a weighted linear 

combination approach to formulate the objective 

function, as shown in equation (1), [39]. 

(1) 

argmin ( )
assignA assignA  

1 1

( ) ( , )
n m

assign ij
i j

A a Q i j
 


 

( , ) ( ) ( ) ( )t total ij e total ij c total ijQ i j w T a w E a w C a    

 

In this relation, 𝑤𝑡, 𝑤𝑒, and 𝑤𝑐are the three 

weighting coefficients, each set to 𝑤𝑡 = 𝑤𝑒 = 𝑤𝑐 =
1

3
 . 

The scheduler finds a solution that is represented as 

a matrix 𝐴𝑎𝑠𝑠𝑖𝑔𝑛 = [𝑎𝑖𝑗]𝑛.𝑚, where an element 𝑎𝑖𝑗 =

1 indicates that the j-th fog node is selected to execute 

the i-th task, and 𝑎𝑖𝑗 = 0 indicates that the node is not 

selected for that task. 

The fog layer's proposed scheduling method uses 

the Jellyfish Search optimization (JSO) algorithm. 

This algorithm features a search mechanism based on 

water waves and active and passive search modes. In 

this context, the jellyfish represent the solutions, and 

the current optimal solution is the position of the prey 

toward which the jellyfish move [27]. 

The reasons for using the Jellyfish algorithm in the 

fog layer can be summarized as follows: 

1. The Jellyfish algorithm employs a swarm 

intelligence approach, allowing multiple agents to 

explore the problem space in parallel. 

2. In the initial iterations, the Jellyfish algorithm 

focuses on a global search to avoid local optima. 

3. In the final iterations, after escaping local 

optima, the algorithm performs a more refined local 

search around the current optimal solution to increase 

accuracy. 

The Jellyfish algorithm uses the parameter 𝐶(𝑡) to 

balance global and local search modes. In equation (2) 

[27], t is the iteration counter, and Maxt represents the 

maximum number of iterations for the JS algorithm. 

(2) 

c (𝑡) = |(1 −
𝑡

𝑀𝑎𝑥𝑡
) × (2. rand − 1)| 

 

Random Search: Equation (3) [27] defines random 

search, where μ is the population mean, β is a 

numerical parameter set to approximately 3, 𝑋∗ is the 

best solution, and  𝑟𝑎𝑛𝑑(0,1) is a random number 

between 0 and 1. 

(3)  
𝑋𝑖 (𝑡 + 1) = 𝑋𝑖 (𝑡) + 𝑟𝑎𝑛𝑑(0,1) × (𝑋∗ − 𝛽 × 𝑟𝑎𝑛𝑑(0,1)

× 𝜇) 

Passive Search: In equation (4) [27], 𝑈𝑏   and 𝐿𝑏 

represent the upper and lower bounds for each 

solution, and γ is a numerical coefficient equal to 0.1. 

(4) 

𝑋𝑖 (𝑡 + 1) = 𝑋𝑖 (𝑡) + 𝛾. 𝑟𝑎𝑛𝑑(0,1) × (𝑈𝑏 − 𝐿𝑏) 

Active Search: In active behavior, a jellyfish 

𝑿𝒊 randomly selects another jellyfish 𝑿𝒋, If the fitness 

of 𝑿𝒊 is better than 𝑿𝒋, equation (5) [27] is used for 

movement; otherwise, equation (6) [27] is applied. 

(5) 

𝑋𝑖 (𝑡 + 1) = 𝑋𝑖 (𝑡) + 𝑟𝑎𝑛𝑑. (𝑋𝑗 (𝑡) − 𝑋𝑖 (𝑡)) 

 (6) 

𝑋𝑖 (𝑡 + 1) = 𝑋𝑖 (𝑡) + 𝑟𝑎𝑛𝑑. (𝑋𝑖 (𝑡) − 𝑋𝑗  (𝑡)  

