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Abstract: 

The data envelopment analysis (DEA), as a nonparametric method in operational research, is used 

to measure the efficiency of a set of homogeneous decision-making units (DMU) with the help of 

linear programming. Up to now, this method has been extended to be used in various fields. For 

example, cross-efficiency evaluation, Fuzzy Data Envelopment Analysis (FDEA) and the Network 

Data Envelopment Analysis (NDEA). The existing models do not work when a decision maker 

tries to measure the efficiency under all these conditions, and thus there is a need for a unified 

model that considers all these conditions. In the present study, we present several models to 

measure the fuzzy cross efficiency of a general two-stage system. The aim of this study is to use 

the proposed models in the banking industry. In this regard, a case study is conducted to rank the 

branches of one of Iranian banks. All the proposed models are linear, and some of them are able 

to calculate all the lower, median and upper bounds of the fuzzy number by solving one model. 

Finally, we compare the results derived using the proposed models. 

 

1. Introduction 

DEA is a scientific tool that deals with efficiency measurement. The first DEA model was 

proposed by Charnes, Cooper, and Rhodes [1], which is also known as the CCR model. The CCR 

model was rapidly expanded by various researchers. The aim of the researchers is to make the 

proposed model applicable to the real-world problems, reduce its defects, and increase the 

accuracy and validity of the results derived from the solution of the model. Cross efficiency models 

were presented to rank efficient DMUs and solve problems arising from self-evaluation and 

multiple optimum solutions of the traditional models. Network models were developed to measure 

the efficiency of sub-DMUs in systems with internal processes. Moreover, there are some models 

that deal with interval, fuzzy, probabilistic, and uncertain data. 

DEA is widely used in various production and service sectors. The banking industry is one of the 

important service sectors of any country, so that its performance evaluation is a necessity in today's 

competitive economic environment. Today, due to the expansion of information technology in 

society, traditional banking has turned into digital banking. For this reason, banks have adopted 

the policy of reducing and merging branches. It seems necessary to calculate efficiency in order to 

identify inefficient branches for integration. The banking procedure is considered by various 

researcher as a two-stage process with two production and financial intermediation sectors. The 
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present study makes an attempt to measure the fuzzy efficiency of the divisions and rank the units 

using cross efficiency evaluation. Currently, there is no unified model that takes all these 

conditions into account, and it is not possible to use multiple models. In this research, several 

models are proposed to measure the fuzzy cross efficiency in a general two-stage network system. 

Then the proposed models are implemented on a case study of 105 branches of an Iranian bank. 

The scope of this article is similar to that of our other research [2] with the difference that in the 

current research we use the fuzzy data instead of the interval data.  

The rest of this study is organized as follows: In Section 2, the literature on DEA, cross efficiency, 

network efficiency, and fuzzy efficiency are reviewed. In Section 3, several models are proposed 

to measure the fuzzy cross efficiency in a general two-stage network system. Section 4 is dedicated 

to discussing the applications of the proposed models in the banking industry and its 

implementation on a case study. Finally, the conclusions and suggestions for future research are 

presented in Section 5. 

 

2. Literature Review 

Economic development of countries has caused many environmental problems [3]. Every 

organization, institution or company has goals, strategies, and policies within its activity scope. 

Responding the stakeholder and customer expectations, maintaining the organization survival, 

having presence in global markets, etc. requires considering the performance management process, 

which is not possible without performance evaluation. The traditional performance evaluation 

methods were initially developed based almost entirely on financial indicators. After that, 

efficiency and effectiveness indicators were used to evaluate the organization's performance, until 

the notion of DEA was presented to measure efficiency. 

The historical background and the beginning of the DEA discussion goes back to Rhodes' doctoral 

thesis [1]. In collaboration with Cooper and Charnes, he evaluated American national schools, they 

developed Farrell's method [4], which had two inputs and one output, and proposed the CCR 

model. Their CCR model was capable of solving problems with multiple inputs and outputs and 

was based on constant return to scale. Later, Banker, Charnes and Cooper [5] proposed the BCC 

model, which was based on variable return to scale. Then Charnes et al. [6] presented the 

multiplicative model and in another research Charnes et al. [7] provided the slacks-based model 

(SBM). Kaplan and Norton [8] took effective steps and developed the balanced scorecard model. 

As a nonparametric linear programming model, DEA measures the efficiency of a number of 

homogeneous units with multiple inputs and outputs. Homogeneous units have the same inputs 

and outputs. The first DEA model, known as the fractional CCR model, defines the efficiency of 

each unit as the ratio of the weighted outputs to weighted inputs. The objective function of this 

model is to increase the efficiency of DMUs, provided that the maximum value of this fraction 

does not exceed the interval [0, 1] for each of the units. The weights of inputs and outputs are 

considered the decision variables of the model.  

Let j is a set with n homogeneous units. Each unit is associated with two sets i and r with m inputs 

and s outputs, respectively. The values of input and output parameters are represented by x and y, 

respectively. For each input 𝑥𝑖𝑗 there is a weight 𝑣𝑖, and for each output 𝑦𝑟𝑗 there is a weight 𝑢𝑟. 
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The efficiency of 𝐷𝑀𝑈𝑑 , 𝑑𝜖𝑗 is denoted by 𝐸𝑑. Model (1) is the fractional CCR model of constant 

return scale, which is transformed into a linear model (2) by change of variable method proposed 

by Charnes and Cooper [9]. This model is called the output-oriented model as it increases the 

outputs by keeping the inputs constant. To measure the efficiency of each unit, the model must be 

solved individually. Efficient units have an efficiency value of 1 and are located on the frontier of 

the production possibility set (PPS). 

(1) 

𝐸𝑑 = m𝑎𝑥
∑ 𝑢𝑟 𝑦𝑟𝑑
𝑠
𝑟=1

∑ 𝑣𝑖 𝑥𝑖𝑑
𝑚
𝑖=1

 

 
∑ 𝑢𝑟 𝑦𝑟𝑗
𝑠
𝑟=1

∑ 𝑣𝑖 𝑥𝑖𝑗
𝑚
𝑖=1

≤ 1    ∀𝑗 = 1,… , 𝑛 

𝑢𝑟 ≥ 0      ∀𝑟 = 1,… , 𝑠   

𝑣𝑖 ≥ 0       ∀i = 1,… ,m 

(2) 

𝐸𝑑 = m𝑎𝑥∑𝑢𝑟 𝑦𝑟𝑑

𝑠

𝑟=1

 

∑𝑣𝑖 𝑥𝑖𝑑

𝑚

𝑖=1

= 1 

∑𝑢𝑟 𝑦𝑟𝑗

𝑠

𝑟=1

−∑𝑣𝑖 𝑥𝑖𝑗

𝑚

𝑖=1

≤ 0    ∀𝑗 = 1,… , 𝑛 

𝑢𝑟 ≥ 0      ∀𝑟 = 1,… , 𝑠   

𝑣𝑖 ≥ 0       ∀i = 1,… ,m 

There are two major problems in traditional models. The first problem is the lack of differentiation 

between efficient units, as they all have an efficiency value of 1. In this regard, ranking models 

were developed to solve this problem. Andersen-Petersen's super-efficiency model [10], also 

known as AP, is one of the famous ranking models. The ranking models have been evaluated by 

Hosseinzadeh Lotfi et al. [11]. The second problem is the difference in the optimal weights of the 

units. In other words, the significance of inputs and outputs is different from each unit’s point of 

view. To solve this problem, common weight models were developed, e.g. see Jahanshahloo et al. 

[12].  

 

2.1. Cross Efficiency 

In traditional models, each DMU tries to increase its efficiency by giving arbitrary weights to 

inputs and outputs. Accordingly, the measured efficiency is known as self-evaluation. When each 

unit is evaluated with optimal weights of other units, it is called peer-evaluation. Sexton [13] was 

the first who gave the idea of forming a cross-efficiency matrix, in which the main diagonal 

represents the self-evaluation efficiency and the other elements are the efficiency measured using 

the optimal weights of other units. The cross-efficiency matrix is shown in Table 1, where 𝐸𝑑𝑘 

denotes the measured efficiency of DMUd with the optimal weights of DMUk, as shown in Eq. (3). 

Finally, the row average of the matrix represents the DMUd efficiency. 

Table 1: Cross efficiency matrix 

 Rated  DMUk 
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Rating 

DMUd 

 1 2 … n 

1 𝐸11 𝐸12 𝐸1𝑘 𝐸1𝑛 

2 𝐸21 𝐸22 … 𝐸2𝑛 

⋮ 𝐸𝑑1 ⋮ ⋱  

n 𝐸𝑛1 𝐸𝑛2 … 𝐸𝑛𝑛 

 

(3) 𝐸𝑑𝑘 =
∑ 𝑢𝑟𝑘𝑦𝑟𝑑
𝑠
𝑟=1

∑ 𝑣𝑖𝑘𝑥𝑖𝑑
𝑚
𝑖=1

 

Although cross-efficiency solves the major problems of traditional models, it has its own problems, 

some of which have been pointed out by Song and Liu [14] as follows:  

1. The use of average weights has discontinuity [15]. Other central tendency and dispersion 

measures can be used as well. 

2. Average cross efficiency is not Pareto efficiency [16].  

3. The self-evaluation efficiency, which is located in the main diagonal of the matrix, plays a 

significant role in measuring the cross efficiency [17]. While the weight assigned to them 

is different in DMUs.  

4. Average cross efficiency does not reflect the actual performance of all DMUs, as this 

method simply sums them equally by ignoring the relative significance [18].  

5. Measuring the row average means that we have assigned the same value to all the elements; 

i.e. for the self-evaluation efficiency, which is the main diagonal of the matrix, we have 

assigned a value of 1/n units and for peer evaluation efficiency (n-1)/n units, which does 

not seem to be a logical choice. 

6. Traditional models have multiple optimal solutions for some units. Using each of these 

solutions will lead to a different outcome in cross efficiency.  

7. Cross efficiency has contradictory and unbalanced evaluation, as each unit may determine 

a different total (or average) value in other units. Different values mean that units with 

lower efficiency have more effect in the cross-efficiency measurement and vice versa. In 

other words, if we get the efficiency of the units with the weights of an inefficient unit and 

add them together, the derived value is greater than the case when we measure the 

efficiency of the units with the weights of an efficient unit. This means that some units are 

benevolent and others are not. 

Various methods have been proposed to solve the problems related to cross efficiency, one of the 

most prominent of which is known as the secondary goal. The secondary goal functions are used 

to solve the non-uniqueness of the optimal weights. The secondary goal acts in the following way:  

In the first step, Model (1) is solved to measure the DMU efficiency. Then, in the second step, by 

solving another model, unique weights are obtained to be used for measuring the cross efficiency. 

The second model deals with the optimization of the secondary goal, provided that the efficiency 

remains at the level measured in the first step. Two famous models in this field include the 

benevolent and aggressive models presented by Doyle and Green [19]. Their idea was to measure 
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the weights giving rise to the maximum or minimum sum of efficiencies for all the units except 

the unit under evaluation, provided that the DMU efficiency remains at the CCR level. 

Among other famous approaches, the approach presented by Oral et al. [20] can be mentioned. In 

the first step, they measured the efficiency of Edd by the use of Model (1). In the second step, they 

optimized the efficiency of DMUk in the objective function, provided that DMUd remains at the 

optimal value of Edd. We will use their approach in the present study. Model (4) shows the 

mentioned approach. 

(4) 

𝐸𝑑𝑘 = 𝑚𝑎𝑥
∑ 𝑢𝑟𝑘𝑦𝑟𝑘
𝑠
𝑟=1

∑ 𝑣𝑖𝑘𝑥𝑖𝑘
𝑚
𝑖=1

 

 
∑ 𝑢𝑟𝑘𝑦𝑟𝑑
𝑠
𝑟=1

∑ 𝑣𝑖𝑘𝑥𝑖𝑑
𝑚
𝑖=1

= 𝐸𝑑𝑑  

∑ 𝑢𝑟𝑘𝑦𝑟𝑗
𝑠
𝑟=1

∑ 𝑣𝑖𝑘𝑥𝑖𝑗
𝑚
𝑖=1

≤ 1    ∀𝑗 = 1,… , 𝑛   

𝑢𝑟𝑘 ≥ 0      ∀𝑟 = 1,… , 𝑠   
𝑣𝑖𝑘 ≥ 0       ∀𝑖 = 1,… ,𝑚 

 

2.2. Network Data Envelopment Analysis  

Most studies conducted on DEA consider the whole system as a black box, i.e. they ignore the 

internal processes of the system. Decision maker can find it very useful to measure the efficiency 

of the subsystems in order to identify the weak points of the units. Some studies, e.g. Kao and 

Hwang [21] and Castelli et al. [22], have shown that ignoring the operation of subsystems can lead 

to misleading results. For example, the system can be efficient while all the subsystems are 

inefficient; or all subsystems of a DMU can have greater or equal efficiency when comparing them 

with each other, while the efficiency of the whole system is much lower. Kao and Liu [23] 

presented cross efficiency models for two series and parallel network systems. Kao [24] 

comprehensively reviewed the network data envelopment analysis (NDEA) in a book with the 

same title. One of the applications of DEA is to compare the efficiency of branches in the banking 

industry. Paradi and Zhu [25] reviewed the literature on DEA in the banking industry. Kassani et 

al. [26] proposed an integrated approach based on Data Envelopment Analysis (DEA), Clustering 

algorithms and Polynomial Pattern Classifier for constructing a classifier to identify class of bank 

branches. A large number of studies consider the banking industry as a two-stage process of 

production and financial intermediation. In the present study, we implemented our models on a 

general two-stage system. Figure 1 depicts the structure of a general two-stage system. In this 

system, the inputs of the first stage, i.e. 𝑥1𝑖 , 𝑖 = 1,… ,𝑚1, are used to produce the outputs of the 

first stage. i.e, 𝑦1𝑟 , 𝑟 = 1,… , 𝑠1, as well as the intermediate products, i.e. 𝑧𝑔, 𝑔 = 1,… , ℎ; and the 

inputs of the second stage, i.e. 𝑥2𝑖 , 𝑖 = 𝑚1+1, … ,𝑚, and the intermediate products produce the 

outputs of the second stage, i.e. 𝑦2𝑟 , 𝑟 = 𝑠1+1, … , 𝑠. The efficiencies of the first stage, the second 

stage, and the whole system are represented by 𝐸1𝑑, 𝐸2𝑑, and 𝐸𝑑, respectively. 
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Stage 1 Stage 2

 

Figure 1: General two-stage system. 

Akbarian et al. [27] presented a network-based data envelope analysis model in a dynamic 

balanced score card (BSC). In their paper, an integrated framework of the BSC and DEA models 

is proposed for measuring the efficiency during the time and along with strategies based on the 

time delay of the lag key performance indicators (KPIs) of the BSC model. In chapter 11 of Kao's 

book [24], he has discussed various methods of measuring efficiency in a general two-stage 

structure. In the current study, we use the mentioned linear models. The simplest case is the use of 

the arithmetic average of the efficiencies of two stages as the efficiency of the whole system. In 

this case, the efficiency of the first stage, the second stage, and the whole system can be measured 

using Models (5) and (6) and Eq. (7), respectively.  

(5) 

𝐸1𝑑 = 𝑚𝑎𝑥∑𝑢𝑟 𝑦1𝑟𝑑 +∑𝑤𝑔 𝑧𝑔𝑑

ℎ

𝑔=1

𝑠1

𝑟=1

 

 ∑𝑣𝑖 𝑥1𝑖𝑑 = 1

𝑚1

𝑖=1

 

∑𝑢𝑟 𝑦1𝑟𝑗 +∑𝑤𝑔 𝑧𝑔𝑗

ℎ

𝑔=1

𝑠1

𝑟=1

−∑𝑣𝑖 𝑥1𝑖𝑗

𝑚1

𝑖=1

≤ 0    ∀𝑗 = 1,… , 𝑛 

𝑢𝑟 ≥ 0      ∀𝑟 = 1,… , 𝑠1  

𝑣𝑖 ≥ 0       ∀𝑖 = 1,… ,𝑚1 

𝑤𝑔 ≥ 0       ∀𝑔 = 1,… , ℎ 
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(6) 

𝐸2𝑑 = 𝑚𝑎𝑥 ∑ 𝑢𝑟 𝑦2𝑟𝑑

𝑠

𝑟=𝑠1+1

 

∑ 𝑣𝑖 𝑥2𝑖𝑑 +∑𝑤𝑔 𝑧𝑔𝑑 = 1

ℎ

𝑔=1

𝑚

𝑖=𝑚1+1

 

∑ 𝑢𝑟 𝑦2𝑟𝑗

𝑠

𝑟=𝑠1+1

− ∑ 𝑣𝑖 𝑥2𝑖𝑗 −∑𝑤𝑔 𝑧𝑔𝑗 ≤ 0

ℎ

𝑔=1

𝑚

𝑖=𝑚1+1

    ∀𝑗 = 1,… , 𝑛 

𝑢𝑟 ≥ 0      ∀𝑟 = 𝑠1+1, … , 𝑠   
𝑣𝑖 ≥ 0       ∀𝑖 = 𝑚1+1, … ,𝑚 

𝑤𝑔 ≥ 0       ∀𝑔 = 1,… , ℎ 

 

(7) 𝐸𝑑 =
1

2
(𝐸1𝑑 + 𝐸2𝑑 ) 

Liang et al. [28] proposed a game approach, in which two stages are regarded as two players who 

try to increase the efficiency of the whole system. This game can be played in two ways: with or 

without cooperation. For the case of without cooperation, which is a linear model, one stage is the 

leader and the other is the follower. In this way, first, the efficiency of the leader is measured using 

Model (5) or (6), and then the efficiency of the follower is measured by adding constraints (8) or 

(9), which guarantees that the efficiency of the leader remains at the previously measured value. 

Finally, the efficiency of the whole system is measured by averaging using Eq. (7). 

(8) 

∑𝑢𝑟 𝑦1𝑟𝑑 +∑𝑤𝑔 𝑧𝑔𝑑

ℎ

𝑔=1

𝑠1

𝑟=1

− 𝐸1𝑑𝑑∑𝑣𝑖 𝑥1𝑖𝑑

𝑚1

𝑖=1

= 0 

∑𝑢𝑟 𝑦1𝑟𝑗 +∑𝑤𝑔 𝑧𝑔𝑗

ℎ

𝑔=1

𝑠1

𝑟=1

−∑𝑣𝑖 𝑥1𝑖𝑗

𝑚1

𝑖=1

≤ 0    ∀𝑗 = 1,… , 𝑛 

(9) 

∑ 𝑢𝑟 𝑦2𝑟𝑗

𝑠

𝑟=𝑠1+1

− 𝐸2𝑑𝑑 ( ∑ 𝑣𝑖 𝑥2𝑖𝑗 +∑𝑤𝑔 𝑧𝑔𝑗

ℎ

𝑔=1

𝑚

𝑖=𝑚1+1

) = 0 

∑ 𝑢𝑟 𝑦2𝑟𝑗

𝑠

𝑟=𝑠1+1

− ∑ 𝑣𝑖 𝑥2𝑖𝑗 −∑𝑤𝑔 𝑧𝑔𝑗

ℎ

𝑔=1

𝑚

𝑖=𝑚1+1

≤ 0    ∀𝑗 = 1,… , 𝑛 

There is another approach that aggregates the efficiencies. Unlike the previous approaches, this 

approach first measures the overall efficiency, followed by measuring the efficiency of the stages. 

This approach measures the overall efficiency by calculating the weighted average of the 

efficiency of the stages. The weight of each stage is calculated as the ratio of that stage input to 

the whole system inputs. After simplification and linearization, the efficiency of the whole system 

is measured using Model (10). 
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(10) 

𝐸𝑑 = 𝑚𝑎𝑥∑𝑢𝑟 𝑦𝑟𝑑

𝑠

𝑟=1

+∑𝑤𝑔 𝑧𝑔𝑑

ℎ

𝑔=1

 

∑𝑣𝑖 𝑥𝑖𝑑

𝑚

𝑖=1

+∑𝑤𝑔 𝑧𝑔𝑑

ℎ

𝑔=1

= 1 

∑𝑢𝑟 𝑦1𝑟𝑗 +∑𝑤𝑔 𝑧𝑔𝑗

ℎ

𝑔=1

𝑠1

𝑟=1

−∑𝑣𝑖 𝑥1𝑖𝑗

𝑚1

𝑖=1

≤ 0    ∀𝑗 = 1,… , 𝑛 

∑ 𝑢𝑟 𝑦2𝑟𝑗

𝑠

𝑟=𝑠1+1

− ∑ 𝑣𝑖 𝑥2𝑖𝑗 −∑𝑤𝑔 𝑧𝑔𝑗

ℎ

𝑔=1

𝑚

𝑖=𝑚1+1

≤ 0    ∀𝑗 = 1,… , 𝑛 

𝑢𝑟 ≥ 0      ∀𝑟 = 1,… , 𝑠   

𝑣𝑖 ≥ 0       ∀𝑖 = 1,… ,𝑚 

𝑤𝑔 ≥ 0       ∀𝑔 = 1,… , ℎ 

 

 

2.3. Fuzzy Data Envelopment Analysis  

In the real world, humans understand and use many concepts in a fuzzy manner (i.e. imprecise, 

vague and ambiguous). For example, although words and concepts such as hot, cold, long, short, 

old, young, and the like do not refer to a specific and precise number, the human mind understands 

them all with surprising speed and flexibility and use them to make decisions and conclusions. 

Fuzzy logic first appeared in the scene of novel computing after the formulation of the theory of 

fuzzy sets by Zadeh [29]. In fuzzy logic, each element of an uncertain set is assigned a membership 

value from the interval [0, 1]. A membership value of zero for an element of a set means that that 

member does not exist in the set, and a membership value of one for an element indicates that the 

member is completely included in the set. 

First, Lertworasirikul [30] and then Hatami-Marbini et al. [31] in their review articles have divided 

and described fuzzy data envelopment analytical solution methods in 4 main groups, i.e. tolerance 

approach, α-level based approach, ranking approach, and possibility approach, among which the 

α-level based approach has received more attention. In the the tolerance approach, Sengupta [32] 

presented the first DEA model by defining the tolerance level in the objective function and 

constraints. The main idea of the α-level based approach is to transform the fuzzy DEA model into 

a pair of parametric programming in order to find the lower and upper bounds of the α-level 

efficiency score of the membership function. For the first time, Girod [33] used Carlsson and 

Korhonen's method [34] to model the fuzzy BCC in his doctoral thesis in order to measure the 

radial efficiency. The main idea of the ranking approach is to find the fuzzy efficiency score of 

DMUs using fuzzy linear programming, which requires the ranking of fuzzy sets. Guo and Tanaka 

[35] first proposed a fuzzy CCR model that transforms the fuzzy constraints (including fuzzy 

equalities and inequalities) into crisp constraints by determining a probability level and using the 

comparison rule for the fuzzy numbers. In fuzzy linear model, fuzzy coefficients can be considered 

as fuzzy variables and constraints can be considered as fuzzy events. Hence, the possibility of 

fuzzy events (i.e. fuzzy constraints) can be determined using the possibility theory. Guo et al. [36] 

presented FDEA models based on possibility and necessity measures.  
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Before fuzzification of a problem, various aspects of fuzzy problem assumptions should be 

specified. Although many types of fuzzy numbers with different names and characteristics have 

been presented and used so far, an important principle in applying fuzzy theory is its computational 

efficiency. The triangular and trapezoidal fuzzy numbers can be mentioned as examples of 

commonly used fuzzy numbers with high computational efficiency. Therefore, we use the 

triangular fuzzy number (TFN) in the present study. TFN can be displayed in two ways. In the first 

case, it is displayed as F=(l,m,u) with three real numbers. The upper bound u and the lower bound 

l are respectively the maximum and minimum values that the fuzzy number F can take and they 

have the lowest degree of membership. The value of m has the highest membership degree of the 

fuzzy number. Another type of representation of fuzzy numbers is LR, which for TFN is 

represented by F=(m,α,β). Here, n is core and α and β are left and right spreads of F, respectively. 

The membership degree of a TFN can be calculated using Eq. (11) and (12) and is displayed in the 

coordinate system as shown in Figure 2.  

(11) µ𝑓(𝑥) =

{
 
 

 
 
𝑥 − 𝑙

𝑚 − 𝑙
   𝑙 < 𝑥 < 𝑚

𝑢 − 𝑥

𝑢 − 𝑚
   𝑚 < 𝑥 < 𝑢

0                 𝑒𝑙𝑠𝑒

 

(12) µ𝑓(𝑥) = {

𝐿 (
𝑚 − 𝑥

𝛼
)  𝑥 ≤ 𝑚 , 𝛼 > 0

𝑅 (
𝑥 − 𝑚

𝛽
) 𝑥 ≥ 𝑚 , 𝛽 > 0 

 

x

µ(x)

l m u
α β 

1

 

Figure 2: Triangular fuzzy number. 

In some problems, only some parts are considered to be fuzzy. For example, only the numbers on 

the right hand side or the objective function coefficients are considered as fuzzy. However, there 

are some linear programming problems where all variables and parameters are assumed to be 

fuzzy. Such problems are known as fully fuzzy linear programming (FFLP). Model (13) represents 

an FFLP problem. 

(13) 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 (𝑜𝑟 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒)(�̃�𝑇⊗ �̃�) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 

�̃� ⊗ �̃� ≤,=,≥ �̃� 
�̃� 𝑖𝑠 𝑎 𝑛𝑜𝑛 − 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑓𝑢𝑧𝑧𝑦 𝑛𝑢𝑚𝑏𝑒𝑟 

�̃�𝑇 = [�̃�𝑗]1×𝑛, �̃� = [�̃�𝑗]𝑛×1, �̃� = [�̃�𝑖𝑗]𝑚×𝑛 , �̃� = [�̃�𝑖]𝑚×1, �̃�𝑖𝑗 , �̃�𝑗 , �̃�𝑗 , �̃�𝑖𝜖𝐹(𝑅) 
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There are different methods for solving FFLP problems, which are given in the review studies 

conducted by Ebrahimnejad and Verdegay [37] and Ghanbari et al. [38]. In this research, two fuzzy 

solution approaches are used, which are explained in the next sections. 

Hatami Marbini et al. [39] used LR triangular fuzzy numbers in their model and presented Model 

. The advantage of their model is in reducing the calculations, so that the lower, median, and upper 

bounds of the optimal value can be calculated by solving only one model (14).  

(14) 

𝑚𝑎𝑥 �̃�𝑑 =∑[𝑢𝑟
𝑚

𝑠

𝑟=1

(𝑦𝑟𝑑
𝑚 +

1

4
𝑦𝑟𝑑
𝛽
−
1

4
𝑦𝑟𝑑
𝛼 ) + 𝑢𝑟

𝛽
(
1

4
𝑦𝑟𝑑
𝑚 ) − 𝑢𝑟

𝛼(
1

4
𝑦𝑟𝑑
𝑚 )] 

𝑠. 𝑡: ∑[𝑣𝑖
𝑚

𝑚

𝑖=1

(𝑥𝑖𝑑
𝑚 +

1

4
𝑥𝑖𝑑
𝛽
−
1

4
𝑥𝑖𝑑
𝛼 ) + 𝑣𝑖

𝛽
(
1

4
𝑥𝑖𝑑
𝑚) − 𝑣𝑖

𝛼(
1

4
𝑥𝑖𝑑
𝑚)] = 1 

∑[𝑢𝑟
𝑚

𝑠

𝑟=1

(𝑦𝑟𝑗
𝑚 +

1

4
𝑦𝑟𝑗
𝛽
−
1

4
𝑦𝑟𝑗
𝛼 ) + 𝑢𝑟

𝛽
(
1

4
𝑦𝑟𝑗
𝑚) − 𝑢𝑟

𝛼(
1

4
𝑦𝑟𝑗
𝑚)]

≤ ∑[𝑣𝑖
𝑚

𝑚

𝑖=1

(𝑥𝑖𝑗
𝑚 +

1

4
𝑥𝑖𝑗
𝛽
−
1

4
𝑥𝑖𝑗
𝛼) + 𝑣𝑖

𝛽
(
1

4
𝑥𝑖𝑗
𝑚) − 𝑣𝑖

𝛼(
1

4
𝑥𝑖𝑗
𝑚)]   ∀𝑗 = 1, … , 𝑛  , 𝑗 

𝑢𝑟
𝑚 − 𝑢𝑟

𝛼 ≥ 0  ∀𝑟 = 1,… , 𝑠    

𝑢𝑟
𝑚 −

1

4
𝑢𝑟
𝛼 +

1

4
𝑢𝑟
𝛽
≥ 0   ∀𝑟 = 1,… , 𝑠 

𝑣𝑖
𝑚 − 𝑣𝑖

𝛼 ≥ 0   ∀𝑖 = 1,… ,𝑚 

𝑣𝑖
𝑚 −

1

4
𝑣𝑖
𝛼 +

1

4
𝑣𝑖
𝛽
≥ 0   ∀𝑖 = 1,… ,𝑚 

Singh and Yadav [40] presented models for solving problems of fully fuzzy data envelopment 

analysis (FFDEA) using α-cut. They implemented their model on TFN of type �̃� = (𝑓𝑙 , 𝑓𝑚, 𝑓𝑢). 
Their ranking method works as follows: it first calculates the minimum and maximum efficiency 

values of the units by solving two models for different α-cuts; and then it ranks the units using a 

simple calculation algorithm. Only the lower and upper bounds of the efficiency were calculated, 

because the median value m is the same for all αs. Models (15) and (16) were respectively used to 

calculate the lower and upper bounds of the efficiency for different αs. The lower bound of 

efficiency occurs when the DMU is in the worst condition (the lowest output with the highest 

input) and the other units are in the best condition (the highest output with the lowest input) and 

vice versa. The constraints for the extremes of the model ensure that the coefficients of the median 

m are greater than those of the lower bound l, and the upper bound u is greater than the median m. 



11 

(15) 

𝐸𝑑
𝑙 = 𝑚𝑎𝑥∑𝛼𝑢𝑟𝑑

𝑚 𝑦𝑟𝑑
𝑚 + (1 − 𝛼)𝑢𝑟𝑑

𝑙 𝑦𝑟𝑑
𝑙

𝑠

𝑟=1

 

∑𝛼𝑣𝑖𝑑
𝑚𝑥𝑖𝑑

𝑚

𝑚

𝑖=1

+ (1 − 𝛼)𝑣𝑖𝑑
𝑚𝑥𝑖𝑑

𝑚 = 1 

∑𝛼𝑢𝑟𝑑
𝑚 𝑦𝑟𝑑

𝑚 + (1 − 𝛼)𝑢𝑟𝑑
𝑚 𝑦𝑟𝑑

𝑚

𝑠

𝑟=1

−∑𝛼𝑣𝑖𝑑
𝑚𝑥𝑖𝑑

𝑚

𝑚

𝑖=1

+ (1 − 𝛼)𝑣𝑖𝑑
𝑢 𝑥𝑖𝑑

𝑢 ≤ 0     

∑𝛼𝑢𝑟𝑑
𝑚 𝑦𝑟𝑗

𝑚 + (1 − 𝛼)𝑢𝑟𝑑
𝑢 𝑦𝑟𝑗

𝑢

𝑠

𝑟=1

−∑𝛼𝑣𝑖𝑑
𝑚𝑥𝑖𝑗

𝑚

𝑚

𝑖=1

+ (1 − 𝛼)𝑣𝑖𝑑
𝑙 𝑥𝑖𝑗

𝑙 ≤ 0    ∀𝑗 = 1,… , 𝑛  , 𝑗 ≠ 𝑑 

𝑢𝑟𝑑
𝑙 − 𝑢𝑟𝑑

𝑚 ≤ 0      ∀𝑟 = 1,… , 𝑠 
𝑢𝑟𝑑
𝑚 − 𝑢𝑟𝑑

𝑢 ≤ 0      ∀𝑟 = 1,… , 𝑠  
𝑣𝑖𝑑
𝑙 − 𝑣𝑖𝑑

𝑚 ≤ 0       ∀𝑖 = 1, … ,𝑚 
𝑣𝑖𝑑
𝑚 − 𝑣𝑖𝑑

𝑢 ≤ 0       ∀𝑖 = 1, … ,𝑚 
𝛼𝜖[0,1] 

(16) 

𝐸𝑑
𝑢 = 𝑚𝑎𝑥∑𝛼𝑢𝑟𝑑

𝑚 𝑦𝑟𝑑
𝑚 + (1 − 𝛼)𝑢𝑟𝑑

𝑢 𝑦𝑟𝑑
𝑢

𝑠

𝑟=1

 

∑𝛼𝑣𝑖𝑑
𝑚�̃�𝑖𝑑

𝑚

𝑚

𝑖=1

+ (1 − 𝛼)𝑣𝑖𝑑
𝑙 𝑥𝑖𝑑

𝑙 = 1 

∑𝛼𝑢𝑟𝑑
𝑚 𝑦𝑟𝑑

𝑚 + (1 − 𝛼)𝑢𝑟𝑑
𝑢 𝑦𝑟𝑑

𝑢

𝑠

𝑟=1

−∑𝛼𝑣𝑖𝑑
𝑚𝑥𝑖𝑑

𝑚

𝑚

𝑖=1

+ (1 − 𝛼)𝑣𝑖𝑑
𝑙 𝑥𝑖𝑑

𝑙 ≤ 0     

∑𝛼𝑢𝑟𝑑
𝑚 𝑦𝑟𝑗

𝑚 + (1 − 𝛼)𝑢𝑟𝑑
𝑙 𝑦𝑟𝑗

𝑙

𝑠

𝑟=1

−∑𝛼𝑣𝑖𝑑
𝑚𝑥𝑖𝑗

𝑚

𝑚

𝑖=1

+ (1 − 𝛼)𝑣𝑖𝑑
𝑢 𝑥𝑖𝑗

𝑢 ≤ 0    ∀𝑗 = 1,… , 𝑛  , 𝑗 ≠ 𝑑 

𝑢𝑟𝑑
𝑙 − 𝑢𝑟𝑑

𝑚 ≤ 0      ∀𝑟 = 1,… , 𝑠 
𝑢𝑟𝑑
𝑚 − 𝑢𝑟𝑑

𝑢 ≤ 0      ∀𝑟 = 1,… , 𝑠  
𝑣𝑖𝑑
𝑙 − �̃�𝑖𝑑

𝑚 ≤ 0       ∀𝑖 = 1, … ,𝑚 

𝑣𝑖𝑑
𝑚 − 𝑣𝑖𝑑

𝑢 ≤ 0       ∀𝑖 = 1, … ,𝑚 
𝛼𝜖[0,1] 

There are various models that aggregate cross efficiency, uncertainty, and network systems. In 

another study of ours [2], we presented models to solve the interval cross efficiency of a general 

two-stage network system. Kao and Liu [23] implemented the cross efficiency method on two 

series and parallel network systems. Yu and Hou [41] presented a model for interval data by 

aggregating the cross efficiency and super efficiency methods. Liu and Lee [42] presented a model 

for ranking based on cross efficiency with fuzzy data. Fan et al. [43] proposed a method to evaluate 

cross efficiency in an environment of hesitant fuzzy sets (HFS).  

 

3. Solution Method 

In this section, we present several models for measuring cross efficiency of a fuzzy network. In 

the cross-efficiency section, we use the approach presented by Oral et al. [20] considering the 

advantages of using secondary goals in the model. In the network efficiency section, considering 

the high compatibility of the general two-stage network structure with the banking process, we use 

the linear approaches presented in Chapter 11 of Kao's book [24], which include the average 

approach, the leader and follower approach, and the aggregation approach. The problem data were 
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collected in 12 months of a one-year period. We made TFN based on the minimum, average, and 

maximum values of the observations, assuming that all parts of the problem are fuzzy. To solve 

fully fuzzy problems with TFN, we use the two approaches of Hatami-Marbini et al. [39] due to 

the simplicity in calculations and the approach of Singh and Yadav [40] due to the commonness 

of the α-cut approach.  

In the modeling process, it is complicated and impossible to present the model in one working 

step. Therefore, we completed and integrated the models step by step, but for the sake of brevity, 

we present only the final model. In the first step, we combined the cross efficiency and fuzzy mode, 

and in the second step, we combined the network efficiency and fuzzy mode. Finally, from their 

combination, we presented the network fuzzy cross efficiency. Combination of different 

approaches give rise to six models, which are described below. 

 

3.1. Network Fuzzy Cross Efficiency: Average Approach and α-Cut Approach 

Suppose the efficiency of the whole system is measured by averaging the efficiencies of the stages. 

In the first step, the CCR efficiency of each stage is measured separately, and in the second step, 

their cross efficiency is measured. The solution method of Singh and Yadav [40] is as follows: 

First, the median of TFN is measured, and then the left and right bounds are calculated separately. 

Thus, for each stage and each step, we need to solve three models, i.e. a total of twelve models are 

solved. To calculate the lower bound of the fuzzy efficiency of the first step, stages 1 and 2 using 

α-cut are presented in Models (17) and (18), respectively. In the second step, the cross efficiency 

of stages 1 and 2 can be calculated by Models (19) and (20), respectively. It is enough to present 

only the lower bound, as the upper bound can be calculated by changing the index l to u and vice 

versa, and the median is obtained by setting α=1 in the proposed models. 

(17) 

𝐸1𝑑𝑑
𝑙 = 𝑚𝑎𝑥∑𝛼𝑢𝑟𝑑

𝑚 𝑦1𝑟𝑑
𝑚 + (1 − 𝛼)𝑢𝑟𝑑

𝑙 𝑦1𝑟𝑑
𝑙 +∑𝛼𝑤𝑔𝑑

𝑚 𝑧𝑔𝑑
𝑚 + (1 − 𝛼)𝑤𝑔𝑑

𝑙 𝑧𝑔𝑑
𝑙

ℎ

𝑔=1

𝑠1

𝑟=1

 

∑𝛼𝑣𝑖𝑑
𝑚𝑥1𝑖𝑑

𝑚 + (1 − 𝛼)𝑣𝑖𝑑
𝑢 𝑥1𝑖𝑑

𝑢 = 1 

𝑚1

𝑖=1

 

∑𝛼𝑢𝑟𝑑
𝑚 𝑦1𝑟𝑗

𝑚 + (1 − 𝛼)𝑢𝑟𝑑
𝑢 𝑦1𝑟𝑗

𝑢 +∑𝛼𝑤𝑔𝑑
𝑚 𝑧𝑔𝑗

𝑚

ℎ

𝑔=1

+ (1 − 𝛼)𝑤𝑔𝑑
𝑢 𝑧𝑔𝑗

𝑢

𝑠1

𝑟=1

−∑𝛼𝑣𝑖𝑑
𝑚𝑥1𝑖𝑗

𝑚 + (1 − 𝛼)𝑣𝑖𝑑
𝑙 𝑥1𝑖𝑗

𝑙

𝑚1

𝑖=1

≤ 0    ∀𝑗 = 1,… , 𝑛 , 𝑗 ≠ 𝑑  

∑𝛼𝑢𝑟𝑑
𝑚 𝑦1𝑟𝑑

𝑚 + (1 − 𝛼)𝑢𝑟𝑑
𝑙 𝑦1𝑟𝑑

𝑙 +∑𝛼𝑤𝑔𝑑
𝑚 𝑧𝑔𝑑

𝑚

ℎ

𝑔=1

+ (1 − 𝛼)𝑤𝑔𝑑
𝑙 𝑧𝑔𝑑

𝑙

𝑠1

𝑟=1

−∑𝛼𝑣𝑖𝑑
𝑚𝑥1𝑖𝑑

𝑚 + (1 − 𝛼)𝑣𝑖𝑑
𝑢 𝑥1𝑖𝑑

𝑢

𝑚1

𝑖=1

≤ 0 

𝑢𝑟𝑑
𝑙 − 𝑢𝑟𝑑

𝑚 ≤ 0      ∀𝑟 = 1,… , 𝑠1 
𝑢𝑟𝑑
𝑚 − 𝑢𝑟𝑑

𝑢 ≤ 0      ∀𝑟 = 1,… , 𝑠1  
𝑣𝑖𝑑
𝑙 − 𝑣𝑖𝑑

𝑚 ≤ 0       ∀𝑖 = 1, … ,𝑚1 
𝑣𝑖𝑑
𝑚 − 𝑣𝑖𝑑

𝑢 ≤ 0       ∀𝑖 = 1, … ,𝑚1 
𝑤𝑔𝑑
𝑙 − 𝑤𝑔𝑑

𝑚 ≤ 0      ∀𝑔 = 1,… , ℎ 

𝑤𝑔𝑑
𝑚 − 𝑤𝑔𝑑

𝑢 ≤ 0      ∀𝑔 = 1,… , ℎ  
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(18) 

𝐸2𝑑𝑑
𝑙 = 𝑚𝑎𝑥 ∑ 𝛼𝑢𝑟𝑑

𝑚 𝑦2𝑟𝑑
𝑚 + (1 − 𝛼)𝑢𝑟𝑑

𝑙 𝑦2𝑟𝑑
𝑙

𝑠

𝑟=𝑠1+1

 

∑ 𝛼𝑣𝑖𝑑
𝑚𝑥2𝑖𝑑

𝑚 + (1 − 𝛼)𝑣𝑖𝑑
𝑢 𝑥2𝑖𝑑

𝑢 +∑𝛼𝑤𝑔𝑑
𝑚 𝑧𝑔𝑑

𝑚 + (1 − 𝛼)𝑤𝑔𝑑
𝑢 𝑧𝑔𝑑

𝑢 = 1

ℎ

𝑔=1

𝑚

𝑖=𝑚1+1

 