Once the prediction model has determined the 

required number of fog nodes, tasks are scheduled 

across the fog nodes. The scheduling algorithm for the 

fog layer is presented in Algorithm 1. Algorithm 1 

uses Algorithm 2 to create the initial population and 

Algorithm 3 to evaluate the objective function. As 

shown in Algorithm 2, the creation of the initial 

population is not entirely random in the proposed 

method. Some initial constraints are considered when 

selecting an appropriate initial population, which 

improves accuracy and reduces overall task 

completion time during scheduling. 
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Algorithm 1: Scheduling algorithm in the fog layer 

 

Algorithm 2: The initial population creation algorithm 

 

Algorithm 3: Fitness function calculation algorithm 

3.5. Time Complexity Analysis of the CLJSO 

Algorithm 

The CLJSO algorithm consists of three primary 

stages, each contributing to the overall time 

complexity. 

Population Generation: In this stage, the initial 

population of task-to-resource mappings is created. 

For each solution in the population of size N, random 

mappings for each of the n tasks are generated. The 

time complexity for this stage depends on the 

population size N and the number of tasks n, giving a 

complexity of 𝑂(𝑛 × 𝑁). 

Fitness Calculation: This stage calculates the fitness 

for each mapping of tasks to resources. The fitness 

calculation involves three nested loops: one for each 

member of the population N, one for each task n, and 

one for each resource m. Within the innermost loop, 

parameters such as transfer time, execution time, 

energy consumption, and cost are computed, each 

with a time complexity of O (1). Therefore, the total 

time complexity for fitness calculation is: 𝑂(𝑛 × 𝑚 ×
𝑁) 

Main Optimization Loop in CLJSO: The main loop 

iterates T times to update the population and improve 

the optimal task-to-resource mappings. In each 

iteration, updates are performed for each solution in 

the population, resulting in a complexity of 𝑂(𝑇 × 𝑁), 

where T is the number of iterations, and N is the 

population size. 

The overall time complexity of the CLJSO algorithm 

can be derived by summing the complexities of the 

three stages: 

𝑂(𝑛 × 𝑁) + 𝑂(𝑛 × 𝑚 × 𝑁) + 𝑂(𝑇 × 𝑁) 

In most cases, 𝑂(𝑛 × 𝑚 × 𝑁)dominates the other 

terms. Thus, the time complexity of the CLJSO 

algorithm in the general case for large inputs can be 

approximated as: 

𝑂(𝑛 × 𝑚 × 𝑁) 

The overall time complexity 𝑂(𝑛 × 𝑚 × 𝑁)indicates 

that the algorithm scales linearly concerning the 

population size N, the number of tasks n, and the 

number of resources m. While this complexity 

suggests high computational cost for large inputs, the 

algorithm’s structure and multiple optimizations 

ensure that it remains scalable for complex task 

scheduling problems. 

3.6 Impact of the Proposed Approach on Global 

and Local Search in the CLJSO Algorithm 

The proposed approach, which integrates resource 

prediction using ConvLSTM and controlled 

population generation, positively impacts two key 

phases in metaheuristic algorithms, namely global 

search (exploration) and local search (exploitation) in 

the CLJSO algorithm. 

Impact on Global Search (Exploration): 
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1. Resource prediction using ConvLSTM helps 

to adjust the initial search space based on real 

resource requirements. This directs the global 

search to focus on a constrained search space 

with a higher probability of achieving 

optimal solutions, rather than exploring a 

large and entirely random space. 

2. Through controlled population generation, 

where machines suitable for each task are 

specifically chosen, the initial population is 

more closely aligned with the problem 

requirements. This process increases the 

accuracy of the exploration phase and 

improves the likelihood of finding effective 

combinations of resource allocation and task 

assignments in the initial stages of the 

algorithm. 

Impact on Local Search (Exploitation): 

1. The optimized initial population achieved 

through targeted selection allows the 

algorithm to focus its local search on more 

promising regions of the search space in 

subsequent phases. This optimization of the 

initial selection enables the algorithm to 

concentrate computational resources on 

refining and improving assignments that were 

closer to optimal from the outset. 