∑ 𝛼𝑢𝑟𝑑
𝑚 𝑦2𝑟𝑗

𝑚

𝑠

𝑟=𝑠1+1

+ (1 − 𝛼)𝑢𝑟𝑑
𝑢 𝑦2𝑟𝑗

𝑢

− ∑ 𝛼𝑣𝑖𝑑
𝑚𝑥2𝑖𝑗

𝑚 + (1 − 𝛼)𝑣𝑖𝑑
𝑙 𝑥2𝑖𝑗

𝑙 −∑𝛼𝑤𝑔𝑑
𝑚 𝑧𝑔𝑗

𝑚 + (1 − 𝛼)𝑤𝑔𝑑
𝑙 𝑧𝑔𝑗

𝑙 ≤ 0

ℎ

𝑔=1

𝑚

𝑖=𝑚1+1

   ∀𝑗

= 1,… , 𝑛, 𝑗 ≠ 𝑑  

∑ 𝛼𝑢𝑟𝑑
𝑚 𝑦2𝑟𝑑

𝑚

𝑠

𝑟=𝑠1+1

+ (1 − 𝛼)𝑢𝑟𝑑
𝑙 𝑦2𝑟𝑑

𝑙

− ∑ 𝛼𝑣𝑖𝑑
𝑚𝑥2𝑖𝑑

𝑚 + (1 − 𝛼)𝑣𝑖𝑑
𝑢 𝑥2𝑖𝑑

𝑢 −∑𝛼𝑤𝑔𝑑
𝑚 𝑧𝑔𝑑

𝑚 + (1 − 𝛼)𝑤𝑔𝑑
𝑢 𝑧𝑔𝑑

𝑢 ≤ 0

ℎ

𝑔=1

𝑚

𝑖=𝑚1+1

  

𝑢𝑟𝑑
𝑙 − 𝑢𝑟𝑑

𝑚 ≤ 0      ∀𝑟 = 𝑠1 + 1,… , 𝑠 
𝑢𝑟𝑑
𝑚 − 𝑢𝑟𝑑

𝑢 ≤ 0      ∀𝑟 = 𝑠1 + 1,… , 𝑠  
𝑣𝑖𝑑
𝑙 − 𝑣𝑖𝑑

𝑚 ≤ 0       ∀𝑖 = 𝑚1 + 1,… ,𝑚 
𝑣𝑖𝑑
𝑚 − 𝑣𝑖𝑑

𝑢 ≤ 0       ∀𝑖 = 𝑚1 + 1,… ,𝑚 
𝑤𝑔𝑑
𝑙 − 𝑤𝑔𝑑

𝑚 ≤ 0      ∀𝑔 = 1,… , ℎ 

𝑤𝑔𝑑
𝑚 − 𝑤𝑔𝑑

𝑢 ≤ 0      ∀𝑔 = 1,… , ℎ  

𝛼𝜖[0,1] 

(19) 

𝐸1𝑑𝑘
𝑙 = 𝑚𝑎𝑥∑𝛼𝑢𝑟𝑘

𝑚 𝑦1𝑟𝑘
𝑚 + (1 − 𝛼)𝑢𝑟𝑘

𝑙 𝑦1𝑟𝑘
𝑙 +∑𝛼𝑤𝑔𝑘

𝑚 𝑧𝑔𝑘
𝑚 + (1 − 𝛼)𝑤𝑔𝑘

𝑙 𝑧𝑔𝑘
𝑙

ℎ

𝑔=1

𝑠1

𝑟=1

 

∑𝛼𝑣𝑖𝑘
𝑚𝑥1𝑖𝑘

𝑚 + (1 − 𝛼)𝑣𝑖𝑘
𝑢 𝑥1𝑖𝑘

𝑢 = 1 

𝑚1

𝑖=1

 

∑𝛼𝑢𝑟𝑘
𝑚 𝑦1𝑟𝑗

𝑚 + (1 − 𝛼)𝑢𝑟𝑘
𝑢 𝑦1𝑟𝑗

𝑢 +∑𝛼𝑤𝑔𝑘
𝑚 𝑧𝑔𝑗

𝑚

ℎ

𝑔=1

+ (1 − 𝛼)𝑤𝑔𝑘
𝑢 𝑧𝑔𝑗

𝑢

𝑠1

𝑟=1

−∑𝛼𝑣𝑖𝑘
𝑚𝑥1𝑖𝑗

𝑚 + (1 − 𝛼)𝑣𝑖𝑘
𝑙 𝑥1𝑖𝑗

𝑙

𝑚1

𝑖=1

≤ 0    ∀𝑗 = 1,… , 𝑛 , 𝑗 ≠ 𝑑, 𝑘  

∑𝛼𝑢𝑟𝑘
𝑚 𝑦1𝑟𝑘

𝑚 + (1 − 𝛼)𝑢𝑟𝑘
𝑙 𝑦1𝑟𝑘

𝑙 +∑𝛼𝑤𝑔𝑘
𝑚 𝑧𝑔𝑘

𝑚

ℎ

𝑔=1

+ (1 − 𝛼)𝑤𝑔𝑘
𝑙 𝑧𝑔𝑘

𝑙

𝑠1

𝑟=1

−∑𝛼𝑣𝑖𝑘
𝑚𝑥1𝑖𝑘

𝑚 + (1 − 𝛼)𝑣𝑖𝑘
𝑢 𝑥1𝑖𝑘

𝑢

𝑚1

𝑖=1

≤ 0  

𝐸1𝑑𝑑
𝑙 ×∑𝛼𝑣𝑖𝑘

𝑚𝑥1𝑖𝑑
𝑚 + (1 − 𝛼)𝑣𝑖𝑘

𝑢 𝑥1𝑖𝑑
𝑢

𝑚1

𝑖=1

= ∑𝛼𝑢𝑟𝑘
𝑚 𝑦1𝑟𝑑

𝑚 + (1 − 𝛼)𝑢𝑟𝑘
𝑙 𝑦1𝑟𝑑

𝑙 +∑𝛼𝑤𝑔𝑘
𝑚 𝑧𝑔𝑑

𝑚 + (1 − 𝛼)𝑤𝑔𝑘
𝑙 𝑧𝑔𝑑

𝑙

ℎ

𝑔=1

𝑠1

𝑟=1

 

𝑢𝑟𝑑
𝑙 − 𝑢𝑟𝑑

𝑚 ≤ 0      ∀𝑟 = 1,… , 𝑠1 
𝑢𝑟𝑑
𝑚 − 𝑢𝑟𝑑

𝑢 ≤ 0      ∀𝑟 = 1,… , 𝑠1  
𝑣𝑖𝑑
𝑙 − 𝑣𝑖𝑑

𝑚 ≤ 0       ∀𝑖 = 1, … ,𝑚1 
𝑣𝑖𝑑
𝑚 − 𝑣𝑖𝑑

𝑢 ≤ 0       ∀𝑖 = 1, … ,𝑚1 
𝑤𝑔𝑑
𝑙 − 𝑤𝑔𝑑

𝑚 ≤ 0      ∀𝑔 = 1,… , ℎ 

𝑤𝑔𝑑
𝑚 − 𝑤𝑔𝑑

𝑢 ≤ 0      ∀𝑔 = 1,… , ℎ  
𝛼𝜖[0,1] 
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(20) 

𝐸2𝑑𝑘
𝑙 = 𝑚𝑎𝑥 ∑ 𝛼𝑢𝑟𝑘

𝑚 𝑦2𝑟𝑘
𝑚 + (1 − 𝛼)𝑢𝑟𝑘

𝑙 𝑦2𝑟𝑘
𝑙

𝑠

𝑟=𝑠1+1

 

∑ 𝛼𝑣𝑖𝑘
𝑚𝑥2𝑖𝑘

𝑚 + (1 − 𝛼)𝑣𝑖𝑘
𝑢 𝑥2𝑖𝑘

𝑢 +∑𝛼𝑤𝑔𝑘
𝑚 𝑧𝑔𝑘

𝑚 + (1 − 𝛼)𝑤𝑔𝑘
𝑢 𝑧𝑔𝑘

𝑢 = 1

ℎ

𝑔=1

𝑚

𝑖=𝑚1+1

 

∑ 𝛼𝑢𝑟𝑘
𝑚 𝑦2𝑟𝑗

𝑚

𝑠

𝑟=𝑠1+1

+ (1 − 𝛼)𝑢𝑟𝑘
𝑢 𝑦2𝑟𝑗

𝑢

− ∑ 𝛼𝑣𝑖𝑘
𝑚𝑥2𝑖𝑗

𝑚 + (1 − 𝛼)𝑣𝑖𝑘
𝑙 𝑥2𝑖𝑗

𝑙 −∑𝛼𝑤𝑔𝑘
𝑚 𝑧𝑔𝑗

𝑚 + (1 − 𝛼)𝑤𝑔𝑘
𝑙 𝑧𝑔𝑗

𝑙 ≤ 0

ℎ

𝑔=1

𝑚

𝑖=𝑚1+1

   ∀𝑗

= 1,… , 𝑛, 𝑗 ≠ 𝑑, 𝑘  

∑ 𝛼𝑢𝑟𝑘
𝑚 𝑦2𝑟𝑘

𝑚

𝑠

𝑟=𝑠1+1

+ (1 − 𝛼)𝑢𝑟𝑘
𝑙 𝑦2𝑟𝑘

𝑙

− ∑ 𝛼𝑣𝑖𝑘
𝑚𝑥2𝑖𝑘

𝑚 + (1 − 𝛼)𝑣𝑖𝑘
𝑢 𝑥2𝑖𝑘

𝑢 −∑𝛼𝑤𝑔𝑘
𝑚 𝑧𝑔𝑘

𝑚 + (1 − 𝛼)𝑤𝑔𝑘
𝑢 𝑧𝑔𝑘

𝑢 ≤ 0

ℎ

𝑔=1

𝑚

𝑖=𝑚1+1

 

𝐸2𝑑𝑑
𝑙 × ( ∑ 𝛼𝑣𝑖𝑘

𝑚𝑥2𝑖𝑑
𝑚 + (1 − 𝛼)𝑣𝑖𝑘

𝑢 𝑥2𝑖𝑑
𝑢 +∑𝛼𝑤𝑔𝑘

𝑚 𝑧𝑔𝑑
𝑚 + (1 − 𝛼)𝑤𝑔𝑘

𝑢 𝑧𝑔𝑑
(𝑢)

ℎ

𝑔=1

𝑚

𝑖=𝑚1+1

)

= ∑ 𝛼𝑢𝑟𝑘
𝑚 𝑦2𝑟𝑑

𝑚 + (1 − 𝛼)𝑢𝑟𝑘
𝑙 𝑦2𝑟𝑑

𝑙

𝑠

𝑟=𝑠1+1

 

𝑢𝑟𝑑
𝑙 − 𝑢𝑟𝑑

𝑚 ≤ 0      ∀𝑟 = 𝑠1 + 1,… , 𝑠 
𝑢𝑟𝑑
𝑚 − 𝑢𝑟𝑑

𝑢 ≤ 0      ∀𝑟 = 𝑠1 + 1,… , 𝑠  
𝑣𝑖𝑑
𝑙 − 𝑣𝑖𝑑

𝑚 ≤ 0       ∀𝑖 = 𝑚1 + 1,… ,𝑚 
𝑣𝑖𝑑
𝑚 − 𝑣𝑖𝑑

𝑢 ≤ 0       ∀𝑖 = 𝑚1 + 1,… ,𝑚 
𝑤𝑔𝑑
𝑙 − 𝑤𝑔𝑑

𝑚 ≤ 0      ∀𝑔 = 1,… , ℎ 

𝑤𝑔𝑑
𝑚 − 𝑤𝑔𝑑

𝑢 ≤ 0      ∀𝑔 = 1,… , ℎ  
𝛼𝜖[0,1] 

 

3.2. Network Fuzzy Cross Efficiency: Non-Cooperative Game Approach and α-Cut 

Approach 

In this approach, measuring the efficiency of the first step of CCR requires to measure first the 

efficiency of the leader stage and then the efficiency of the follower stage, provided that the 

efficiency of the leader stage remains at the measured value. Measuring the efficiency of the leader 

is the same as the average method. When the first stage is the leader, the lower bound of the second 

stage can be measured by adding the constraint (21) to Model (18). When the second stage is the 

leader, the efficiency of the first one can be measured by adding the constraint (22) to Model (17). 

In the second step, when the first stage is the leader, the lower bound of the cross efficiency of the 

second stage can be measured by adding the constraint (23) to Model (20). And when the second 

stage is the leader, the cross efficiency of the first stage can be measured by adding the constraint 

(24) to Model (19). The upper bound of the efficiency can be measured by changing the index l to 

u and vice versa, and the median can be measured by setting α=1 in the proposed models. 
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(21) 

∑𝛼𝑢𝑟𝑑
𝑚 𝑦1𝑟𝑗

𝑚 + (1 − 𝛼)𝑢𝑟𝑑
𝑢 𝑦1𝑟𝑗

𝑢 +∑𝛼𝑤𝑔𝑑
𝑚 𝑧𝑔𝑗

𝑚

ℎ

𝑔=1

+ (1 − 𝛼)𝑤𝑔𝑑
𝑢 𝑧𝑔𝑗

𝑢

𝑠1

𝑟=1

−∑𝛼𝑣𝑖𝑑
𝑚𝑥1𝑖𝑗

𝑚 + (1 − 𝛼)𝑣𝑖𝑑
𝑙 𝑥1𝑖𝑗

𝑙

𝑚1

𝑖=1

≤ 0    ∀𝑗 = 1,… , 𝑛 , 𝑗 ≠ 𝑑  

∑𝛼𝑢𝑟𝑑
𝑚 𝑦1𝑟𝑑

𝑚 + (1 − 𝛼)𝑢𝑟𝑑
𝑙 𝑦1𝑟𝑑

𝑙 +∑𝛼𝑤𝑔𝑑
𝑚 𝑧𝑔𝑑

𝑚

ℎ

𝑔=1

+ (1 − 𝛼)𝑤𝑔𝑑
𝑙 𝑧𝑔𝑑

𝑙

𝑠1

𝑟=1

−∑𝛼𝑣𝑖𝑑
𝑚𝑥1𝑖𝑑

𝑚 + (1 − 𝛼)𝑣𝑖𝑑
𝑢 𝑥1𝑖𝑑

𝑢

𝑚1

𝑖=1

≤ 0 

𝐸1𝑑𝑑
𝑙 ×∑𝛼𝑣𝑖𝑑

𝑚𝑥1𝑖𝑑
𝑚 + (1 − 𝛼)𝑣𝑖𝑑

𝑢 𝑥1𝑖𝑑
𝑢  

𝑚1

𝑖=1

=∑𝛼𝑢𝑟𝑑
𝑚 𝑦1𝑟𝑑

𝑚 + (1 − 𝛼)𝑢𝑟𝑑
𝑙 𝑦1𝑟𝑑

𝑙

𝑠1

𝑟=1

+∑𝛼𝑤𝑔𝑑
𝑚 𝑧𝑔𝑑

𝑚 + (1 − 𝛼)𝑤𝑔𝑑
𝑙 𝑧𝑔𝑑

𝑙

ℎ

𝑔=1

 

(22) 

∑ 𝛼𝑢𝑟𝑑
𝑚 𝑦2𝑟𝑗

𝑚

𝑠

𝑟=𝑠1+1

+ (1 − 𝛼)𝑢𝑟𝑑
𝑢 𝑦2𝑟𝑗

𝑢

− ∑ 𝛼𝑣𝑖𝑑
𝑚𝑥2𝑖𝑗

𝑚 + (1 − 𝛼)𝑣𝑖𝑑
𝑙 𝑥2𝑖𝑗

𝑙 −∑𝛼𝑤𝑔𝑑
𝑚 𝑧𝑔𝑗

𝑚 + (1 − 𝛼)𝑤𝑔𝑑
𝑙 𝑧𝑔𝑗

𝑙 ≤ 0

ℎ

𝑔=1

𝑚

𝑖=𝑚1+1

   ∀𝑗

= 1,… , 𝑛, 𝑗 ≠ 𝑑  

∑ 𝛼𝑢𝑟𝑑
𝑚 𝑦2𝑟𝑑

𝑚

𝑠

𝑟=𝑠1+1

+ (1 − 𝛼)𝑢𝑟𝑑
𝑙 𝑦2𝑟𝑑

𝑙

− ∑ 𝛼𝑣𝑖𝑑
𝑚𝑥2𝑖𝑑

𝑚 + (1 − 𝛼)𝑣𝑖𝑑
𝑢 𝑥2𝑖𝑑

𝑢 −∑𝛼𝑤𝑔𝑑
𝑚 𝑧𝑔𝑑

𝑚 + (1 − 𝛼)𝑤𝑔𝑑
𝑢 𝑧𝑔𝑑

𝑢 ≤ 0

ℎ

𝑔=1

𝑚

𝑖=𝑚1+1

  

𝐸2𝑑𝑑
𝑙 × ( ∑ 𝛼𝑣𝑖𝑑

𝑚𝑥2𝑖𝑑
𝑚 + (1 − 𝛼)𝑣𝑖𝑑

𝑢 𝑥2𝑖𝑑
𝑢 +∑𝛼𝑤𝑔𝑑

𝑚 𝑧𝑔𝑑
𝑚 + (1 − 𝛼)𝑤𝑔𝑑

𝑢 𝑧𝑔𝑑
𝑢

ℎ

𝑔=1

𝑚

𝑖=𝑚1+1

)

= ∑ 𝛼𝑢𝑟𝑑
𝑚 𝑦2𝑟𝑑

𝑚 + (1 − 𝛼)𝑢𝑟𝑑
𝑙 𝑦2𝑟𝑑

𝑙

𝑠

𝑟=𝑠1+1

 

(23) 

∑𝛼𝑢𝑟𝑘
𝑚 𝑦1𝑟𝑗

𝑚 + (1 − 𝛼)𝑢𝑟𝑘
𝑢 𝑦1𝑟𝑗

𝑢 +∑𝛼𝑤𝑔𝑘
𝑚 𝑧𝑔𝑗

𝑚

ℎ

𝑔=1

+ (1 − 𝛼)𝑤𝑔𝑘
𝑢 𝑧𝑔𝑗

𝑢

𝑠1

𝑟=1

−∑𝛼𝑣𝑖𝑘
𝑚𝑥1𝑖𝑗

𝑚 + (1 − 𝛼)𝑣𝑖𝑘
𝑙 𝑥1𝑖𝑗

𝑙

𝑚1

𝑖=1

≤ 0    ∀𝑗 = 1,… , 𝑛 , 𝑗 ≠ 𝑘  

∑𝛼𝑢𝑟𝑘
𝑚 𝑦1𝑟𝑘

𝑚 + (1 − 𝛼)𝑢𝑟𝑘
𝑙 𝑦1𝑟𝑘

𝑙 +∑𝛼𝑤𝑔𝑘
𝑚 𝑧𝑔𝑘

𝑚

ℎ

𝑔=1

+ (1 − 𝛼)𝑤𝑔𝑘
𝑙 𝑧𝑔𝑘

𝑙

𝑠1

𝑟=1

−∑𝛼𝑣𝑖𝑘
𝑚𝑥1𝑖𝑘

𝑚 + (1 − 𝛼)𝑣𝑖𝑘
𝑢 𝑥1𝑖𝑘

𝑢

𝑚1

𝑖=1

≤ 0  

𝐸1𝑑𝑘
𝑙 ×∑𝛼𝑣𝑖𝑘

𝑚𝑥1𝑖𝑘
𝑚 + (1 − 𝛼)𝑣𝑖𝑘

𝑢 𝑥1𝑖𝑘
𝑢  

𝑚1

𝑖=1

=∑𝛼𝑢𝑟𝑘
𝑚 𝑦1𝑟𝑘

𝑚 + (1 − 𝛼)𝑢𝑟𝑘
𝑙 𝑦1𝑟𝑘

𝑙

𝑠1

𝑟=1

+∑𝛼𝑤𝑔𝑘
𝑚 𝑧𝑔𝑘

𝑚 + (1 − 𝛼)𝑤𝑔𝑘
𝑙 𝑧𝑔𝑘

𝑙

ℎ

𝑔=1
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(24) 

∑ 𝛼𝑢𝑟𝑘
𝑚 𝑦2𝑟𝑗

𝑚

𝑠

𝑟=𝑠1+1

+ (1 − 𝛼)𝑢𝑟𝑘
𝑢 𝑦2𝑟𝑗

𝑢

− ∑ 𝛼𝑣𝑖𝑘
𝑚𝑥2𝑖𝑗

𝑚 + (1 − 𝛼)𝑣𝑖𝑘
𝑙 𝑥2𝑖𝑗

𝑙 −∑𝛼𝑤𝑔𝑘
𝑚 𝑧𝑔𝑗

𝑚 + (1 − 𝛼)𝑤𝑔𝑘
𝑙 𝑧𝑔𝑗

𝑙 ≤ 0

ℎ

𝑔=1

𝑚

𝑖=𝑚1+1

   ∀𝑗

= 1,… , 𝑛, 𝑗 ≠ 𝑘  

∑ 𝛼𝑢𝑟𝑘
𝑚 𝑦2𝑟𝑘

𝑚

𝑠

𝑟=𝑠1+1

+ (1 − 𝛼)𝑢𝑟𝑘
𝑙 𝑦2𝑟𝑘

𝑙

− ∑ 𝛼𝑣𝑖𝑘
𝑚𝑥2𝑖𝑘

𝑚 + (1 − 𝛼)𝑣𝑖𝑘
𝑢 𝑥2𝑖𝑘

𝑢 −∑𝛼𝑤𝑔𝑘
𝑚 𝑧𝑔𝑘

𝑚 + (1 − 𝛼)𝑤𝑔𝑘
𝑢 𝑧𝑔𝑘

𝑢 ≤ 0

ℎ

𝑔=1

𝑚

𝑖=𝑚1+1

 

𝐸2𝑑𝑘
𝑙 × ( ∑ 𝛼𝑣𝑖𝑘

𝑚𝑥2𝑖𝑘
𝑚 + (1 − 𝛼)𝑣𝑖𝑘

𝑢 𝑥2𝑖𝑘
𝑢 +∑𝛼𝑤𝑔𝑘

𝑚 𝑧𝑔𝑘
𝑚 + (1 − 𝛼)𝑤𝑔𝑘

𝑢 𝑧𝑔𝑘
𝑢

ℎ

𝑔=1

𝑚

𝑖=𝑚1+1

)

= ∑ 𝛼𝑢𝑟𝑘
𝑚 𝑦2𝑟𝑘

𝑚 + (1 − 𝛼)𝑢𝑟𝑘
𝑙 𝑦2𝑟𝑘

𝑙

𝑠

𝑟=𝑠1+1

 

 

3.3 Network Fuzzy Cross Efficiency: Aggregation Approach and α-Cut Approach 

In the aggregation approach, were first measure the efficiency of the whole system and then we 

measure the efficiencies of the stages. The lower bound of the efficiency of the first stage of CCR 

and that of the cross efficiency of the second stage are measured using Models (25) and (26), 

respectively. The upper bound of the efficiency can be measured by changing the index l to u and 

vice versa, and the median can be measured by setting α=1 in the proposed models. 
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(25) 

𝐸𝑑𝑑
𝑙 = 𝑚𝑎𝑥∑𝛼𝑢𝑟𝑑

𝑚 𝑦𝑟𝑑
𝑚 + (1 − 𝛼)𝑢𝑟𝑑

𝑙 𝑦𝑟𝑑
𝑙

𝑠

𝑟=1

 

∑𝛼𝑣𝑖𝑑
𝑚𝑥𝑖𝑑

𝑚 + (1 − 𝛼)𝑣𝑖𝑑
𝑢 𝑥𝑖𝑑

𝑢 = 1 

𝑚

𝑖=1

 

∑ 𝛼𝑢𝑟𝑑
𝑚 𝑦2𝑟𝑗

𝑚

𝑠

𝑟=𝑠1+1

+ (1 − 𝛼)𝑢𝑟𝑑
𝑢 𝑦2𝑟𝑗

𝑢

− ∑ 𝛼𝑣𝑖𝑑
𝑚𝑥2𝑖𝑗

𝑚 + (1 − 𝛼)𝑣𝑖𝑑
𝑙 𝑥2𝑖𝑗

𝑙 −∑𝛼𝑤𝑔𝑑
𝑚 𝑧𝑔𝑗

𝑚 + (1 − 𝛼)𝑤𝑔𝑑
𝑙 𝑧𝑔𝑗

𝑙 ≤ 0

ℎ

𝑔=1

𝑚

𝑖=𝑚1+1

   ∀𝑗

= 1,… , 𝑛, 𝑗 ≠ 𝑑 

∑𝛼𝑢𝑟𝑑
𝑚 𝑦1𝑟𝑗

𝑚 + (1 − 𝛼)𝑢𝑟𝑑
𝑢 𝑦1𝑟𝑗

𝑢 +∑𝛼𝑤𝑔𝑑
𝑚 𝑧𝑔𝑗

𝑚

ℎ

𝑔=1

+ (1 − 𝛼)𝑤𝑔𝑑
𝑢 𝑧𝑔𝑗

𝑢

𝑠1

𝑟=1

−∑𝛼𝑣𝑖𝑑
𝑚𝑥1𝑖𝑗

𝑚 + (1 − 𝛼)𝑣𝑖𝑑
𝑙 𝑥1𝑖𝑗

𝑙

𝑚1

𝑖=1

≤ 0    ∀𝑗 = 1,… , 𝑛 , 𝑗 ≠ 𝑑  

∑ 𝛼𝑢𝑟𝑑
𝑚 𝑦2𝑟𝑑

𝑚

𝑠

𝑟=𝑠1+1

+ (1 − 𝛼)𝑢𝑟𝑑
𝑙 𝑦2𝑟𝑑

𝑙

− ∑ 𝛼𝑣𝑖𝑑
𝑚𝑥2𝑖𝑑

𝑚 + (1 − 𝛼)𝑣𝑖𝑑
𝑢 𝑥2𝑖𝑑

𝑢 −∑𝛼𝑤𝑔𝑑
𝑚 𝑧𝑔𝑑

𝑚 + (1 − 𝛼)𝑤𝑔𝑑
𝑢 𝑧𝑔𝑑

𝑢 ≤ 0

ℎ

𝑔=1

𝑚

𝑖=𝑚1+1

    

∑𝛼𝑢𝑟𝑑
𝑚 𝑦1𝑟𝑑

𝑚 + (1 − 𝛼)𝑢𝑟𝑑
𝑙 𝑦1𝑟𝑑

𝑙 +∑𝛼𝑤𝑔𝑑
𝑚 𝑧𝑔𝑑

𝑚

ℎ

𝑔=1

+ (1 − 𝛼)𝑤𝑔𝑑
𝑙 𝑧𝑔𝑑

𝑙

𝑠1

𝑟=1

−∑𝛼𝑣𝑖𝑑
𝑚𝑥1𝑖𝑑

𝑚 + (1 − 𝛼)𝑣𝑖𝑑
𝑢 𝑥1𝑖𝑑

𝑢

𝑚1

𝑖=1

≤ 0     
𝑢𝑟𝑑
𝑙 − 𝑢𝑟𝑑

𝑚 ≤ 0      ∀𝑟 = 1,… , 𝑠 
𝑢𝑟𝑑
𝑚 − 𝑢𝑟𝑑

𝑢 ≤ 0      ∀𝑟 = 1,… , 𝑠  
𝑣𝑖𝑑
𝑙 − 𝑣𝑖𝑑

𝑚 ≤ 0       ∀𝑖 = 1, … ,𝑚 
𝑣𝑖𝑑
𝑚 − 𝑣𝑖𝑑

𝑢 ≤ 0       ∀𝑖 = 1, … ,𝑚 
𝑤𝑔𝑑
𝑙 − 𝑤𝑔𝑑

𝑚 ≤ 0      ∀𝑔 = 1,… , ℎ 

𝑤𝑔𝑑
𝑚 − 𝑤𝑔𝑑

𝑢 ≤ 0      ∀𝑔 = 1,… , ℎ  
𝛼𝜖[0,1] 
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(26) 

𝐸𝑑𝑘
𝑙 = 𝑚𝑎𝑥∑𝛼𝑢𝑟𝑘

𝑚 𝑦𝑟𝑘
𝑚 + (1 − 𝛼)𝑢𝑟𝑘

𝑙 𝑦𝑟𝑘
𝑙

𝑠

𝑟=1

 

∑𝛼𝑣𝑖𝑘
𝑚𝑥𝑖𝑘

𝑚 + (1 − 𝛼)𝑣𝑖𝑘
𝑢 𝑥𝑖𝑘

𝑢 = 1 

𝑚

𝑖=1

 

∑ 𝛼𝑢𝑟𝑘
𝑚 𝑦2𝑟𝑗

𝑚

𝑠

𝑟=𝑠1+1

+ (1 − 𝛼)𝑢𝑟𝑘
𝑢 𝑦2𝑟𝑗

𝑢

− ∑ 𝛼𝑣𝑖𝑘
𝑚𝑥2𝑖𝑗

𝑚 + (1 − 𝛼)𝑣𝑖𝑘
𝑙 𝑥2𝑖𝑗

𝑙 −∑𝛼𝑤𝑔𝑘
𝑚 𝑧𝑔𝑗

𝑚 + (1 − 𝛼)𝑤𝑔𝑘
𝑙 𝑧𝑔𝑗

𝑙 ≤ 0

ℎ

𝑔=1

𝑚

𝑖=𝑚1+1

   ∀𝑗

= 1,… , 𝑛, 𝑗 ≠ 𝑑, 𝑘 

∑ 𝛼𝑢𝑟𝑘
𝑚 𝑦2𝑟𝑘

𝑚

𝑠

𝑟=𝑠1+1

+ (1 − 𝛼)𝑢𝑟𝑘
𝑙 𝑦2𝑟𝑘

𝑙

− ∑ 𝛼𝑣𝑖𝑘
𝑚𝑥2𝑖𝑘

𝑚 + (1 − 𝛼)𝑣𝑖𝑘
𝑢 𝑥2𝑖𝑘

𝑢 −∑𝛼𝑤𝑔𝑘
𝑚 𝑧𝑔𝑘

𝑚 + (1 − 𝛼)𝑤𝑔𝑘
𝑢 𝑧𝑔𝑘

𝑢 ≤ 0

ℎ

𝑔=1

𝑚

𝑖=𝑚1+1

 

 

∑𝛼𝑢𝑟𝑘
𝑚 𝑦1𝑟𝑗

𝑚 + (1 − 𝛼)𝑢𝑟𝑘
𝑢 𝑦1𝑟𝑗

𝑢 +∑𝛼𝑤𝑔𝑘
𝑚 𝑧𝑔𝑗

𝑚

ℎ

𝑔=1

+ (1 − 𝛼)𝑤𝑔𝑘
𝑢 𝑧𝑔𝑗

𝑢

𝑠1

𝑟=1

−∑𝛼𝑣𝑖𝑘
𝑚𝑥1𝑖𝑗

𝑚 + (1 − 𝛼)𝑣𝑖𝑘
𝑙 𝑥1𝑖𝑗

𝑙

𝑚1

𝑖=1

≤ 0    ∀𝑗 = 1,… , 𝑛 , 𝑗 ≠ 𝑑, 𝑘  

∑𝛼𝑢𝑟𝑘
𝑚 𝑦1𝑟𝑘

𝑚 + (1 − 𝛼)𝑢𝑟𝑘
𝑙 𝑦1𝑟𝑘

𝑙 +∑𝛼𝑤𝑔𝑘
𝑚 𝑧𝑔𝑘

𝑚

ℎ

𝑔=1

+ (1 − 𝛼)𝑤𝑔𝑘
𝑙 𝑧𝑔𝑘

𝑙

𝑠1

𝑟=1

−∑𝛼𝑣𝑖𝑘
𝑚𝑥1𝑖𝑘

𝑚 + (1 − 𝛼)𝑣𝑖𝑘
𝑢 𝑥1𝑖𝑘

𝑢

𝑚1

𝑖=1

≤ 0 

𝐸𝑑𝑑
𝑙 ×∑𝛼𝑣𝑖𝑘

𝑚𝑥𝑖𝑑
𝑚 + (1 − 𝛼)𝑣𝑖𝑘

𝑢 𝑥𝑖𝑑
𝑢  

𝑚

𝑖=1

=∑𝛼𝑢𝑟𝑘
𝑚 𝑦𝑟𝑑

𝑚 + (1 − 𝛼)𝑢𝑟𝑘
𝑙 𝑦𝑟𝑑

𝑙

𝑠

𝑟=1

 

𝑢𝑟𝑑
𝑙 − 𝑢𝑟𝑑

𝑚 ≤ 0      ∀𝑟 = 1,… , 𝑠 
𝑢𝑟𝑑
𝑚 − 𝑢𝑟𝑑

𝑢 ≤ 0      ∀𝑟 = 1,… , 𝑠  
𝑣𝑖𝑑
𝑙 − 𝑣𝑖𝑑

𝑚 ≤ 0       ∀𝑖 = 1, … ,𝑚 
𝑣𝑖𝑑
𝑚 − 𝑣𝑖𝑑

𝑢 ≤ 0       ∀𝑖 = 1, … ,𝑚 
𝑤𝑔𝑑
𝑙 − 𝑤𝑔𝑑

𝑚 ≤ 0      ∀𝑔 = 1,… , ℎ 

𝑤𝑔𝑑
𝑚 − 𝑤𝑔𝑑

𝑢 ≤ 0      ∀𝑔 = 1,… , ℎ  

𝛼𝜖[0,1] 

 

3.4. Network Fuzzy Cross Efficiency: Average Approach and Hatami-Marbini’s [39] 

Approach  

In the average approach, to measure the cross efficiency, in the first step, separate CCR efficiencies 

of the both stages and in the second step, their cross-efficiencies are measured. Hatami Marbini’s 

et al. [39]solution method works as follows: by solving a model, the values of the upper, left, and 

right bounds of TFN are determined. They used LR triangular fuzzy numbers in their model. We 

denote the median of the TFN by m, the left spread by α, and the right spread by β. Thus, we need 

to solve one model for each step and each stage, and a total of four models must be solved. To 

measure the fuzzy efficiency of the first step of stages 1 and 2, Models (27) and (28) are presented 

respectively using Hatami Marbini’s et al. [36] approach. In the second step, the cross efficiencies 

of stages 1 and 2 can be measured by the use of Models (29) and (30), respectively. 
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(27) 

𝐸1𝑑𝑑 = 𝑚𝑎𝑥∑[𝑢𝑟𝑑
𝑚 (𝑦1𝑟𝑑

𝑚 +
1

4
𝑦1𝑟𝑑

𝛽
−
1

4
𝑦1𝑟𝑑

𝛼 ) +
1

4
𝑢𝑟𝑑
𝛽
𝑦1𝑟𝑑

𝑚 −
1

4
𝑢𝑟𝑑
𝛼 𝑦1𝑟𝑑

𝑚 ]

𝑠1

𝑟=1

+∑[𝑤𝑔𝑑
𝑚 (𝑧𝑟𝑑

𝑚 +
1

4
𝑧𝑔𝑑
𝛽
−
1

4
𝑧𝑔𝑑
𝛼 ) +

1

4
𝑤𝑔𝑑
𝛽
𝑧𝑔𝑑
𝑚 −

1

4
𝑤𝑔𝑑
𝛼 𝑧𝑔𝑑

𝑚 ]

ℎ

𝑔=1

 

∑[𝑣𝑖𝑑
𝑚 (𝑥1𝑖𝑑

𝑚 +
1

4
𝑥1𝑖𝑑

𝛽
−
1

4
𝑥1𝑖𝑑

𝛼 ) +
1

4
𝑣𝑖𝑑
𝛽
𝑥1𝑖𝑑

𝑚 −
1

4
𝑣𝑖𝑑
𝛼 𝑥1𝑖𝑑

𝑚 ] = 1

𝑚1

𝑖=1

 

∑[𝑢𝑟𝑑
𝑚 (𝑦1𝑟𝑗

𝑚 +
1

4
𝑦1𝑟𝑗

𝛽
−
1

4
𝑦1𝑟𝑗

𝛼 ) +
1

4
𝑢𝑟𝑑
𝛽
𝑦1𝑟𝑗

𝑚 −
1

4
𝑢𝑟𝑑
𝛼 𝑦1𝑟𝑗

𝑚 ]

𝑠1

𝑟=1

+∑[𝑤𝑔𝑑
𝑚 (𝑧𝑟𝑗

𝑚 +
1

4
𝑧𝑔𝑗
𝛽
−
1

4
𝑧𝑔𝑗
𝛼 ) +

1

4
𝑤𝑔𝑑
𝛽
𝑧𝑔𝑗
𝑚 −

1

4
𝑤𝑔𝑑
𝛼 𝑧𝑔𝑗

𝑚]

ℎ

𝑔=1

−∑[𝑣𝑖𝑑
𝑚 (𝑥1𝑖𝑗

𝑚 +
1

4
𝑥1𝑖𝑗

𝛽
−
1

4
𝑥1𝑖𝑗

𝛼 ) +
1

4
𝑣𝑖𝑑
𝛽
𝑥1𝑖𝑗

𝑚 −
1

4
𝑣𝑖𝑑
𝛼 𝑥1𝑖𝑗

𝑚] ≤ 0

𝑚1

𝑖=1

   ∀𝑗 = 1,… , 𝑛  

𝑢𝑟𝑑
𝑚 − 𝑢𝑟𝑑

𝛼 ≥ 0   ∀𝑟 = 1,… , 𝑠1 

𝑢𝑟𝑑
𝑚 −

1

4
𝑢𝑟𝑑
𝛼 +

1

4
𝑢𝑟𝑑
𝛽
≥ 0   ∀𝑟 = 1,… , 𝑠1 

𝑣𝑖𝑑
𝑚 − 𝑣𝑖𝑑

𝛼 ≥ 0    ∀𝑖 = 1,… ,𝑚1 

𝑣𝑖𝑑
𝑚 −

1

4
𝑣𝑖𝑑
𝛼 +

1

4
𝑣𝑖𝑑
𝛽
≥ 0    ∀𝑖 = 1,… ,𝑚1 

𝑤𝑔𝑑
𝑚 − 𝑤𝑔𝑑

𝛼 ≥ 0   ∀𝑔 = 1,… , ℎ 

𝑤𝑔𝑑
𝑚 −

1

4
𝑤𝑔𝑑
𝛼 +

1

4
𝑤𝑔𝑑
𝛽
≥ 0   ∀𝑔 = 1,… , ℎ 

(28) 

𝐸2𝑑𝑑 = 𝑚𝑎𝑥 ∑ [𝑢𝑟𝑑
𝑚 (𝑦2𝑟𝑑

𝑚 +
1

4
𝑦2𝑟𝑑

𝛽
−
1

4
𝑦2𝑟𝑑

𝛼 ) +
1

4
𝑢𝑟𝑑
𝛽
𝑦2𝑟𝑑

𝑚 −
1

4
𝑢𝑟𝑑
𝛼 𝑦2𝑟𝑑

𝑚 ]

𝑠

𝑟=𝑠1+1

 

∑ [𝑣𝑖𝑑
𝑚 (𝑥2𝑖𝑑

𝑚 +
1

4
𝑥2𝑖𝑑

𝛽
−
1

4
𝑥2𝑖𝑑

𝛼 ) +
1

4
𝑣𝑖𝑑
𝛽
𝑥2𝑖𝑑

𝑚 −
1

4
𝑣𝑖𝑑
𝛼 𝑥2𝑖𝑑

𝑚 ]

𝑚

𝑖=𝑚1+1

+∑[𝑤𝑔𝑑
𝑚 (𝑧𝑟𝑑

𝑚 +
1

4
𝑧𝑔𝑑
𝛽
−
1

4
𝑧𝑔𝑑
𝛼 ) +

1

4
𝑤𝑔𝑑
𝛽
𝑧𝑔𝑑
𝑚 −

1

4
𝑤𝑔𝑑
𝛼 𝑧𝑔𝑑

𝑚 ] = 1

ℎ

𝑔=1

 

∑ [𝑢𝑟𝑑
𝑚 (𝑦2𝑟𝑗

𝑚 +
1

4
𝑦2𝑟𝑗

𝛽
−
1

4
𝑦2𝑟𝑗

𝛼 ) +
1

4
𝑢𝑟𝑑
𝛽
𝑦2𝑟𝑗

𝑚 −
1

4
𝑢𝑟𝑑
𝛼 𝑦2𝑟𝑗

𝑚 ]

𝑠

𝑟=𝑠1+1

− ∑ [𝑣𝑖𝑑
𝑚 (𝑥2𝑖𝑗

𝑚 +
1

4
𝑥2𝑖𝑗

𝛽
−
1

4
𝑥2𝑖𝑗

𝛼 ) +
1

4
𝑣𝑖𝑑
𝛽
𝑥2𝑖𝑗

𝑚 −
1

4
𝑣𝑖𝑑
𝛼 𝑥2𝑖𝑗

𝑚]

𝑚

𝑖=𝑚1+1

−∑[𝑤𝑔𝑑
𝑚 (𝑧𝑟𝑗

𝑚 +
1

4
𝑧𝑔𝑗
𝛽
−
1

4
𝑧𝑔𝑗
𝛼 ) +

1

4
𝑤𝑔𝑑
𝛽
𝑧𝑔𝑗
𝑚 −

1

4
𝑤𝑔𝑑
𝛼 𝑧𝑔𝑗

𝑚] ≤ 0

ℎ

𝑔=1

    ∀𝑗 = 1,… , 𝑛  

𝑢𝑟𝑑
𝑚 − 𝑢𝑟𝑑

𝛼 ≥ 0         ∀𝑟 = 𝑠1 + 1,… , 𝑠 

𝑢𝑟𝑑
𝑚 −

1

4
𝑢𝑟𝑑
𝛼 +

1

4
𝑢𝑟𝑑
𝛽
≥ 0         ∀𝑟 = 𝑠1 + 1,… , 𝑠 

𝑣𝑖𝑑
𝑚 − 𝑣𝑖𝑑

𝛼 ≥ 0       ∀𝑖 = 𝑚1 + 1,… ,𝑚 

𝑣𝑖𝑑
𝑚 −

1

4
𝑣𝑖𝑑
𝛼 +

1

4
𝑣𝑖𝑑
𝛽
≥ 0       ∀𝑖 = 𝑚1 + 1,… ,𝑚 

𝑤𝑔𝑑
𝑚 − 𝑤𝑔𝑑

𝛼 ≥ 0       ∀𝑔 = 1,… , ℎ 

𝑤𝑔𝑑
𝑚 −

1

4
𝑤𝑔𝑑
𝛼 +

1

4
𝑤𝑔𝑑
𝛽
≥ 0       ∀𝑔 = 1,… , ℎ 
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(29) 