2. This approach leads to an increased 

convergence speed for the algorithm, as it 

spends less time on refining poor solutions 

and moves more quickly toward optimal 

solutions. As a result, local search can 

prioritize adjustments to reasonable and 

effective allocations rather than unrelated or 

inefficient combinations. 

3.7 Analysis of the Proposed Method 

In this study, an innovative approach for task 

scheduling in dynamic environments is presented, 

consisting of two key stages: resource prediction 

using ConvLSTM and task scheduling optimization 

with the CLJSO algorithm. This combination 

improves both accuracy and efficiency in resource 

allocation and task management. 

Resource Prediction Using ConvLSTM: 

A ConvLSTM model is used to predict the number of 

required resources before applying the CLJSO 

algorithm to enhance resource allocation accuracy. 

This model leverages historical data and workload 

patterns to estimate resource needs according to 

actual demand. Advantages of this stage: Efficiency: 

By accurately predicting required resources, the 

CLJSO search space is reduced, leading to faster 

convergence and lower computational burden. 

Accuracy: Resource prediction helps avoid under- or 

over-allocation issues, ensuring that tasks are 

assigned to appropriate resources. This ultimately 

increases the scheduling precision and overall quality. 

Controlled Population Generation:  

In the population generation algorithm, instead of 

generating an initial population randomly, the ability 

of machines to perform specific tasks is first 

evaluated, and only machines capable of handling a 

given task are selected as viable candidates. 

Advantages of this stage: Improved Scheduling 

Accuracy: Ensuring tasks are assigned only to 

suitable machines results in a more rational and 

accurate initial population, which accelerates the 

convergence process. Reduced Search Space: By 

eliminating unsuitable allocations from the initial 

population, the algorithm can focus on more probable 

solutions, improving both speed and accuracy while 

also decreasing processing time. 

Combining ConvLSTM resource prediction with 

controlled population generation in the CLJSO 

algorithm has resulted in the following 

improvements:  

1. Higher Resource Allocation Accuracy: With 

accurate estimation of resource requirements 

and initial selection of suitable machines, 

scheduling precision is significantly 

improved.  

2. Reduced Computational Load: By limiting 

the search space, the algorithm converges 

more quickly to optimal solutions, reducing 

computational time.  

3. Enhanced Adaptability in Dynamic 

Environments: This approach adapts 

effectively to real-time changes, optimizing 

resource allocation in line with actual 

requirements. 

4. Analysis 
 

In this section, the proposed method is analyzed and 

evaluated, and the experimental results are presented, 

followed by a comparison with similar methods. 
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4.1 Implementation Parameters 

This section outlines the experimental setup and 

configuration of parameters used during the 

experiments. The performance of the proposed 

method was evaluated and compared with existing 

scheduling algorithms using Python 3.8. All 

experiments were conducted on a personal computer 

with the specifications in Table 1. 
 

Table 1 

Characteristics of the test environment 

Intel Core i7-8700K CPU 

64GB RAM 

Ubuntu 18.04 Operation System 

NVIDIA GTX 1080 Ti Graphics Processing Unit 

Python 3.8 Programming Language 

Pandas, Keras, Scikit-learn, NumPy, 

Matplotlib  

Python Libraries 

TensorFlow 2.4 Deep Learning Framework 

 

Table 2 shows the configuration of hosts in the fog 

environment. 
 

Table 2 

the configuration of hosts in the fog environment 

Sr.No. Simulation Parameters Value 

1 Number of Fog Data 

Centers 

1 

2 Number of Fog Nodes 10 

3 The Processing Rate of Fog 

Nodes 

[40000 80000] 

MIPS 

4 Cloud Nodes Memory 

Capacity (MB) 

8000-16000 

5 Fog Energy Consumption 

Rate (Watts per sec) 

1000-6000 

6 Fog CPU Usage Cost (per 

sec) 

0.1 

7 Fog Memory Usage Cost 

(per sec) 

0.01 

8 Fog Bandwidth Usage Cost 

(per sec) 
0.001 

9 Fog Bandwidth 

Capacity 

100(Mbps) 

10 Requests Per Second 1000-10000 MIPS 

 

Synthetic datasets were used to compare the proposed 

method with existing algorithms. The synthetic 

workload consisted of 1,000 tasks generated using a 

uniform distribution. The task lengths varied between 

1,000 and 20,000 million Instructions (MI), and the 

tasks were assumed to be independent and non-

preemptive. 