𝐸1𝑑𝑘 = 𝑚𝑎𝑥∑[𝑢𝑟𝑘
𝑚 (𝑦1𝑟𝑘

𝑚 +
1

4
𝑦1𝑟𝑘

𝛽
−
1

4
𝑦1𝑟𝑘

𝛼 ) +
1

4
𝑢𝑟𝑘
𝛽
𝑦1𝑟𝑘

𝑚 −
1

4
𝑢𝑟𝑘
𝛼 𝑦1𝑟𝑘

𝑚 ]

𝑠1

𝑟=1

+∑[𝑤𝑔𝑘
𝑚 (𝑧𝑟𝑘

𝑚 +
1

4
𝑧𝑔𝑘
𝛽
−
1

4
𝑧𝑔𝑘
𝛼 ) +

1

4
𝑤𝑔𝑑
𝛽
𝑧𝑔𝑘
𝑚 −

1

4
𝑤𝑔𝑘
𝛼 𝑧𝑔𝑘

𝑚 ]

ℎ

𝑔=1

 

∑[𝑣𝑖𝑘
𝑚 (𝑥1𝑖𝑘

𝑚 +
1

4
𝑥1𝑖𝑘

𝛽
−
1

4
𝑥1𝑖𝑘

𝛼 ) +
1

4
𝑣𝑖𝑘
𝛽
𝑥1𝑖𝑘

𝑚 −
1

4
𝑣𝑖𝑘
𝛼 𝑥1𝑖𝑘

𝑚] = 1

𝑚1

𝑖=1

 

∑[𝑢𝑟𝑘
𝑚 (𝑦1𝑟𝑗

𝑚 +
1

4
𝑦1𝑟𝑗

𝛽
−
1

4
𝑦1𝑟𝑗

𝛼 ) +
1

4
𝑢𝑟𝑘
𝛽
𝑦1𝑟𝑗

𝑚 −
1

4
𝑢𝑟𝑘
𝛼 𝑦1𝑟𝑗

𝑚 ]

𝑠1

𝑟=1

+∑[𝑤𝑔𝑘
𝑚 (𝑧𝑟𝑗

𝑚 +
1

4
𝑧𝑔𝑗
𝛽
−
1

4
𝑧𝑔𝑗
𝛼 ) +

1

4
𝑤𝑔𝑘
𝛽
𝑧𝑔𝑗
𝑚 −

1

4
𝑤𝑔𝑘
𝛼 𝑧𝑔𝑗

𝑚]

ℎ

𝑔=1

−∑[𝑣𝑖𝑘
𝑚 (𝑥1𝑖𝑗

𝑚 +
1

4
𝑥1𝑖𝑗

𝛽
−
1

4
𝑥1𝑖𝑗

𝛼 ) +
1

4
𝑣𝑖𝑘
𝛽
𝑥1𝑖𝑗

𝑚 −
1

4
𝑣𝑖𝑘
𝛼 𝑥1𝑖𝑗

𝑚] ≤ 0

𝑚1

𝑖=1

   ∀𝑗 = 1,… , 𝑛  , 𝑗

≠ 𝑑  

𝐸1𝑑𝑑 ×∑[𝑣𝑖𝑘
𝑚 (𝑥1𝑖𝑑

𝑚 +
1

4
𝑥1𝑖𝑑

𝛽
−
1

4
𝑥1𝑖𝑑

𝛼 ) +
1

4
𝑣𝑖𝑘
𝛽
𝑥1𝑖𝑑

𝑚 −
1

4
𝑣𝑖𝑘
𝛼 𝑥1𝑖𝑑

𝑚 ]

𝑚1

𝑖=1

= (∑[𝑢𝑟𝑘
𝑚 (𝑦1𝑟𝑑

𝑚 +
1

4
𝑦1𝑟𝑑

𝛽
−
1

4
𝑦1𝑟𝑑

𝛼 ) +
1

4
𝑢𝑟𝑘
𝛽
𝑦1𝑟𝑑

𝑚 −
1

4
𝑢𝑟𝑘
𝛼 𝑦1𝑟𝑑

𝑚 ]

𝑠1

𝑟=1

+∑[𝑤𝑔𝑘
𝑚 (𝑧𝑟𝑑

𝑚 +
1

4
𝑧𝑔𝑑
𝛽
−
1

4
𝑧𝑔𝑑
𝛼 ) +

1

4
𝑤𝑔𝑘
𝛽
𝑧𝑔𝑑
𝑚 −

1

4
𝑤𝑔𝑘
𝛼 𝑧𝑔𝑑

𝑚 ]

ℎ

𝑔=1

) 

 
𝑢𝑟𝑘
𝑚 − 𝑢𝑟𝑘

𝛼 ≥ 0   ∀𝑟 = 1,… , 𝑠1 

𝑢𝑟𝑘
𝑚 −

1

4
𝑢𝑟𝑘
𝛼 +

1

4
𝑢𝑟𝑘
𝛽
≥ 0   ∀𝑟 = 1,… , 𝑠1 

𝑣𝑖𝑘
𝑚 − 𝑣𝑖𝑘

𝛼 ≥ 0    ∀𝑖 = 1,… ,𝑚1 

𝑣𝑖𝑘
𝑚 −

1

4
𝑣𝑖𝑘
𝛼 +

1

4
𝑣𝑖𝑘
𝛽
≥ 0    ∀𝑖 = 1,… ,𝑚1 

𝑤𝑔𝑘
𝑚 − 𝑤𝑔𝑘

𝛼 ≥ 0   ∀𝑔 = 1,… , ℎ 

𝑤𝑔𝑘
𝑚 −

1

4
𝑤𝑔𝑘
𝛼 +

1

4
𝑤𝑔𝑘
𝛽
≥ 0   ∀𝑔 = 1,… , ℎ 
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(30) 

𝐸2𝑑𝑘 = 𝑚𝑎𝑥 ∑ [𝑢𝑟𝑘
𝑚 (𝑦2𝑟𝑘

𝑚 +
1

4
𝑦2𝑟𝑘

𝛽
−
1

4
𝑦2𝑟𝑘

𝛼 ) +
1

4
𝑢𝑟𝑘
𝛽
𝑦2𝑟𝑘

𝑚 −
1

4
𝑢𝑟𝑑
𝛼 𝑦2𝑟𝑘

𝑚 ]

𝑠

𝑟=𝑠1+1

 

∑ [𝑣 (𝑥2𝑖𝑘
𝑚 +

1

4
𝑥2𝑖𝑘

𝛽
−
1

4
𝑥2𝑖𝑘

𝛼 ) +
1

4
𝑣𝑖𝑘
𝛽
𝑥2𝑖𝑘

𝑚 −
1

4
𝑣𝑖𝑘
𝛼 𝑥2𝑖𝑘

𝑚]

𝑚

𝑖=𝑚1+1

+∑[𝑤𝑔𝑘
𝑚 (𝑧𝑟𝑘

𝑚 +
1

4
𝑧𝑔𝑘
𝛽
−
1

4
𝑧𝑔𝑘
𝛼 ) +

1

4
𝑤𝑔𝑘
𝛽
𝑧𝑔𝑘
𝑚 −

1

4
𝑤𝑔𝑘
𝛼 𝑧𝑔𝑘

𝑚 ] = 1

ℎ

𝑔=1

 

∑ [𝑢𝑟𝑘
𝑚 (𝑦2𝑟𝑗

𝑚 +
1

4
𝑦2𝑟𝑗

𝛽
−
1

4
𝑦2𝑟𝑗

𝛼 ) +
1

4
𝑢𝑟𝑘
𝛽
𝑦2𝑟𝑗

𝑚 −
1

4
𝑢𝑟𝑘
𝛼 𝑦2𝑟𝑗

𝑚 ]

𝑠

𝑟=𝑠1+1

− ∑ [𝑣𝑖𝑘
𝑚 (𝑥2𝑖𝑗

𝑚 +
1

4
𝑥2𝑖𝑗

𝛽
−
1

4
𝑥2𝑖𝑗

𝛼 ) +
1

4
𝑣𝑖𝑘
𝛽
𝑥2𝑖𝑗

𝑚 −
1

4
𝑣𝑖𝑘
𝛼 𝑥2𝑖𝑗

𝑚]

𝑚

𝑖=𝑚1+1

−∑[𝑤𝑔𝑘
𝑚 (𝑧𝑟𝑗

𝑚 +
1

4
𝑧𝑔𝑗
𝛽
−
1

4
𝑧𝑔𝑗
𝛼 ) +

1

4
𝑤𝑔𝑘
𝛽
𝑧𝑔𝑗
𝑚 −

1

4
𝑤𝑔𝑘
𝛼 𝑧𝑔𝑗

𝑚] ≤ 0

ℎ

𝑔=1

    ∀𝑗 = 1,… , 𝑛  , 𝑗

≠ 𝑑  

𝐸2𝑑𝑑 × ( ∑ [𝑣𝑖𝑘
𝑚 (𝑥2𝑖𝑑

𝑚 +
1

4
𝑥2𝑖𝑑

𝛽
−
1

4
𝑥2𝑖𝑑

𝛼 ) +
1

4
𝑣𝑖𝑘
𝛽
𝑥2𝑖𝑑

𝑚 −
1

4
𝑣𝑖𝑘
𝛼 𝑥2𝑖𝑑

𝑚 ]

𝑚

𝑖=𝑚1+1

+∑[𝑤𝑔𝑘
𝑚 (𝑧𝑟𝑑

𝑚 +
1

4
𝑧𝑔𝑑
𝛽
−
1

4
𝑧𝑔𝑑
𝛼 ) +

1

4
𝑤𝑔𝑘
𝛽
𝑧𝑔𝑑
𝑚 −

1

4
𝑤𝑔𝑘
𝛼 𝑧𝑔𝑑

𝑚 ]

ℎ

𝑔=1

)

= ∑ [𝑢𝑟𝑘
𝑚 (𝑦2𝑟𝑑

𝑚 +
1

4
𝑦2𝑟𝑑

𝛽
−
1

4
𝑦2𝑟𝑑

𝛼 ) +
1

4
𝑢𝑟𝑘
𝛽
𝑦2𝑟𝑑

𝑚 −
1

4
𝑢𝑟𝑘
𝛼 𝑦2𝑟𝑑

𝑚 ]

𝑠

𝑟=𝑠1+1

 

𝑢𝑟𝑘
𝑚 − 𝑢𝑟𝑘

𝛼 ≥ 0         ∀𝑟 = 𝑠1 + 1,… , 𝑠 

𝑢𝑟𝑘
𝑚 −

1

4
𝑢𝑟𝑘
𝛼 +

1

4
𝑢𝑟𝑘
𝛽
≥ 0         ∀𝑟 = 𝑠1 + 1,… , 𝑠 

𝑣𝑖𝑘
𝑚 − 𝑣𝑖𝑘

𝛼 ≥ 0       ∀𝑖 = 𝑚1 + 1,… ,𝑚 

𝑣𝑖𝑘
𝑚 −

1

4
𝑣𝑖𝑘
𝛼 +

1

4
𝑣𝑖𝑘
𝛽
≥ 0       ∀𝑖 = 𝑚1 + 1,… ,𝑚 

𝑤𝑔𝑘
𝑚 − 𝑤𝑔𝑘

𝛼 ≥ 0       ∀𝑔 = 1,… , ℎ 

𝑤𝑔𝑘
𝑚 −

1

4
𝑤𝑔𝑘
𝛼 +

1

4
𝑤𝑔𝑘
𝛽
≥ 0       ∀𝑔 = 1,… , ℎ 

 

3.5. Network Fuzzy Cross Efficiency: Non-Cooperative Game Approach and Hatami-

Marbini’s [39] Approach  

In the non-cooperative game approach, to measure the efficiency of the first stage of CCR, the 

efficiency of the leader stage must be first calculated, and then the efficiency of the follower stage 

is measured, provided that the efficiency of the leader stage remains at the measured value. 

Measuring the efficiency of the leader is the same as the average approach. When the first stage is 

the leader, the efficiency of the second stage can be measured by adding the constraint (31) to 

Model (28). When the second stage is the leader, the efficiency of the first one can be measured 

by adding the constraint (32) to Model (27). In the second step, when the first stage is the leader 

the cross-efficiency of the second stage can be measured by adding the constraint (33) to Model 

(30). On the other hand, when the second stage is the leader, the efficiency of the first one can be 

measured by adding the constraint (34) to Model (29). 
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(31) 

∑[𝑢𝑟𝑑
𝑚 (𝑦1𝑟𝑗

𝑚 +
1

4
𝑦1𝑟𝑗

𝛽
−
1

4
𝑦1𝑟𝑗

𝛼 ) +
1

4
𝑢𝑟𝑑
𝛽
𝑦1𝑟𝑗

𝑚 −
1

4
𝑢𝑟𝑑
𝛼 𝑦1𝑟𝑗

𝑚 ]

𝑠1

𝑟=1

+∑[𝑤𝑔𝑑
𝑚 (𝑧𝑟𝑗

𝑚 +
1

4
𝑧𝑔𝑗
𝛽
−
1

4
𝑧𝑔𝑗
𝛼 ) +

1

4
𝑤𝑔𝑑
𝛽
𝑧𝑔𝑗
𝑚 −

1

4
𝑤𝑔𝑑
𝛼 𝑧𝑔𝑗

𝑚]

ℎ

𝑔=1

−∑[𝑣𝑖𝑑
𝑚 (𝑥1𝑖𝑗

𝑚 +
1

4
𝑥1𝑖𝑗

𝛽
−
1

4
𝑥1𝑖𝑗

𝛼 ) +
1

4
𝑣𝑖𝑑
𝛽
𝑥1𝑖𝑗

𝑚 −
1

4
𝑣𝑖𝑑
𝛼 𝑥1𝑖𝑗

𝑚] ≤ 0

𝑚1

𝑖=1

   ∀𝑗 

𝐸1𝑑𝑑 ×∑[𝑣𝑖𝑑
𝑚 (𝑥1𝑖𝑑

𝑚 +
1

4
𝑥1𝑖𝑑

𝛽
−
1

4
𝑥1𝑖𝑑

𝛼 ) +
1

4
𝑣𝑖𝑑
𝛽
𝑥1𝑖𝑑

𝑚 −
1

4
𝑣𝑖𝑑
𝛼 𝑥1𝑖𝑑

𝑚]

𝑚1

𝑖=1

= (∑[𝑢𝑟𝑑
𝑚 (𝑦1𝑟𝑑

𝑚 +
1

4
𝑦1𝑟𝑑

𝛽
−
1

4
𝑦1𝑟𝑑

𝛼 ) +
1

4
𝑢𝑟𝑑
𝛽
𝑦1𝑟𝑑

𝑚 −
1

4
𝑢𝑟𝑑
𝛼 𝑦1𝑟𝑑

𝑚 ]

𝑠1

𝑟=1

+∑[𝑤𝑔𝑑
𝑚 (𝑧𝑟𝑑

𝑚 +
1

4
𝑧𝑔𝑑
𝛽
−
1

4
𝑧𝑔𝑑
𝛼 ) +

1

4
𝑤𝑔𝑑
𝛽
𝑧𝑔𝑑
𝑚 −

1

4
𝑤𝑔𝑑
𝛼 𝑧𝑔𝑑

𝑚 ]

ℎ

𝑔=1

) 

(32) 

∑ [𝑢𝑟𝑑
𝑚 (𝑦2𝑟𝑗

𝑚 +
1

4
𝑦2𝑟𝑗

𝛽
−
1

4
𝑦2𝑟𝑗

𝛼 ) +
1

4
𝑢𝑟𝑑
𝛽
𝑦2𝑟𝑗

𝑚 −
1

4
𝑢𝑟𝑑
𝛼 𝑦2𝑟𝑗

𝑚 ]

𝑠

𝑟=𝑠1+1

− ∑ [𝑣𝑖𝑑
𝑚 (𝑥2𝑖𝑗

𝑚 +
1

4
𝑥2𝑖𝑗

𝛽
−
1

4
𝑥2𝑖𝑗

𝛼 ) +
1

4
𝑣𝑖𝑑
𝛽
𝑥2𝑖𝑗

𝑚 −
1

4
𝑣𝑖𝑑
𝛼 𝑥2𝑖𝑗

𝑚]

𝑚

𝑖=𝑚1+1

−∑[𝑤𝑔𝑑
𝑚 (𝑧𝑟𝑗

𝑚 +
1

4
𝑧𝑔𝑗
𝛽
−
1

4
𝑧𝑔𝑗
𝛼 ) +

1

4
𝑤𝑔𝑑
𝛽
�̃�𝑔𝑗
𝑚 −

1

4
𝑤𝑔𝑑
𝛼 𝑧𝑔𝑗

𝑚] ≤ 0

ℎ

𝑔=1

    ∀𝑗 = 1,… , 𝑛 

𝐸2𝑑𝑑 × ( ∑ [𝑣𝑖𝑘
𝑚 (𝑥2𝑖𝑑

𝑚 +
1

4
𝑥2𝑖𝑑

𝛽
−
1

4
𝑥2𝑖𝑑

𝛼 ) +
1

4
𝑣𝑖𝑘
𝛽
𝑥2𝑖𝑑

𝑚 −
1

4
𝑣𝑖𝑘
𝛼 𝑥2𝑖𝑑

𝑚 ]

𝑚

𝑖=𝑚1+1

+∑[𝑤𝑔𝑘
𝑚 (𝑧𝑟𝑑

𝑚 +
1

4
𝑧𝑔𝑑
𝛽
−
1

4
𝑧𝑔𝑑
𝛼 ) +

1

4
𝑤𝑔𝑘
𝛽
𝑧𝑔𝑑
𝑚 −

1

4
𝑤𝑔𝑘
𝛼 𝑧𝑔𝑑

𝑚 ]

ℎ

𝑔=1

)

= ∑ [𝑢𝑟𝑘
𝑚 (𝑦2𝑟𝑑

𝑚 +
1

4
𝑦2𝑟𝑑

𝛽
−
1

4
𝑦2𝑟𝑑

𝛼 ) +
1

4
𝑢𝑟𝑘
𝛽
𝑦2𝑟𝑑

𝑚 −
1

4
𝑢𝑟𝑘
𝛼 𝑦2𝑟𝑑

𝑚 ]

𝑠

𝑟=𝑠1+1

 

 



23 

(33) 

∑[𝑢𝑟𝑑
𝑚 (𝑦1𝑟𝑗

𝑚 +
1

4
𝑦1𝑟𝑗

𝛽
−
1

4
𝑦1𝑟𝑗

𝛼 ) +
1

4
𝑢𝑟𝑑
𝛽
𝑦1𝑟𝑗

𝑚 −
1

4
𝑢𝑟𝑑
𝛼 𝑦1𝑟𝑗

𝑚 ]

𝑠1

𝑟=1

+∑[𝑤𝑔𝑑
𝑚 (𝑧𝑟𝑗

𝑚 +
1

4
𝑧𝑔𝑗
𝛽
−
1

4
𝑧𝑔𝑗
𝛼 ) +

1

4
𝑤𝑔𝑑
𝛽
𝑧𝑔𝑗
𝑚 −

1

4
𝑤𝑔𝑑
𝛼 𝑧𝑔𝑗

𝑚]

ℎ

𝑔=1

−∑[𝑣𝑖𝑑
𝑚 (𝑥1𝑖𝑗

𝑚 +
1

4
𝑥1𝑖𝑗

𝛽
−
1

4
𝑥1𝑖𝑗

𝛼 ) +
1

4
𝑣𝑖𝑑
𝛽
𝑥1𝑖𝑗

𝑚 −
1

4
𝑣𝑖𝑑
𝛼 𝑥1𝑖𝑗

𝑚] ≤ 0

𝑚1

𝑖=1

   ∀𝑗 

𝐸1𝑑𝑘 ×∑[𝑣𝑖𝑘
𝑚 (𝑥1𝑖𝑘

𝑚 +
1

4
𝑥1𝑖𝑘

𝛽
−
1

4
𝑥1𝑖𝑘

𝛼 ) +
1

4
𝑣𝑖𝑘
𝛽
𝑥1𝑖𝑘

𝑚 −
1

4
𝑣𝑖𝑘
𝛼 𝑥1𝑖𝑘

𝑚]

𝑚1

𝑖=1

= (∑[𝑢𝑟𝑘
𝑚 (𝑦1𝑟𝑘

𝑚 +
1

4
𝑦1𝑟𝑘

𝛽
−
1

4
𝑦1𝑟𝑘

𝛼 ) +
1

4
𝑢𝑟𝑘
𝛽
𝑦1𝑟𝑘

𝑚 −
1

4
𝑢𝑟𝑘
𝛼 𝑦1𝑟𝑘

𝑚 ]

𝑠1

𝑟=1

+∑[𝑤𝑔𝑘
𝑚 (𝑧𝑟𝑘

𝑚 +
1

4
𝑧𝑔𝑘
𝛽
−
1

4
𝑧𝑔𝑘
𝛼 ) +

1

4
𝑤𝑔𝑘
𝛽
𝑧𝑔𝑘
𝑚 −

1

4
𝑤𝑔𝑘
𝛼 𝑧𝑔𝑘

𝑚 ]