Table 3 presents the specific parameter settings for 

the proposed method and the comparison algorithms. 

It provides a detailed breakdown of the critical 

settings used for the algorithms under evaluation. 
 

Table 3 

Parameters settings of comparative algorithms 

Algorithm Parameter value 

HGSWC a 

f 
FADs 

P 

Iterations 

[-1,1] 

2 

0.2 

0.5 

100 

CGO α, β 
Iterations 

[0,1] 

100 

AOS Maximum Number of 

layers 

Foton Rate 

Iterations 

5 

0.1 

100 

CSA ϒ 

α 
ρ 

β 
Iterations 

2 

4 

1 

3 

100 

FSPGSA Initial Temperature 

Cooling coefficient 

GA Iterations 

Mutation Probability 

Stopping time for SA 

Iterations 

30 

10 

60 

0.2 

5s 

100 

EHEO α1 

α2 

GP 

F 

CR 

Iterations 

1 

2 

0.5 

0.8 

0.9 

100 

Jellyfish Search β 

γ 

Iterations 

3 

0.1 

100 

Table 4 contains the critical parameters and settings 

used to train the ConvLSTM model. It outlines the 

parameters related to the model architecture, 

including the number of layers and neurons, and the 

training process settings, such as the number of 

epochs, batch size, and learning rate. The table also 

lists the hyperparameters used to optimize and 

evaluate the model's performance. 
 

Table 4 

Parameters and settings of ConvLSTM model training 

Value Description Parameters 

Architecture Parameters 

0.2 Percentage 

of randomly 

dropped 

neurons to 

prevent 

overfitting 

Dropout 

Relue Activation 

function for 

hidden 

layers 

Activation 

Function 

Softmax  output layer output_activation 

Fit Parameters 
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256 Size of the 

batch for 

each training 

step 

batch_size 

100  

Number of 

iterations for 

training 

epochs 

ModelCheckPoint() 

CSVLogger() 

EarlyStopping() 

ReduceLROnPlateau() 

Functions 

for 

predicting or 

evaluating 

events 

CallBacks 

Compile Hyperparameters 

Adam(learning_rate=0.001) Optimizer 

for updating 

weights 

during 

training 

Optimizer 

sparse_categorical_crossentropy The loss 

function for 

calculating 

error 

between 

predicted 

and actual 

values 

Loss 

accuracy Metric that 

measures the 

proportion 

of correctly 

predicted 

instances out 

of the total 

instances. 

metrics 

 

4.2 Evaluation Metrics 

The metrics used to compare the proposed method 

with similar scheduling strategies are presented in 

this section. 

Task Completion Time (Makespan) 

Makespan is the most well-known metric for 

evaluating the quality and efficiency of task-

scheduling algorithms. It is defined as the completion 

time of the last task in a set of tasks. 

If the time required to execute the task 𝑡𝑖on fog node 

𝑓𝑗   is denoted by a_ij, then the total time required to 

execute the task 𝑡𝑖on fog node 𝑓𝑗  Is mathematically 

expressed as [39]. 

(7) 

𝑇𝑡𝑜𝑡𝑎𝑙(𝑎𝑖𝑗) = 𝑇𝑢𝑝(𝑎𝑖𝑗) + 𝑇𝑒𝑥𝑒𝑐𝑢𝑡𝑒(𝑎𝑖𝑗) 

Here, 𝑻𝒖𝒑Corresponds to the amount of data uploaded 

from the IoT device to the fog or cloud node. In the 

equation above, 𝑻𝒖𝒑 is defined as the ratio of the task 

data size 𝑫𝒊 to the bandwidth capacity 𝑩𝑾𝒊𝒋 of the 

transmission channel between the IoT device and the 

fog node 𝒇𝒋, as formulated in equation (8)[39]. 

(8) 

( ) i
up ij

ij

D
T a

BW
  

The execution time of the task 𝒕𝒊 on fog node 𝒇𝒋 is 

defined as the amount of computation required for the 

task 𝒕𝒊 divided by the computational capacity of the 

fog node 𝒇𝒋, Which is mathematically expressed in 

equation (9)[41]. 
(9) 

max
( ) i

execute ij

j

L
T a

C
  

If there are n tasks and m fog nodes, the total time 

required to execute all tasks is expressed in equation 

(10), [39], [41]. In this equation, if the element 𝒂𝒊𝒋 =

𝟏, then fog node j-th is selected to execute the task 𝒕𝒊

; otherwise, if 𝒂𝒊𝒋 = 𝟎, That fog node is not selected. 

𝑻𝒕𝒐𝒕𝒂𝒍(𝒂𝒊𝒋) represents the time required to execute the 

task 𝒕𝒊 on virtual machine 𝒇𝒋. 

(10) 
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1 2
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( ) ( ) ... ( )
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T a T a T a
T

T a T a T a

 
 
 
 
   
 
 
 
  

 

 

1 1

( )
n m

total ij total ij
i j

T a T a
 

  

Total Energy Consumption 

Similar to the modeling of time, the total energy 

consumed for executing a task  𝑡𝑖, Which is to be 

assigned to the fog node 𝑓𝑗, is defined as the sum of 

the energy consumed for transferring task 𝑡𝑖 to 𝑓𝑗 

Moreover, the energy is consumed for its execution. 

The total energy consumed is mathematically 

expressed as [39].  

(11) 

𝐸𝑡𝑜𝑡𝑎𝑙(𝑎𝑖𝑗) = 𝐸𝑢𝑝(𝑎𝑖𝑗) + 𝐸𝑒𝑥𝑒𝑐𝑢𝑡𝑒(𝑎𝑖𝑗) 

This relationship models the total energy consumed 

for executing a task. 𝑡𝑖 assigned to the fog node 𝑓𝑗, 

Combining the energy required for data transfer to the 

fog or cloud and the energy for task execution. 

Equation (12)[39] formulates the total energy 

consumed. 
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 (12)                            
( ) ( ) ( )total ij up ij execute ijE a E a E a   

If n tasks and m fog nodes exist, the total energy 

required to execute all tasks is represented in equation 

(13) [39][41]. Here, 𝐸𝑡𝑜𝑡𝑎𝑙(𝑎𝑖𝑗)denotes the energy 

needed to execute the task  𝑡𝑖on virtual machine 𝒇𝒋. 

(13) 

11 12 1

21 22 2

1 2

( ) ( ) ... ( )

( ) ( ) ... ( )

...

( ) ( ) ... ( )

total total total j

total total total j
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total i total i total ij

E a E a E a

E a E a E a
E

E a E a E a

 
 
 
 
   
 
 
 
  

 

1 1

( )
n m

total ij total ij
i j

E a E a
 


 

Total Cost 

The total cost of executing a task  𝑡𝑖, which is to be 

assigned to the fog node 𝒇𝒋, is defined as the sum of 

the costs for data transfer, memory usage, and 

execution. The total cost is mathematically expressed 

as [40]. 

(14) 

𝐶𝑡𝑜𝑡𝑎𝑙(𝑎𝑖𝑗) = 𝐶𝑐𝑝𝑢(𝑎𝑖𝑗) + 𝐶𝑚𝑒𝑚𝑜𝑟𝑦(𝑎𝑖𝑗)

+ 𝐶𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ(𝑎𝑖𝑗) 

 

The cost of executing a task  𝑡𝑖 assigned to the fog 

node 𝒇𝒋 Is formulated in equation (15) [40]. 