ℎ

𝑔=1

) 

(34) 

∑ [𝑢𝑟𝑑
𝑚 (𝑦2𝑟𝑗

𝑚 +
1

4
𝑦2𝑟𝑗

𝛽
−
1

4
𝑦2𝑟𝑗

𝛼 ) +
1

4
𝑢𝑟𝑑
𝛽
𝑦2𝑟𝑗

𝑚 −
1

4
𝑢𝑟𝑑
𝛼 𝑦2𝑟𝑗

𝑚 ]

𝑠

𝑟=𝑠1+1

− ∑ [𝑣𝑖𝑑
𝑚 (𝑥2𝑖𝑗

𝑚 +
1

4
𝑥2𝑖𝑗

𝛽
−
1

4
𝑥2𝑖𝑗

𝛼 ) +
1

4
𝑣𝑖𝑑
𝛽
𝑥2𝑖𝑗

𝑚 −
1

4
𝑣𝑖𝑑
𝛼 𝑥2𝑖𝑗

𝑚]

𝑚

𝑖=𝑚1+1

−∑[𝑤𝑔𝑑
𝑚 (𝑧𝑟𝑗

𝑚 +
1

4
𝑧𝑔𝑗
𝛽
−
1

4
𝑧𝑔𝑗
𝛼 ) +

1

4
𝑤𝑔𝑑
𝛽
�̃�𝑔𝑗
𝑚 −

1

4
𝑤𝑔𝑑
𝛼 𝑧𝑔𝑗

𝑚] ≤ 0

ℎ

𝑔=1

    ∀𝑗 = 1,… , 𝑛 

𝐸2𝑑𝑘 × ( ∑ [𝑣𝑖𝑑
𝑚 (𝑥2𝑖𝑑

𝑚 +
1

4
𝑥2𝑖𝑑

𝛽
−
1

4
𝑥2𝑖𝑑

𝛼 ) +
1

4
𝑣𝑖𝑑
𝛽
𝑥2𝑖𝑑

𝑚 −
1

4
𝑣𝑖𝑑
𝛼 𝑥2𝑖𝑑

𝑚]

𝑚

𝑖=𝑚1+1

+∑[𝑤𝑔𝑑
𝑚 (𝑧𝑟𝑑

𝑚 +
1

4
𝑧𝑔𝑑
𝛽
−
1

4
𝑧𝑔𝑑
𝛼 ) +

1

4
𝑤𝑔𝑑
𝛽
𝑧𝑔𝑑
𝑚 −

1

4
𝑤𝑔𝑑
𝛼 𝑧𝑔𝑑

𝑚 ]

ℎ

𝑔=1

)

= ∑ [𝑢𝑟𝑘
𝑚 (𝑦2𝑟𝑘

𝑚 +
1

4
𝑦2𝑟𝑘

𝛽
−
1

4
𝑦2𝑟𝑘

𝛼 ) +
1

4
𝑢𝑟𝑘
𝛽
𝑦2𝑟𝑘

𝑚 −
1

4
𝑢𝑟𝑑
𝛼 𝑦2𝑟𝑘

𝑚 ]

𝑠

𝑟=𝑠1+1

 

 

3.6. Network Fuzzy Cross Efficiency: Aggregation Approach and Hatami-Marbini’s [39] 

Approach  

In the aggregation approach, first the efficiency of the whole system and then the efficiencies of 

the stages are measured. The efficiency of the first stage of CCR of the aggregation approach is 

measured using Hatami Marbini’s et al. [39] approach based on Model (35). The cross efficiency 

of the second stage is measured by the use of Model (36). 
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(35) 

𝐸𝑑𝑑 = 𝑚𝑎𝑥∑[𝑢𝑟𝑑
𝑚 (𝑦𝑟𝑑

𝑚 +
1

4
𝑦𝑟𝑑
𝛽
−
1

4
𝑦𝑟𝑑
𝛼 ) +

1

4
𝑢𝑟𝑑
𝛽
𝑦𝑟𝑑
𝑚 −

1

4
𝑢𝑟𝑑
𝛼 𝑦𝑟𝑑

𝑚 ]

𝑠

𝑟=1

 

∑[𝑣𝑖𝑑
𝑚 (𝑥𝑖𝑑

𝑚 +
1

4
𝑥𝑖𝑑
𝛽
−
1

4
𝑥𝑖𝑑
𝛼 ) +

1

4
𝑣𝑖𝑑
𝛽
𝑥𝑖𝑑
𝑚 −

1

4
𝑣𝑖𝑑
𝛼 𝑥𝑖𝑑

𝑚] = 1

𝑚

𝑖=1

 

∑[𝑢𝑟𝑑
𝑚 (𝑦1𝑟𝑗

𝑚 +
1

4
𝑦1𝑟𝑗

𝛽
−
1

4
𝑦1𝑟𝑗

𝛼 ) +
1

4
𝑢𝑟𝑑
𝛽
𝑦1𝑟𝑗

𝑚 −
1

4
𝑢𝑟𝑑
𝛼 𝑦1𝑟𝑗

𝑚 ]

𝑠1

𝑟=1

+∑[𝑤𝑔𝑑
𝑚 (𝑧𝑟𝑗

𝑚 +
1

4
𝑧𝑔𝑗
𝛽
−
1

4
𝑧𝑔𝑗
𝛼 ) +

1

4
𝑤𝑔𝑑
𝛽
𝑧𝑔𝑗
𝑚 −

1

4
𝑤𝑔𝑑
𝛼 𝑧𝑔𝑗

𝑚]

ℎ

𝑔=1

−∑[𝑣𝑖𝑑
𝑚 (𝑥1𝑖𝑗

𝑚 +
1

4
𝑥1𝑖𝑗

𝛽
−
1

4
𝑥1𝑖𝑗

𝛼 ) +
1

4
𝑣𝑖𝑑
𝛽
𝑥1𝑖𝑗

𝑚 −
1

4
𝑣𝑖𝑑
𝛼 𝑥1𝑖𝑗

𝑚] ≤ 0

𝑚1

𝑖=1

   ∀𝑗 = 1,… , 𝑛  

∑ [𝑢𝑟𝑑
𝑚 (𝑦2𝑟𝑗

𝑚 +
1

4
𝑦2𝑟𝑗

𝛽
−
1

4
𝑦2𝑟𝑗

𝛼 ) +
1

4
𝑢𝑟𝑑
𝛽
𝑦2𝑟𝑗

𝑚 −
1

4
𝑢𝑟𝑑
𝛼 𝑦2𝑟𝑗

𝑚 ]

𝑠

𝑟=𝑠1+1

− ∑ [𝑣𝑖𝑑
𝑚 (𝑥2𝑖𝑗

𝑚 +
1

4
𝑥2𝑖𝑗

𝛽
−
1

4
𝑥2𝑖𝑗

𝛼 ) +
1

4
𝑣𝑖𝑑
𝛽
𝑥2𝑖𝑗

𝑚 −
1

4
𝑣𝑖𝑑
𝛼 𝑥2𝑖𝑗

𝑚]

𝑚

𝑖=𝑚1+1

−∑[𝑤𝑔𝑑
𝑚 (𝑧𝑟𝑗

𝑚 +
1

4
𝑧𝑔𝑗
𝛽
−
1

4
𝑧𝑔𝑗
𝛼 ) +

1

4
𝑤𝑔𝑑
𝛽
�̃�𝑔𝑗
𝑚 −

1

4
𝑤𝑔𝑑
𝛼 𝑧𝑔𝑗

𝑚] ≤ 0

ℎ

𝑔=1

    ∀𝑗 = 1,… , 𝑛 

𝑢𝑟𝑑
𝑚 − 𝑢𝑟𝑑

𝛼 ≥ 0   ∀𝑟 = 1,… , 𝑠 

𝑢𝑟𝑑
𝑚 −

1

4
𝑢𝑟𝑑
𝛼 +

1

4
𝑢𝑟𝑑
𝛽
≥ 0   ∀𝑟 = 1,… , 𝑠 

𝑣𝑖𝑑
𝑚 − 𝑣𝑖𝑑

𝛼 ≥ 0    ∀𝑖 = 1,… ,𝑚 

𝑣𝑖𝑑
𝑚 −

1

4
𝑣𝑖𝑑
𝛼 +

1

4
𝑣𝑖𝑑
𝛽
≥ 0    ∀𝑖 = 1,… ,𝑚 

𝑤𝑔𝑑
𝑚 − 𝑤𝑔𝑑

𝛼 ≥ 0   ∀𝑔 = 1,… , ℎ 

𝑤𝑔𝑑
𝑚 −

1

4
𝑤𝑔𝑑
𝛼 +

1

4
𝑤𝑔𝑑
𝛽
≥ 0   ∀𝑔 = 1,… , ℎ 
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(36) 

𝐸𝑑𝑘 = 𝑚𝑎𝑥∑[𝑢𝑟𝑘
𝑚 (𝑦𝑟𝑘

𝑚 +
1

4
𝑦𝑟𝑘
𝛽
−
1

4
𝑦𝑟𝑘
𝛼 ) +

1

4
𝑢𝑟𝑘
𝛽
𝑦𝑟𝑘
𝑚 −

1

4
𝑢𝑟𝑘
𝛼 𝑦𝑟𝑘

𝑚 ]

𝑠

𝑟=1

 

∑[𝑣𝑖𝑘
𝑚 (𝑥𝑖𝑘

𝑚 +
1

4
𝑥𝑖𝑘
𝛽
−
1

4
𝑥𝑖𝑘
𝛼 ) +

1

4
𝑣𝑖𝑘
𝛽
𝑥𝑖𝑘
𝑚 −

1

4
𝑣𝑖𝑘
𝛼 𝑥𝑖𝑘

𝑚] = 1

𝑚

𝑖=1

 

∑[𝑢𝑟𝑘
𝑚 (𝑦1𝑟𝑗

𝑚 +
1

4
𝑦1𝑟𝑗

𝛽
−
1

4
𝑦1𝑟𝑗

𝛼 ) +
1

4
𝑢𝑟𝑘
𝛽
𝑦1𝑟𝑗

𝑚 −
1

4
𝑢𝑟𝑘
𝛼 𝑦1𝑟𝑗

𝑚 ]

𝑠1

𝑟=1

+∑[𝑤𝑔𝑘
𝑚 (𝑧𝑟𝑗

𝑚 +
1

4
𝑧𝑔𝑗
𝛽
−
1

4
𝑧𝑔𝑗
𝛼 ) +

1

4
𝑤𝑔𝑘
𝛽
𝑧𝑔𝑗
𝑚 −

1

4
𝑤𝑔𝑘
𝛼 𝑧𝑔𝑗

𝑚]

ℎ

𝑔=1

−∑[𝑣𝑖𝑘
𝑚 (𝑥1𝑖𝑗

𝑚 +
1

4
𝑥1𝑖𝑗

𝛽
−
1

4
𝑥1𝑖𝑗

𝛼 ) +
1

4
𝑣𝑖𝑘
𝛽
𝑥1𝑖𝑗

𝑚 −
1

4
𝑣𝑖𝑘
𝛼 𝑥1𝑖𝑗

𝑚] ≤ 0

𝑚1

𝑖=1

   ∀𝑗 = 1,… , 𝑛  

∑ [𝑢𝑟𝑘
𝑚 (𝑦2𝑟𝑗

𝑚 +
1

4
𝑦2𝑟𝑗

𝛽
−
1

4
𝑦2𝑟𝑗

𝛼 ) +
1

4
𝑢𝑟𝑘
𝛽
𝑦2𝑟𝑗

𝑚 −
1

4
𝑢𝑟𝑘
𝛼 𝑦2𝑟𝑗

𝑚 ]

𝑠

𝑟=𝑠1+1

− ∑ [𝑣𝑖𝑘
𝑚 (𝑥2𝑖𝑗

𝑚 +
1

4
𝑥2𝑖𝑗

𝛽
−
1

4
𝑥2𝑖𝑗

𝛼 ) +
1

4
𝑣𝑖𝑘
𝛽
𝑥2𝑖𝑗

𝑚 −
1

4
𝑣𝑖𝑘
𝛼 𝑥2𝑖𝑗

𝑚]

𝑚

𝑖=𝑚1+1

−∑[𝑤𝑔𝑘
𝑚 (𝑧𝑟𝑗

𝑚 +
1

4
𝑧𝑔𝑗
𝛽
−
1

4
𝑧𝑔𝑗
𝛼 ) +

1

4
𝑤𝑔𝑘
𝛽
𝑧𝑔𝑗
𝑚 −

1

4
𝑤𝑔𝑘
𝛼 𝑧𝑔𝑗

𝑚] ≤ 0

ℎ

𝑔=1

    ∀𝑗 = 1,… , 𝑛 

𝐸𝑑𝑑 ×∑[𝑣𝑖𝑘
𝑚 (𝑥𝑖𝑑

𝑚 +
1

4
𝑥𝑖𝑑
𝛽
−
1

4
𝑥𝑖𝑑
𝛼 ) +

1

4
𝑣𝑖𝑘
𝛽
𝑥𝑖𝑑
𝑚 −

1

4
𝑣𝑖𝑘
𝛼 𝑥𝑖𝑑

𝑚]

𝑚

𝑖=1

=∑[𝑢𝑟𝑘
𝑚 (𝑦𝑟𝑑

𝑚 +
1

4
𝑦𝑟𝑑
𝛽
−
1

4
𝑦𝑟𝑑
𝛼 ) +

1

4
𝑢𝑟𝑘
𝛽
𝑦𝑟𝑑
𝑚 −

1

4
𝑢𝑟𝑘
𝛼 𝑦𝑟𝑑

𝑚 ]

𝑠

𝑟=1

 

𝑢𝑟𝑘
𝑚 − 𝑢𝑟𝑘

𝛼 ≥ 0   ∀𝑟 = 1,… , 𝑠 

𝑢𝑟𝑘
𝑚 −

1

4
𝑢𝑟𝑘
𝛼 +

1

4
𝑢𝑟𝑘
𝛽
≥ 0   ∀𝑟 = 1,… , 𝑠 

𝑣𝑖𝑘
𝑚 − 𝑣𝑖𝑘

𝛼 ≥ 0    ∀𝑖 = 1,… ,𝑚 

𝑣𝑖𝑘
𝑚 −

1

4
𝑣𝑖𝑘
𝛼 +

1

4
𝑣𝑖𝑘
𝛽
≥ 0    ∀𝑖 = 1,… ,𝑚 

𝑤𝑔𝑘
𝑚 − 𝑤𝑔𝑘

𝛼 ≥ 0   ∀𝑔 = 1,… , ℎ 

𝑤𝑔𝑘
𝑚 −

1

4
𝑤𝑔𝑘
𝛼 +

1

4
𝑤𝑔𝑘
𝛽
≥ 0   ∀𝑔 = 1,… , ℎ 

 

4. Application Example 

The aim of this research is to rank the branches of Iranian banks using DEA. As mentioned by 

some researchers, the banking process is a two-stage process with two parts of production and 

financial intermediation. In the production  stage, financial institutions absorb capital to allocate  
loans. Financial institutions are thought of as primarily  producing services for account holders. 

They perform  transactions and process documents for customers, including  loan applications, 

credit reports, checks or other  payment instruments, and insurance policy or claim forms [44]. In 

the financial intermediation stage, financial institutions are thought of as primarily intermediating 

funds  between savers and investors. The financial resources gained  through the first-stage are 

granted to investors in the form of  loans with higher interest rates than the interest given to  
depositors. Since the personnel, the automated teller machine (ATM), the point of sale (POS) and 

the internet payment  gateway (IPG), and internet banking demand their own  costs and service 
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revenues are earned through them, they are  considered as the first-stage inputs. Because letter of 

guarantee, and inexpensive deposits are profitable  for the bank, they are considered as first-stage 

outputs. The  deferred loan of the bank, defined as the product of financial  intermediation 

processes, is considered as the second-stage input.  The amount of loans and net interest incomes 

are considered  as the second-stage outputs. Expensive deposits are a source of  loss to the bank 

because they receive interest from the bank.  On the other hand, these deposits are a good source 

for loan  payments, from which banks gain profits. Therefore, in some  researches, they are 

considered as the input and, in some  others, as the output. An advantage of network systems is  
parameter definition for both input and output nature. We have considered the expensive deposits 

as the first-stage  output and the second-stage input. Overall, the banking  procedure can be 

illustrated as a general two-stage process  with middle inputs and outputs as in Figure 3.This 

process has been described in our other study [2]. In the present study, we used the same process, 

with the difference that due to the lack of access to the data of the interest and fee incomes part, 

this part was removed from the application example. 

Production Expensive Deposit Financial 
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Figure 3: The network system of banking procedure 

In this study, we evaluated the input and output values of 105 branches of one of the banks in 

Tehran in a one-year period. The minimum, average, and maximum values were considered as 

TFNs for evaluation. The data of the problem are listed in Table 4 presented in Appendix. After 

solving the problem with the models presented in the previous section, the obtained values of the 

fuzzy efficiency of the stages and the whole system using the α-cut approach for α=0.5 as well as 

using Hatami-Marbini’s approach [39] are presented in the Table 2 and 3. The fuzzy ranking values 

of the stages and the whole system using the α-cut approach for α=0.5 and Hatami-Marbini’s 

approach [39] are listed Table 5 and 6 in Appendix, respectively. 

The results show the closeness of the total efficiency values and the big difference between the 

ranks derived from different approaches, so that the decision maker finds it difficult to make a 

final decision. One solution is to use the average rankings derived using different approaches as 

the final ranking for decision making. Another solution is to choose one of the approaches 

according to the organization's strategy. If the organization's strategy is the growth of the 

organization in all departments with the view of decentralization, it seems logical to use the 
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average approach. If the decision maker finds a part of the process more important (e.g. 

profitability by increasing services or profitability by increasing loens), he/she should use the 

leader and follower approaches. If the goal is to create confidence levels different from the 

measured ones, the α-cut approach is recommended, and if the goal is to reduce the calculations, 

Hatami Marbini's approach [39] should be used. Although measuring the efficiency of the stages 

is possible in the aggregation approach, after measuring the efficiency of the stages, there are many 

stages with zero efficiency. If the derived efficiency variance is used as a dispersion measure to 

compare the separability of different approaches, Hatami Marbini's approach [39], among the 

fuzzy approaches, has a higher separability than the α-cut approach, and the aggregation approach, 

among the network approaches, has lower separability than the other approaches.  