(15) 

𝐶𝑐𝑝𝑢(𝑎𝑖𝑗) = 𝑇𝑒𝑥𝑒𝑐𝑢𝑡𝑒(𝑎𝑖𝑗) × 𝑝𝑖𝑗 

 

Where 𝒑𝒊𝒋 Is the cost per unit of time for executing a 

task 𝒕𝒊 on fog node 𝒇𝒋. The memory cost is defined as 

[40]. 

(16) 

𝑪𝒎𝒆𝒎𝒐𝒓𝒚(𝒂𝒊𝒋) = 𝑻𝒆𝒙𝒆𝒄𝒖𝒕𝒆(𝒂𝒊𝒋) × 𝒎𝒊𝒋 

Where 𝑚𝑖𝑗 Represents the cost of memory usage. The 

bandwidth cost is given by [40]. 

(17) 

𝐶𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ(𝑎𝑖𝑗) = 𝑇𝑒𝑥𝑒𝑐𝑢𝑡𝑒(𝑎𝑖𝑗) × 𝑏𝑖𝑗 

where 𝑏𝑖𝑗 Is the cost of bandwidth per unit of time for 

executing a task 𝒕𝒊 on fog node 𝒇𝒋. 

If n tasks and m fog nodes exist, the total cost required 

to execute all tasks is represented in equation (18). 

Here, 𝐶𝑡𝑜𝑡𝑎𝑙(𝑎𝑖𝑗)  denotes the cost of executing the 

task 𝒕𝒊 on virtual machine 𝒇𝒋. 

(18) 
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Performance Improvement Rate (PIR) 

The PIR is a metric that estimates the percentage 

improvement in performance for each developed 

method compared to the baseline methods from 

related works. It is defined by equation (19) [41]. 

(19) 

𝑃𝐼𝑅(%) =
𝑌 − 𝑌′

𝑌′
× 100 

In this equation, 𝑌′  represents the fitness value 

obtained by the proposed scheduling method, and 𝑌     
Represents the fitness value obtained by each 

compared method. 

5. Evaluation and Comparison 

The simulation results of the proposed method are 

presented in two sections: 

5.1 Results of the Predictor Module Evaluation  

All experiments were conducted in a consistent 

hardware and software environment to ensure 

reproducibility and fairness. The hardware 

specifications are detailed in Table 1. For evaluating 

the predictor module, we used 70,000 random data 

points for training, 15,000 for validation, and 15,000 

for testing across the models: LSTM, GRU, 

ConvGRU, and ConvLSTM. The dataset consists of 

time series data, capturing the temporal patterns of the 

request rate per second (MIPS) and the corresponding 

resource demands for the predictor module. The 

module output determines the number of machines 

required in the fog layer. 

The overall training process was conducted in three 

phases: data preprocessing, model training, and 

model evaluation, as follows: 

Data Preprocessing 
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Data Cleaning: We carefully examined the dataset 

values and used interpolation techniques to correct 

outliers, ensuring data accuracy and consistency. 

Additionally, given that the created datasets were 

imbalanced, we applied the SMOTE (Synthetic 

Minority Over-sampling Technique) to balance the 

data and prevent the model from biasing towards the 

majority class, thus improving prediction accuracy. 

Data Standardization: We employed min-max 

normalization to normalize the data, ensuring 

consistency in the scale of data dimensions. 

Data Sorting: The data was sorted chronologically. 

Time-series data must be arranged by date and time to 

preserve the chronological order. Otherwise, models 

cannot correctly utilize the temporal relationships 

between data points. 

Data Splitting: The entire dataset was split into three 

parts: 70% for training, 15% for validation, and 15% 

for testing. Due to the temporal dependencies, the 

data was not split randomly. Instead, newer data was 

allocated for testing and validation, while older data 

was used for training. 

Time Windowing: The intervals were set to 1 second, 

with a time window of 5. We thoroughly examined 

the data splits to ensure that no future information 

from the test set was used during the training or 

validation phases. 