 

Table 2: Cross-fuzzy efficiency of the stages and the whole system using α-cut approach for α=0.5 

Branch 
Average  Stage 1 is the leader Stage 2 is the leader Aggregation 

Stage 1 Stage 2 System Stage 1 Stage 2 System Stage 1 Stage 2 System System 

1 (0.42,0.48,1) (0.11,0.16,0.95) (0.27,0.32,0.97) (0.42,0.48,1) (0.11,0.16,0.95) (0.27,0.32,0.97) (0.42,0.48,1) (0.11,0.16,0.95) (0.27,0.32,0.97) (0.96,0.41,1) 

2 (0.16,0.2,1) (0.12,0.16,1) (0.14,0.18,1) (0.16,0.2,1) (0.12,0.16,1) (0.14,0.18,1) (0.16,0.2,1) (0.12,0.16,1) (0.14,0.18,1) (0.96,0.15,1) 

3 (0.27,0.33,0.89) (0.11,0.16,1) (0.19,0.24,0.95) (0.27,0.33,0.89) (0.11,0.16,1) (0.19,0.24,0.95) (0.27,0.33,0.89) (0.11,0.16,1) (0.19,0.24,0.95) (0.96,0.29,1) 

4 (0.31,0.39,0.98) (0.11,0.16,1) (0.21,0.27,0.99) (0.31,0.39,0.98) (0.11,0.16,1) (0.21,0.27,0.99) (0.31,0.39,0.98) (0.11,0.16,1) (0.21,0.27,0.99) (0.96,0.31,1) 

5 (0.27,0.33,1) (0.11,0.16,0.93) (0.19,0.24,0.97) (0.27,0.33,1) (0.11,0.16,0.93) (0.19,0.24,0.97) (0.27,0.33,1) (0.11,0.16,0.93) (0.19,0.24,0.97) (0.96,0.27,1) 

6 (0.3,0.38,1) (0.12,0.16,0.94) (0.21,0.27,0.97) (0.3,0.38,1) (0.12,0.16,0.94) (0.21,0.27,0.97) (0.3,0.38,1) (0.12,0.16,0.94) (0.21,0.27,0.97) (0.96,0.33,1) 

7 (0.42,0.49,1) (0.06,0.09,0.98) (0.24,0.29,0.99) (0.42,0.49,1) (0.06,0.09,0.98) (0.24,0.29,0.99) (0.42,0.49,1) (0.06,0.09,0.98) (0.24,0.29,0.99) (0.95,0.45,1) 

8 (0.27,0.33,1) (0.11,0.06,0.99) (0.19,0.2,0.99) (0.27,0.33,1) (0.11,0.06,0.99) (0.19,0.2,0.99) (0.27,0.33,1) (0.11,0.06,0.99) (0.19,0.2,0.99) (0.93,0.27,1) 

9 (0.31,0.39,1) (0.11,0.16,0.83) (0.21,0.27,0.91) (0.31,0.39,1) (0.11,0.16,0.83) (0.21,0.27,0.91) (0.31,0.39,1) (0.11,0.16,0.83) (0.21,0.27,0.91) (0.93,0.31,1) 

10 (0.3,0.36,1) (0.11,0.16,0.99) (0.21,0.26,1) (0.3,0.36,1) (0.11,0.16,0.99) (0.21,0.26,1) (0.3,0.36,1) (0.11,0.16,0.99) (0.21,0.26,1) (0.93,0.29,1) 

11 (0.32,0.44,0.98) (0.06,0.09,0.96) (0.19,0.27,0.97) (0.32,0.44,0.98) (0.06,0.09,0.96) (0.19,0.27,0.97) (0.32,0.44,0.98) (0.06,0.09,0.96) (0.19,0.27,0.97) (0.4,0.36,1) 

12 (0.51,0.58,0.88) (0.04,0.04,0.96) (0.27,0.31,0.92) (0.51,0.58,0.88) (0.04,0.04,0.96) (0.27,0.31,0.92) (0.51,0.58,0.88) (0.04,0.04,0.96) (0.27,0.31,0.92) (0.57,0.51,0.96) 

13 (0.25,0.33,1) (0.04,0.04,0.99) (0.14,0.18,0.99) (0.25,0.33,1) (0.04,0.04,0.99) (0.14,0.18,0.99) (0.25,0.33,1) (0.04,0.04,0.99) (0.14,0.18,0.99) (0.59,0.04,1) 

14 (0.26,0.33,0.94) (0.03,0.06,1) (0.15,0.2,0.97) (0.26,0.33,0.94) (0.04,0.06,1) (0.15,0.2,0.97) (0.26,0.33,0.94) (0.04,0.06,1) (0.15,0.2,0.97) (0.59,0.29,0.99) 

15 (0.32,0.36,0.99) (0.11,0.16,0.96) (0.21,0.26,0.98) (0.32,0.36,0.99) (0.11,0.16,0.96) (0.22,0.26,0.98) (0.32,0.36,0.99) (0.11,0.16,0.96) (0.22,0.26,0.98) (0.59,0.27,1) 

16 (0.32,0.39,0.88) (0.06,0.09,1) (0.19,0.24,0.94) (0.32,0.39,0.88) (0.06,0.09,1) (0.19,0.24,0.94) (0.32,0.39,0.88) (0.06,0.09,1) (0.19,0.24,0.94) (0.59,0.4,1) 

17 (0.33,0.47,0.95) (0.06,0.09,0.92) (0.19,0.28,0.93) (0.33,0.47,0.95) (0.06,0.09,0.92) (0.2,0.28,0.93) (0.33,0.47,0.95) (0.06,0.09,0.92) (0.19,0.28,0.93) (0.43,0.4,0.99) 

18 (0.42,0.37,1) (0.11,0.16,0.97) (0.27,0.26,0.98) (0.42,0.37,1) (0.11,0.16,0.97) (0.27,0.26,0.98) (0.42,0.37,1) (0.11,0.16,0.97) (0.27,0.26,0.98) (0.29,0.45,1) 

19 (0.21,0.3,1) (0.11,0.16,0.87) (0.16,0.23,0.94) (0.21,0.3,1) (0.11,0.16,0.87) (0.16,0.23,0.94) (0.21,0.3,1) (0.11,0.16,0.87) (0.16,0.23,0.94) (0.29,0.33,1) 

20 (0.29,0.38,1) (0.11,0.16,0.95) (0.2,0.27,0.98) (0.29,0.38,1) (0.11,0.16,0.95) (0.2,0.27,0.98) (0.29,0.38,1) (0.11,0.16,0.95) (0.2,0.27,0.98) (0.29,0.33,1) 

21 (0.3,0.36,0.99) (0.11,0.16,0.98) (0.21,0.26,0.99) (0.3,0.36,0.99) (0.11,0.16,0.98) (0.21,0.26,0.99) (0.3,0.36,0.99) (0.11,0.16,0.98) (0.21,0.26,0.99) (0.29,0.29,1) 

22 (0.42,0.48,1) (0.11,0.16,0.95) (0.27,0.32,0.98) (0.42,0.48,1) (0.11,0.16,0.95) (0.27,0.32,0.98) (0.42,0.48,1) (0.11,0.16,0.95) (0.27,0.32,0.98) (0.29,0.45,1) 

23 (0.27,0.33,1) (0.11,0.16,0.93) (0.19,0.24,0.96) (0.27,0.33,1) (0.11,0.16,0.93) (0.19,0.24,0.96) (0.27,0.33,1) (0.11,0.16,0.93) (0.19,0.24,0.96) (0.29,0.29,1) 

24 (0.3,0.36,1) (0.12,0.09,1) (0.21,0.23,1) (0.3,0.36,1) (0.11,0.09,1) (0.21,0.23,1) (0.3,0.36,1) (0.12,0.09,1) (0.21,0.23,1) (0.29,0.29,1) 

25 (0.27,0.33,1) (0.11,0.16,1) (0.19,0.24,1) (0.27,0.33,1) (0.11,0.16,1) (0.19,0.24,1) (0.27,0.33,1) (0.11,0.16,1) (0.19,0.24,1) (0.29,0.29,1) 

26 (0.28,0.36,0.99) (0.12,0.16,0.92) (0.2,0.26,0.95) (0.28,0.36,0.99) (0.11,0.16,0.92) (0.2,0.26,0.95) (0.28,0.36,0.99) (0.12,0.16,0.92) (0.2,0.26,0.95) (0.29,0.34,0.99) 

27 (0.31,0.39,1) (0.11,0.16,0.95) (0.21,0.27,0.97) (0.31,0.39,1) (0.11,0.16,0.95) (0.21,0.27,0.97) (0.31,0.39,1) (0.11,0.16,0.95) (0.21,0.27,0.97) (0.67,0.34,1) 

28 (0.32,0.38,1) (0.06,0.09,0.99) (0.19,0.24,1) (0.32,0.38,1) (0.06,0.09,0.99) (0.19,0.24,1) (0.32,0.38,1) (0.06,0.09,0.99) (0.19,0.24,1) (0.87,0.31,1) 

29 (0.42,0.49,0.97) (0.12,0.09,0.95) (0.27,0.29,0.96) (0.42,0.49,0.97) (0.12,0.09,0.95) (0.27,0.29,0.96) (0.42,0.49,0.97) (0.12,0.09,0.95) (0.27,0.29,0.96) (0.9,0.45,1) 

30 (0.33,0.47,0.98) (0.12,0.16,0.91) (0.22,0.31,0.95) (0.33,0.47,0.98) (0.13,0.16,0.91) (0.23,0.31,0.95) (0.33,0.47,0.98) (0.12,0.16,0.91) (0.22,0.31,0.95) (0.93,0.34,0.99) 

31 (0.42,0.39,1) (0.11,0.16,0.83) (0.27,0.27,0.91) (0.42,0.39,1) (0.11,0.16,0.83) (0.27,0.27,0.91) (0.42,0.39,1) (0.11,0.16,0.83) (0.27,0.27,0.91) (0.93,0.41,1) 

32 (0.31,0.39,1) (0.11,0.06,0.95) (0.21,0.23,0.98) (0.31,0.39,1) (0.11,0.06,0.95) (0.21,0.23,0.98) (0.31,0.39,1) (0.11,0.06,0.95) (0.21,0.23,0.98) (0.93,0.34,1) 

33 (0.42,0.48,1) (0.11,0.16,0.95) (0.27,0.32,0.97) (0.42,0.48,1) (0.11,0.16,0.95) (0.27,0.32,0.97) (0.42,0.48,1) (0.11,0.16,0.95) (0.27,0.32,0.97) (0.93,0.45,1) 

34 (0.31,0.41,0.98) (0.11,0.16,0.71) (0.21,0.28,0.84) (0.31,0.41,0.98) (0.11,0.16,0.71) (0.21,0.28,0.84) (0.31,0.41,0.98) (0.11,0.16,0.71) (0.21,0.28,0.84) (0.4,0.39,0.94) 

35 (0.38,0.45,0.98) (0.12,0.16,0.55) (0.25,0.3,0.77) (0.38,0.45,0.98) (0.12,0.16,0.55) (0.25,0.3,0.77) (0.38,0.45,0.98) (0.12,0.16,0.55) (0.25,0.3,0.77) (0.39,0.45,0.95) 

36 (0.42,0.48,1) (0.11,0.16,0.96) (0.27,0.32,0.98) (0.42,0.48,1) (0.11,0.16,0.96) (0.27,0.32,0.98) (0.42,0.48,1) (0.11,0.16,0.96) (0.27,0.32,0.98) (0.39,0.45,1) 

37 (0.42,0.48,1) (0.11,0.16,0.93) (0.26,0.32,0.96) (0.42,0.48,1) (0.11,0.16,0.93) (0.27,0.32,0.96) (0.42,0.48,1) (0.11,0.16,0.93) (0.27,0.32,0.96) (0.39,0.41,1) 

38 (0.42,0.45,0.97) (0.11,0.16,0.65) (0.27,0.3,0.81) (0.42,0.45,0.97) (0.11,0.16,0.65) (0.27,0.3,0.81) (0.42,0.45,0.97) (0.11,0.16,0.65) (0.27,0.3,0.81) (0.9,0.45,0.92) 

39 (0.25,0.31,1) (0.11,0.16,0.78) (0.18,0.23,0.89) (0.25,0.31,1) (0.11,0.16,0.79) (0.18,0.23,0.9) (0.25,0.31,1) (0.11,0.16,0.78) (0.18,0.23,0.89) (0.94,0.31,1) 

40 (0.42,0.49,1) (0.08,0.16,0.96) (0.25,0.32,0.98) (0.42,0.49,1) (0.1,0.16,0.96) (0.26,0.32,0.98) (0.42,0.49,1) (0.1,0.16,0.96) (0.26,0.32,0.98) (0.94,0.45,1) 

41 (0.42,0.48,1) (0.11,0.16,0.92) (0.27,0.32,0.96) (0.42,0.48,1) (0.11,0.16,0.92) (0.27,0.32,0.96) (0.42,0.48,1) (0.11,0.16,0.92) (0.27,0.32,0.96) (0.94,0.41,1) 

42 (0.32,0.39,0.98) (0.13,0.16,0.89) (0.22,0.28,0.93) (0.32,0.39,0.98) (0.13,0.16,0.89) (0.22,0.28,0.93) (0.32,0.39,0.98) (0.13,0.16,0.89) (0.22,0.28,0.93) (0.93,0.4,0.99) 

43 (0.42,0.49,0.99) (0.11,0.16,0.91) (0.27,0.32,0.95) (0.42,0.49,0.99) (0.11,0.16,0.91) (0.27,0.32,0.95) (0.42,0.49,0.99) (0.11,0.16,0.91) (0.27,0.32,0.95) (0.93,0.45,0.99) 

44 (0.42,0.49,1) (0.11,0.16,0.92) (0.27,0.32,0.96) (0.42,0.49,1) (0.11,0.16,0.92) (0.27,0.32,0.96) (0.42,0.49,1) (0.11,0.16,0.92) (0.27,0.32,0.96) (0.93,0.45,1) 

45 (0.38,0.48,1) (0.06,0.09,0.97) (0.22,0.29,0.99) (0.38,0.48,1) (0.06,0.09,0.97) (0.22,0.29,0.99) (0.38,0.48,1) (0.06,0.09,0.97) (0.22,0.29,0.99) (0.93,0.41,0.99) 

46 (0.42,0.48,1) (0.11,0.16,0.73) (0.27,0.32,0.86) (0.42,0.48,1) (0.11,0.16,0.73) (0.27,0.32,0.86) (0.42,0.48,1) (0.11,0.16,0.73) (0.27,0.32,0.86) (0.94,0.41,1) 

47 (0.32,0.38,1) (0.11,0.16,0.92) (0.22,0.27,0.96) (0.32,0.38,1) (0.11,0.16,0.92) (0.22,0.27,0.96) (0.32,0.38,1) (0.11,0.16,0.92) (0.22,0.27,0.96) (0.94,0.35,0.99) 

48 (0.36,0.55,0.98) (0.11,0.16,0.7) (0.24,0.36,0.84) (0.36,0.55,0.98) (0.11,0.16,0.7) (0.24,0.36,0.84) (0.36,0.55,0.98) (0.11,0.16,0.7) (0.24,0.36,0.84) (0.42,0.5,0.97) 

49 (0.42,0.48,1) (0.11,0.16,0.86) (0.27,0.32,0.93) (0.42,0.48,1) (0.11,0.16,0.86) (0.27,0.32,0.93) (0.42,0.48,1) (0.11,0.16,0.86) (0.27,0.32,0.93) (0.45,0.45,0.99) 

50 (0.31,0.46,0.98) (0.11,0.16,0.49) (0.21,0.31,0.74) (0.31,0.46,0.98) (0.11,0.16,0.49) (0.21,0.31,0.74) (0.31,0.46,0.98) (0.11,0.16,0.49) (0.21,0.31,0.74) (0.44,0.42,0.96) 

51 (0.42,0.48,1) (0.11,0.16,0.96) (0.27,0.32,0.98) (0.42,0.48,1) (0.11,0.16,0.96) (0.27,0.32,0.98) (0.42,0.48,1) (0.11,0.16,0.96) (0.27,0.32,0.98) (0.46,0.45,1) 

52 (0.53,0.58,0.96) (0.11,0.16,1) (0.32,0.37,0.98) (0.53,0.58,0.96) (0.13,0.16,1) (0.33,0.37,0.98) (0.53,0.58,0.96) (0.13,0.16,1) (0.33,0.37,0.98) (0.52,0.31,1) 

53 (0.26,0.36,0.99) (0.13,0.17,0.66) (0.19,0.26,0.82) (0.26,0.36,0.99) (0.13,0.17,0.66) (0.19,0.26,0.82) (0.26,0.36,0.99) (0.13,0.17,0.66) (0.19,0.26,0.82) (0.48,0.3,0.99) 

54 (0.42,0.48,0.99) (0.11,0.16,0.31) (0.27,0.32,0.65) (0.42,0.48,0.99) (0.11,0.16,0.31) (0.27,0.32,0.65) (0.42,0.48,0.99) (0.11,0.16,0.31) (0.27,0.32,0.65) (0.76,0.45,0.99) 

55 (0.42,0.49,0.99) (0.11,0.16,0.77) (0.27,0.32,0.88) (0.42,0.49,0.99) (0.11,0.16,0.77) (0.27,0.32,0.88) (0.42,0.49,0.99) (0.11,0.16,0.77) (0.27,0.32,0.88) (0.94,0.45,0.98) 



28 

Branch 
Average  Stage 1 is the leader Stage 2 is the leader Aggregation 

Stage 1 Stage 2 System Stage 1 Stage 2 System Stage 1 Stage 2 System System 

56 (0.42,0.48,1) (0.12,0.16,0.47) (0.27,0.32,0.73) (0.42,0.48,1) (0.12,0.16,0.47) (0.27,0.32,0.73) (0.42,0.48,1) (0.12,0.16,0.47) (0.27,0.32,0.73) (0.44,0.35,1) 

57 (0.42,0.49,1) (0.11,0.16,0.92) (0.27,0.32,0.96) (0.42,0.49,1) (0.11,0.16,0.92) (0.27,0.32,0.96) (0.42,0.49,1) (0.11,0.16,0.92) (0.27,0.32,0.96) (0.59,0.45,1) 

58 (0.42,0.48,1) (0.11,0.16,0.92) (0.27,0.32,0.96) (0.42,0.48,1) (0.11,0.16,0.92) (0.27,0.32,0.96) (0.42,0.48,1) (0.11,0.16,0.92) (0.27,0.32,0.96) (0.59,0.41,1) 

59 (0.42,0.48,1) (0.11,0.16,0.97) (0.27,0.32,0.98) (0.42,0.48,1) (0.11,0.16,0.97) (0.27,0.32,0.98) (0.42,0.48,1) (0.11,0.16,0.97) (0.27,0.32,0.98) (0.59,0.45,1) 

60 (0.42,0.48,1) (0.11,0.16,0.98) (0.27,0.32,0.99) (0.42,0.48,1) (0.11,0.16,0.98) (0.27,0.32,0.99) (0.42,0.48,1) (0.11,0.16,0.98) (0.27,0.32,0.99) (0.59,0.45,1) 

61 (0.37,0.36,1) (0.11,0.16,0.58) (0.24,0.26,0.79) (0.37,0.36,1) (0.11,0.16,0.58) (0.24,0.26,0.79) (0.37,0.36,1) (0.11,0.16,0.58) (0.24,0.26,0.79) (0.59,0.34,1) 

62 (0.42,0.48,1) (0.11,0.06,0.92) (0.26,0.27,0.96) (0.42,0.48,1) (0.11,0.06,0.92) (0.26,0.27,0.96) (0.42,0.48,1) (0.11,0.06,0.92) (0.26,0.27,0.96) (0.59,0.45,1) 

63 (0.42,0.49,1) (0.12,0.16,0.78) (0.27,0.32,0.89) (0.42,0.49,1) (0.12,0.16,0.78) (0.27,0.32,0.89) (0.42,0.49,1) (0.12,0.16,0.78) (0.27,0.32,0.89) (0.77,0.45,0.99) 

64 (0.42,0.48,1) (0.04,0.06,0.96) (0.23,0.27,0.98) (0.42,0.48,1) (0.04,0.06,0.96) (0.23,0.27,0.98) (0.42,0.48,1) (0.04,0.06,0.96) (0.23,0.27,0.98) (0.94,0.41,1) 

65 (0.32,0.39,0.99) (0.11,0.16,0.8) (0.22,0.27,0.9) (0.32,0.39,0.99) (0.11,0.16,0.8) (0.22,0.27,0.9) (0.32,0.39,0.99) (0.11,0.16,0.8) (0.22,0.27,0.9) (0.36,0.34,1) 

66 (0.42,0.49,1) (0.11,0.16,0.95) (0.27,0.32,0.97) (0.42,0.49,1) (0.11,0.16,0.95) (0.27,0.32,0.97) (0.42,0.49,1) (0.11,0.16,0.95) (0.27,0.32,0.97) (0.33,0.45,1) 

67 (0.32,0.4,1) (0.06,0.09,0.95) (0.19,0.25,0.97) (0.32,0.4,1) (0.06,0.09,0.95) (0.19,0.25,0.97) (0.32,0.4,1) (0.06,0.09,0.95) (0.19,0.25,0.97) (0.33,0.36,1) 

68 (0.42,0.49,1) (0.04,0.06,0.99) (0.23,0.27,0.99) (0.42,0.49,1) (0.04,0.06,0.99) (0.23,0.27,0.99) (0.42,0.49,1) (0.04,0.06,0.99) (0.23,0.27,0.99) (0.33,0.45,1) 

69 (0.36,0.38,0.99) (0.12,0.16,0.84) (0.24,0.27,0.91) (0.36,0.38,0.99) (0.12,0.16,0.84) (0.24,0.27,0.92) (0.36,0.38,0.99) (0.12,0.16,0.84) (0.24,0.27,0.91) (0.33,0.34,0.99) 

70 (0.32,0.38,1) (0.11,0.16,0.95) (0.21,0.27,0.97) (0.32,0.38,1) (0.11,0.16,0.95) (0.21,0.27,0.97) (0.32,0.38,1) (0.11,0.16,0.95) (0.21,0.27,0.97) (0.33,0.41,1) 

71 (0.42,0.48,0.97) (0.06,0.09,0.99) (0.24,0.29,0.98) (0.42,0.48,0.97) (0.06,0.09,0.99) (0.24,0.29,0.98) (0.42,0.48,0.97) (0.06,0.09,0.99) (0.24,0.29,0.98) (0.64,0.45,1) 

72 (0.42,0.43,1) (0.11,0.16,0.82) (0.27,0.3,0.91) (0.42,0.43,1) (0.11,0.16,0.82) (0.27,0.3,0.91) (0.42,0.43,1) (0.11,0.16,0.82) (0.27,0.3,0.91) (0.94,0.4,1) 

73 (0.42,0.48,0.99) (0.11,0.16,0.95) (0.27,0.32,0.97) (0.42,0.48,0.99) (0.11,0.16,0.95) (0.27,0.32,0.97) (0.42,0.48,0.99) (0.11,0.16,0.95) (0.27,0.32,0.97) (0.94,0.45,1) 

74 (0.42,0.48,1) (0.11,0.16,0.92) (0.27,0.32,0.96) (0.42,0.48,1) (0.11,0.16,0.92) (0.27,0.32,0.96) (0.42,0.48,1) (0.11,0.16,0.92) (0.27,0.32,0.96) (0.94,0.45,1) 

75 (0.42,0.39,1) (0.11,0.06,0.96) (0.26,0.23,0.98) (0.42,0.39,1) (0.11,0.06,0.96) (0.26,0.23,0.98) (0.42,0.39,1) (0.11,0.06,0.96) (0.26,0.23,0.98) (0.94,0.34,1) 

76 (0.32,0.38,0.98) (0.11,0.16,0.97) (0.22,0.27,0.97) (0.32,0.38,0.98) (0.11,0.16,0.97) (0.21,0.27,0.97) (0.32,0.38,0.98) (0.11,0.16,0.97) (0.22,0.27,0.97) (0.94,0.34,1) 