Model Training 

In the training process, we specified the model 

architecture and hyperparameters. Our model 

architecture was meticulously designed to address 

prediction complexities. The number and types of 

layers used in the models are shown in Figure 3. The 

hyperparameters related to the architecture, compile, 

and fit processes are provided in Table 4. 

  

Fig3. ConvLSTM Model Architecture 

Model Evaluation 

We employed cross-validation and used performance 

metrics such as Accuracy, AUC, F1 Score, and Recall 

evaluating the models. A detailed comparison of the 

performance of LSTM, GRU, ConvGRU, and 

ConvLSTM models is shown in Table 5. The results 

indicate that the ConvLSTM model consistently 

outperformed the other models across all metrics, 

showing superior capability in predicting resource 

requirements. 
 

Table 5 

Evaluation of LSTM, GRU, ConvGRU, and ConvLSTM models 

 
AUC F1 

Score 

Recall Accuracy Model 

80.7 81.41 81.01 91.62 LSTM 

84.18 87.26 85.07 84.09 GRU 

85.62 80.25 85.33 86.44 ConvGRU 

91.28 88.70 91.33 94.30 ConvLSTM 

 

5.2 Results of the Scheduler Module 

This section presents experimental results that verify 

the performance of the proposed method in both fog 

and cloud computing layers. The evaluation metrics 

include task completion time, total energy 

consumption, and total cost for varying numbers of 

tasks. The proposed method's PIR (Performance 

Improvement Rate) is compared with similar 

methods. The results are compared with eight widely 
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used scheduling algorithms: JS [27], HGSWC [29], 

Chaos Game Optimization (CGO) [30], Atomic 

Orbital Search (AOS) [31], Chameleon Swarm 

Algorithm (CSA) [32], Enhanced Hybrid Equilibrium 

Optimizer (EHEO) [25], and FSPGSA [15]. The 

algorithm configurations are summarized in Table 3, 

and the characteristics of the fog nodes are provided 

in Table 2. To ensure a fair comparison, the 

population size for all algorithms was set to 100. 

In Figure 3, the Makespan metric is compared across 

the algorithms JS, AOS, FSPGSA, CLJSO, EHEO, 

HGSWC, CSA, and CGO, with task counts ranging 

from [100 to 1,000] in the fog layer. The experimental 

results demonstrate that the proposed CLJSO 

algorithm consistently performs better than all other 

algorithms in the fog layer. Furthermore, algorithms 

with lower complexity, such as JS, AOS, and CSA, 

performed better in more straightforward cases 

compared to more complex algorithms like FSPGSA 

and EHEO. 

 
Fig. 4. Makespan comparison of the proposed method with meta-

heuristic methods in the artificial data set in the fog layer 

Figure 5 illustrates the energy consumption of the 

algorithms JS, AOS, FSPGSA, CLJSO, EHEO, 

HGSWC, CSA, and CGO in the fog layer with 

varying task numbers. As the number of tasks 

increases, overall energy consumption rises due to the 

longer processing times required, resulting in higher 

energy usage. For smaller task sets, the difference in 

energy consumption between CLJSO and the other 

algorithms is minimal. However, as the task numbers 

increase, the difference becomes more significant. 

CLJSO exhibits substantially lower energy 

consumption, which can be attributed to its predictor 

model for determining the necessary number of 

machines. This highlights the improvement in energy 

efficiency of the CLJSO algorithm. 

 
Fig. 5. Comparison of the energy of the proposed method with 

meta-heuristic methods in the artificial data set in the fog layer 
 

Figure 6 presents the cost comparison for different 

algorithms as the number of tasks increases. The 

results indicate that CLJSO achieves the lowest cost 

in the fog layer. 

 
Fig. 6. Comparison of the cost of the proposed method with 

meta-heuristic methods in the artificial data set in the fog layer 

 

To provide a more precise evaluation of the results, 

Table 6 shows the average improvement in the 

objective function (in percentage) achieved by 

CLJSO in the fog layer compared to its competitors. 

For example, CLJSO improved the average objective 

function by 48.87%-56.44% compared to the CGO 

algorithm and performed approximately 14.03%-

21.98% better than JS. 
 

Table 6 

 Comparison of PIR (%) average fitness function for different 

workloads in the fog layer 

 

No of 
Tasks 

CGO FSPGSA HGSWC EHEO CSA AOS JS 

200 48.87 35.09 32.04 29.54 20.98 19.09 14.03 

400 50.44 36.01 34.93 29 25.34 21.87 16.87 

600 51.17 37.79 35.09 29.95 26.86 23.09 18.76 

800 54.42 39.01 36.04 30.76 27.76 25.76 19.54 

1000 56.42 40.47 37.01 34.45 29.87 26.87 21.98 

 



 

Zahra Jafari et al/ Task Scheduling Algorithm in Fog Computing Layer for Optimizing Multiple Quality of Service 

Parameters Using Jellyfish Search Optimization 

 

42 

 

6. Conclusion 

The proposed method leveraged the ConvLSTM 

neural network to predict the number of machines 

required in the fog computing layer, and the tasks 

were scheduled using the CLJSO algorithm. 

Experimental results demonstrated that the proposed 

method outperformed algorithms such as JS, AOS, 

FSPGSA, EHEO, HGSWC, CSA, and CGO 

regarding cost, task completion time (Makespan), and 

energy consumption. The PIR (%) metric, which 

compared the average objective function with other 

approaches, confirmed that the proposed method 

achieved superior results. 

The comparison results of total task execution time 

(makespan) demonstrated that the CLJSO algorithm 

significantly outperformed other algorithms. On 

average, CLJSO achieved a reduction of 15.19% 

compared to JS, 27.92% compared to AOS, 30.05% 

compared to CSA, 31.53% compared to EHEO, 

43.71% compared to HGWSWC, 48.16% compared 

to FSPGSA, and 53.32% compared to CGO. These 

results highlighted CLJSO’s superiority in optimizing 

task scheduling and reducing makespan compared to 

other algorithms. 

The CLJSO algorithm demonstrated significant 

energy reduction compared to other algorithms. 

Specifically, CLJSO achieved a reduction of 52.73% 

relative to JS, 57.57% relative to AOS, 60.57% 

relative to CSA, 66.92% relative to EHEO, 68.92% 

relative to HGWSWC, 69.35% relative to FSPGSA, 

and 75.00% relative to CGO. These results 

highlighted the superior performance of CLJSO in 

optimizing energy consumption in task scheduling 

compared to other methods. 

The results indicated that the CLJSO algorithm 

achieved a cost reduction of 23.22% compared to the 

JS algorithm, 38.15% compared to AOS, 40.14% 

compared to CSA, 42.71% compared to EHEO, 

48.14% compared to HGWSWC, 50.52% compared 

to FSPGSA, and 52.82% compared to CGO. This 

demonstrated the effectiveness of CLJSO in 

minimizing costs compared to the other algorithms. 

For 1000 tasks, the results showed that the CLJSO 

algorithm outperformed the other algorithms in terms 

of average improvement in the objective function. 

Specifically, CLJSO achieved an average 

improvement of approximately 56.42% over CGO, 

approximately 40.47% over FSPGSA, approximately 

37.01% over HGWSWC, approximately 34.45% over 

EHEO, approximately 29.87% over CSA, 

approximately 26.87% over AOS, and approximately 

20.98% over JS. These findings underscored the 

effectiveness of CLJSO in optimizing the objective 

function for 1000 tasks. 

7. Future work 

However, the proposed method has some limitations: 

1. Metaheuristic algorithms are inherently non-

deterministic, meaning they do not always provide the 

optimal solution in every iteration. 

2. These algorithms may suffer from getting trapped 

in local optima during the task scheduling process. 

3. Prediction models and deep learning algorithms 

require a training phase for accurate predictions, 

which can be time-consuming. 

Addressing these challenges could be a focus of 

future research. Enhancing the robustness of 

metaheuristic algorithms to avoid local optima and 

improving the efficiency of the training process are 

potential areas for future work. 
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