77 (0.42,0.48,1) (0.06,0.09,1) (0.24,0.29,1) (0.42,0.48,1) (0.06,0.09,1) (0.24,0.29,1) (0.42,0.48,1) (0.06,0.09,1) (0.24,0.29,1) (0.94,0.45,1) 

78 (0.42,0.38,0.99) (0.11,0.16,0.95) (0.27,0.27,0.97) (0.42,0.38,0.99) (0.11,0.16,0.95) (0.27,0.27,0.97) (0.42,0.38,0.99) (0.11,0.16,0.95) (0.27,0.27,0.97) (0.94,0.32,1) 

79 (0.32,0.38,0.99) (0.12,0.16,0.92) (0.22,0.27,0.96) (0.32,0.38,0.99) (0.12,0.16,0.92) (0.22,0.27,0.96) (0.32,0.38,0.99) (0.12,0.16,0.92) (0.22,0.27,0.96) (0.94,0.31,0.99) 

80 (0.42,0.48,1) (0.11,0.16,0.87) (0.27,0.32,0.93) (0.42,0.48,1) (0.11,0.16,0.87) (0.27,0.32,0.93) (0.42,0.48,1) (0.11,0.16,0.87) (0.27,0.32,0.93) (0.94,0.41,1) 

81 (0.42,0.48,1) (0.11,0.16,0.75) (0.27,0.32,0.88) (0.42,0.48,1) (0.11,0.16,0.75) (0.27,0.32,0.88) (0.42,0.48,1) (0.11,0.16,0.75) (0.27,0.32,0.88) (0.94,0.41,1) 

82 (0.31,0.36,0.99) (0.11,0.16,0.82) (0.21,0.26,0.91) (0.31,0.36,0.99) (0.11,0.16,0.82) (0.21,0.26,0.91) (0.31,0.36,0.99) (0.11,0.16,0.82) (0.21,0.26,0.91) (0.38,0.33,0.99) 

83 (0.42,0.48,1) (0.12,0.16,0.93) (0.27,0.32,0.96) (0.42,0.48,1) (0.12,0.16,0.93) (0.27,0.32,0.96) (0.42,0.48,1) (0.12,0.16,0.93) (0.27,0.32,0.96) (0.33,0.41,1) 

84 (0.42,0.49,1) (0.11,0.16,0.95) (0.27,0.32,0.98) (0.42,0.49,1) (0.11,0.16,0.95) (0.27,0.32,0.98) (0.42,0.49,1) (0.11,0.16,0.95) (0.27,0.32,0.98) (0.33,0.45,1) 

85 (0.32,0.38,0.99) (0.12,0.16,0.9) (0.22,0.27,0.95) (0.32,0.38,0.99) (0.12,0.16,0.9) (0.22,0.27,0.95) (0.32,0.38,0.99) (0.12,0.16,0.9) (0.22,0.27,0.95) (0.33,0.31,0.99) 

86 (0.42,0.48,1) (0.11,0.16,0.97) (0.26,0.32,0.98) (0.42,0.48,1) (0.11,0.16,0.97) (0.27,0.32,0.98) (0.42,0.48,1) (0.11,0.16,0.97) (0.27,0.32,0.98) (0.33,0.41,1) 

87 (0.42,0.48,1) (0.12,0.16,0.85) (0.27,0.32,0.92) (0.42,0.48,1) (0.12,0.16,0.85) (0.27,0.32,0.92) (0.42,0.48,1) (0.12,0.16,0.85) (0.27,0.32,0.92) (0.33,0.45,0.99) 

88 (0.42,0.48,1) (0.11,0.16,0.9) (0.26,0.32,0.95) (0.42,0.48,1) (0.11,0.16,0.9) (0.26,0.32,0.95) (0.42,0.48,1) (0.11,0.16,0.9) (0.26,0.32,0.95) (0.33,0.41,1) 

89 (0.42,0.48,1) (0.11,0.16,0.97) (0.27,0.32,0.98) (0.42,0.48,1) (0.11,0.16,0.97) (0.27,0.32,0.98) (0.42,0.48,1) (0.11,0.16,0.97) (0.27,0.32,0.98) (0.33,0.41,1) 

90 (0.42,0.48,1) (0.11,0.16,0.95) (0.27,0.32,0.98) (0.42,0.48,1) (0.11,0.16,0.95) (0.27,0.32,0.98) (0.42,0.48,1) (0.11,0.16,0.95) (0.27,0.32,0.98) (0.33,0.41,1) 

91 (0.37,0.41,1) (0.11,0.16,0.87) (0.24,0.29,0.93) (0.37,0.41,1) (0.11,0.16,0.87) (0.24,0.29,0.93) (0.37,0.41,1) (0.11,0.16,0.87) (0.24,0.29,0.93) (0.33,0.41,1) 

92 (0.38,0.45,1) (0.11,0.16,0.71) (0.24,0.3,0.85) (0.38,0.45,1) (0.11,0.16,0.71) (0.24,0.3,0.85) (0.38,0.45,1) (0.11,0.16,0.71) (0.24,0.3,0.85) (0.33,0.45,1) 

93 (0.42,0.48,1) (0.11,0.16,0.83) (0.27,0.32,0.91) (0.42,0.48,1) (0.11,0.16,0.83) (0.27,0.32,0.91) (0.42,0.48,1) (0.11,0.16,0.83) (0.27,0.32,0.91) (0.33,0.41,1) 

94 (0.42,0.43,1) (0.11,0.16,0.85) (0.27,0.3,0.92) (0.42,0.43,1) (0.11,0.16,0.85) (0.27,0.3,0.92) (0.42,0.43,1) (0.11,0.16,0.85) (0.27,0.3,0.92) (0.33,0.4,1) 

95 (0.42,0.48,1) (0.11,0.07,0.66) (0.27,0.27,0.83) (0.42,0.48,1) (0.11,0.07,0.66) (0.27,0.27,0.83) (0.42,0.48,1) (0.11,0.07,0.66) (0.27,0.27,0.83) (0.33,0.04,1) 

96 (0.42,0.49,1) (0.11,0.16,0.93) (0.26,0.32,0.97) (0.42,0.49,1) (0.11,0.16,0.93) (0.26,0.32,0.97) (0.42,0.49,1) (0.11,0.16,0.93) (0.26,0.32,0.97) (0.33,0.45,1) 

97 (0.37,0.41,1) (0.11,0.16,0.8) (0.24,0.29,0.9) (0.37,0.41,1) (0.11,0.16,0.8) (0.24,0.29,0.9) (0.37,0.41,1) (0.11,0.16,0.8) (0.24,0.29,0.9) (0.33,0.41,1) 

98 (0.42,0.48,1) (0.12,0.16,0.97) (0.27,0.32,0.99) (0.42,0.48,1) (0.12,0.16,0.97) (0.27,0.32,0.99) (0.42,0.48,1) (0.12,0.16,0.97) (0.27,0.32,0.99) (0.33,0.41,1) 

99 (0.39,0.45,0.99) (0.12,0.17,0.26) (0.25,0.31,0.63) (0.39,0.45,0.99) (0.12,0.17,0.26) (0.25,0.31,0.63) (0.39,0.45,0.99) (0.12,0.17,0.26) (0.25,0.31,0.63) (0.47,0.15,0.94) 

100 (0.42,0.48,1) (0.11,0.16,0.66) (0.27,0.32,0.83) (0.42,0.48,1) (0.11,0.16,0.66) (0.27,0.32,0.83) (0.42,0.48,1) (0.11,0.16,0.66) (0.27,0.32,0.83) (0.59,0.41,1) 

101 (0.42,0.41,0.99) (0.11,0.16,0.87) (0.27,0.29,0.93) (0.42,0.41,0.99) (0.11,0.16,0.87) (0.27,0.29,0.93) (0.42,0.41,0.99) (0.11,0.16,0.87) (0.27,0.29,0.93) (0.77,0.36,0.98) 

102 (0.42,0.49,1) (0.11,0.16,0.69) (0.27,0.32,0.85) (0.42,0.49,1) (0.11,0.16,0.69) (0.27,0.32,0.85) (0.42,0.49,1) (0.11,0.16,0.69) (0.27,0.32,0.85) (0.94,0.45,1) 

103 (0.35,0.4,1) (0.11,0.16,0.8) (0.23,0.28,0.9) (0.35,0.4,1) (0.11,0.16,0.8) (0.23,0.28,0.9) (0.35,0.4,1) (0.11,0.16,0.8) (0.23,0.28,0.9) (0.94,0.4,1) 

104 (0.42,0.41,1) (0.11,0.16,0.8) (0.27,0.29,0.9) (0.42,0.41,1) (0.11,0.16,0.8) (0.27,0.29,0.9) (0.42,0.41,1) (0.11,0.16,0.8) (0.27,0.29,0.9) (0.94,0.41,0.99) 

105 (0.38,0.41,1) (0.06,0.09,0.94) (0.22,0.25,0.97) (0.38,0.41,1) (0.06,0.09,0.94) (0.22,0.25,0.97) (0.38,0.41,1) (0.06,0.09,0.94) (0.22,0.25,0.97) (0.94,0.41,1) 

 

Table 3: Cross-fuzzy efficiency of the stages and the whole system using Hatami-Marbini's approach [39] 

Branch 
Average  Stage 1 is the leader Stage 2 is the leader Aggregation 

Stage 1 Stage 2 System Stage 1 Stage 2 System Stage 1 Stage 2 System System 
1 (0.25,0.26,0.31) (0.11,0.13,0.13) (0.18,0.19,0.22) (0.25,0.26,0.31) (0.25,0.26,0.31) (0.11,0.13,0.13) (0.18,0.19,0.22) (0.25,0.26,0.31) (0.25,0.26,0.31) (0.11,0.13,0.13) 
2 (0.22,0.25,0.26) (0.05,0.05,0.05) (0.13,0.15,0.16) (0.22,0.25,0.26) (0.22,0.25,0.26) (0.05,0.05,0.05) (0.13,0.15,0.16) (0.22,0.25,0.26) (0.22,0.25,0.26) (0.05,0.05,0.05) 
3 (0.3,0.33,0.42) (0.04,0.04,0.04) (0.17,0.18,0.23) (0.3,0.33,0.42) (0.3,0.33,0.42) (0.04,0.04,0.04) (0.17,0.18,0.23) (0.3,0.33,0.42) (0.3,0.33,0.42) (0.04,0.04,0.04) 
4 (0.36,0.47,0.47) (0.05,0.06,0.06) (0.21,0.26,0.26) (0.36,0.47,0.47) (0.36,0.47,0.47) (0.05,0.06,0.06) (0.21,0.26,0.26) (0.36,0.47,0.47) (0.36,0.47,0.47) (0.05,0.06,0.06) 
5 (0.09,0.1,0.1) (0.07,0.07,0.07) (0.08,0.09,0.09) (0.09,0.1,0.1) (0.09,0.1,0.1) (0.07,0.07,0.07) (0.08,0.09,0.09) (0.09,0.1,0.1) (0.09,0.1,0.1) (0.07,0.07,0.07) 
6 (0.15,0.15,0.19) (0.09,0.1,0.1) (0.12,0.13,0.15) (0.15,0.15,0.19) (0.15,0.15,0.19) (0.09,0.1,0.1) (0.12,0.13,0.15) (0.15,0.15,0.19) (0.15,0.15,0.19) (0.09,0.1,0.1) 
7 (0.62,0.82,0.88) (0.38,0.4,0.4) (0.5,0.61,0.64) (0.62,0.82,0.88) (0.62,0.82,0.88) (0.38,0.4,0.4) (0.5,0.61,0.64) (0.62,0.82,0.88) (0.62,0.82,0.88) (0.38,0.4,0.4) 
8 (0.13,0.17,0.18) (0.01,0.01,0.01) (0.07,0.09,0.09) (0.13,0.17,0.18) (0.13,0.17,0.18) (0.01,0.01,0.01) (0.07,0.09,0.09) (0.13,0.17,0.18) (0.13,0.17,0.18) (0.01,0.01,0.01) 
9 (0.1,0.13,0.13) (0.01,0.01,0.01) (0.05,0.07,0.07) (0.1,0.13,0.13) (0.1,0.13,0.13) (0.01,0.01,0.01) (0.05,0.07,0.07) (0.1,0.13,0.13) (0.1,0.13,0.13) (0.01,0.01,0.01) 

10 (0.44,0.55,0.55) (0,0,0) (0.22,0.28,0.28) (0.44,0.55,0.55) (0.44,0.55,0.55) (0,0,0) (0.22,0.28,0.28) (0.44,0.55,0.55) (0.44,0.55,0.55) (0,0,0) 
11 (0.85,1.13,1.18) (0.76,0.78,0.78) (0.81,0.96,0.98) (0.78,1.04,1.09) (0.85,1.13,1.18) (0.76,0.78,0.78) (0.81,0.96,0.98) (0.78,1.04,1.09) (0.85,1.13,1.18) (0.76,0.78,0.78) 
12 (0.68,0.95,1.02) (0.05,0.05,0.07) (0.36,0.5,0.54) (0.65,0.91,0.98) (0.68,0.95,1.02) (0.05,0.05,0.07) (0.36,0.5,0.54) (0.65,0.91,0.98) (0.68,0.95,1.02) (0.05,0.05,0.07) 
13 (0.21,0.25,0.25) (0,0,0.04) (0.11,0.12,0.14) (0.21,0.25,0.25) (0.21,0.25,0.25) (0,0,0.04) (0.11,0.12,0.14) (0.21,0.25,0.25) (0.21,0.25,0.25) (0,0,0.04) 
14 (0.37,0.43,0.44) (0,0,0) (0.19,0.22,0.22) (0.37,0.43,0.43) (0.37,0.43,0.44) (0,0,0) (0.19,0.22,0.22) (0.37,0.43,0.43) (0.37,0.43,0.44) (0,0,0) 
15 (0.2,0.2,0.23) (0.09,0.09,0.09) (0.14,0.15,0.16) (0.2,0.2,0.23) (0.2,0.2,0.23) (0.09,0.09,0.09) (0.14,0.15,0.16) (0.2,0.2,0.23) (0.2,0.2,0.23) (0.09,0.09,0.09) 
16 (0.37,0.49,0.52) (0.05,0.06,0.06) (0.21,0.27,0.29) (0.37,0.49,0.52) (0.37,0.49,0.52) (0.05,0.06,0.06) (0.21,0.27,0.29) (0.37,0.49,0.52) (0.37,0.49,0.52) (0.05,0.06,0.06) 
17 (0.99,1.25,1.3) (0.37,0.55,0.55) (0.68,0.9,0.93) (0.98,1.23,1.28) (0.99,1.25,1.3) (0.37,0.55,0.55) (0.68,0.9,0.93) (0.98,1.23,1.28) (0.99,1.25,1.3) (0.37,0.55,0.55) 
18 (0.2,0.22,0.23) (0.04,0.06,0.06) (0.12,0.14,0.14) (0.21,0.22,0.23) (0.2,0.22,0.23) (0.04,0.06,0.06) (0.12,0.14,0.14) (0.21,0.22,0.23) (0.2,0.22,0.23) (0.04,0.06,0.06) 
19 (0.28,0.33,0.33) (0.13,0.15,0.15) (0.21,0.24,0.24) (0.28,0.33,0.33) (0.28,0.33,0.33) (0.13,0.15,0.15) (0.21,0.24,0.24) (0.28,0.33,0.33) (0.28,0.33,0.33) (0.13,0.15,0.15) 
20 (0.15,0.19,0.2) (0.1,0.1,0.1) (0.12,0.15,0.15) (0.15,0.19,0.2) (0.15,0.19,0.2) (0.1,0.1,0.1) (0.12,0.15,0.15) (0.15,0.19,0.2) (0.15,0.19,0.2) (0.1,0.1,0.1) 
21 (0.41,0.41,0.44) (0.05,0.06,0.06) (0.23,0.23,0.25) (0.41,0.41,0.44) (0.41,0.41,0.44) (0.05,0.06,0.06) (0.23,0.23,0.25) (0.41,0.41,0.44) (0.41,0.41,0.44) (0.05,0.06,0.06) 



29 

Branch 
Average  Stage 1 is the leader Stage 2 is the leader Aggregation 

Stage 1 Stage 2 System Stage 1 Stage 2 System Stage 1 Stage 2 System System 
22 (0.28,0.3,0.33) (0,0,0) (0.14,0.15,0.17) (0.28,0.3,0.33) (0.28,0.3,0.33) (0,0,0) (0.14,0.15,0.17) (0.28,0.3,0.33) (0.28,0.3,0.33) (0,0,0) 
23 (0.17,0.18,0.19) (0.08,0.08,0.08) (0.12,0.13,0.14) (0.17,0.18,0.19) (0.17,0.18,0.19) (0.08,0.08,0.08) (0.12,0.13,0.14) (0.17,0.18,0.19) (0.17,0.18,0.19) (0.08,0.08,0.08) 
24 (0.34,0.38,0.38) (0.02,0.03,0.03) (0.18,0.2,0.2) (0.34,0.38,0.38) (0.34,0.38,0.38) (0.02,0.03,0.03) (0.18,0.2,0.2) (0.34,0.38,0.38) (0.34,0.38,0.38) (0.02,0.03,0.03) 
25 (0.18,0.18,0.18) (0.03,0.05,0.05) (0.11,0.12,0.12) (0.18,0.18,0.18) (0.18,0.18,0.18) (0.03,0.05,0.05) (0.11,0.12,0.12) (0.18,0.18,0.18) (0.18,0.18,0.18) (0.03,0.05,0.05) 
26 (0.27,0.32,0.34) (0.13,0.15,0.15) (0.2,0.24,0.25) (0.27,0.32,0.34) (0.27,0.32,0.34) (0.13,0.15,0.15) (0.2,0.24,0.25) (0.27,0.32,0.34) (0.27,0.32,0.34) (0.13,0.15,0.15) 
27 (0.17,0.19,0.24) (0.19,0.21,0.21) (0.18,0.2,0.23) (0.17,0.19,0.24) (0.17,0.19,0.24) (0.19,0.21,0.21) (0.18,0.2,0.23) (0.17,0.19,0.24) (0.17,0.19,0.24) (0.19,0.21,0.21) 
28 (0.21,0.23,0.3) (0.06,0.06,0.06) (0.14,0.15,0.18) (0.21,0.23,0.3) (0.21,0.23,0.3) (0.06,0.06,0.06) (0.14,0.15,0.18) (0.21,0.23,0.3) (0.21,0.23,0.3) (0.06,0.06,0.06) 
29 (0.68,0.71,0.71) (0.15,0.17,0.17) (0.42,0.44,0.44) (0.68,0.71,0.71) (0.68,0.71,0.71) (0.15,0.17,0.17) (0.42,0.44,0.44) (0.68,0.71,0.71) (0.68,0.71,0.71) (0.15,0.17,0.17) 
30 (0.49,0.62,0.96) (0.14,0.16,0.16) (0.32,0.39,0.56) (0.49,0.61,0.95) (0.49,0.62,0.96) (0.14,0.16,0.16) (0.32,0.39,0.56) (0.49,0.61,0.95) (0.49,0.62,0.96) (0.14,0.16,0.16) 
31 (0.31,0.34,0.34) (0.11,0.13,0.13) (0.21,0.23,0.23) (0.31,0.34,0.34) (0.31,0.34,0.34) (0.11,0.13,0.13) (0.21,0.23,0.23) (0.31,0.34,0.34) (0.31,0.34,0.34) (0.11,0.13,0.13) 
32 (0.19,0.22,0.23) (0.04,0.04,0.04) (0.12,0.13,0.13) (0.19,0.22,0.23) (0.19,0.22,0.23) (0.04,0.04,0.04) (0.12,0.13,0.13) (0.19,0.22,0.23) (0.19,0.22,0.23) (0.04,0.04,0.04) 
33 (0.42,0.53,0.58) (0.09,0.1,0.11) (0.26,0.32,0.34) (0.42,0.53,0.58) (0.42,0.53,0.58) (0.09,0.1,0.11) (0.26,0.32,0.34) (0.42,0.53,0.58) (0.42,0.53,0.58) (0.09,0.1,0.11) 
34 (1.24,1.81,1.93) (0.01,0.01,0.19) (0.62,0.91,1.06) (1.22,1.77,1.92) (1.24,1.81,1.93) (0.01,0.01,0.19) (0.62,0.91,1.06) (1.22,1.77,1.92) (1.24,1.81,1.93) (0.01,0.01,0.19) 
35 (1.27,1.47,1.47) (0.26,0.32,0.32) (0.76,0.9,0.9) (1.27,1.47,1.47) (1.27,1.47,1.47) (0.26,0.32,0.32) (0.76,0.9,0.9) (1.27,1.47,1.47) (1.27,1.47,1.47) (0.26,0.32,0.32) 
36 (0.35,0.46,0.48) (0.08,0.13,0.13) (0.22,0.29,0.3) (0.35,0.46,0.48) (0.35,0.46,0.48) (0.08,0.13,0.13) (0.22,0.29,0.3) (0.35,0.46,0.48) (0.35,0.46,0.48) (0.08,0.13,0.13) 
37 (0.41,0.43,0.44) (0.1,0.1,0.1) (0.25,0.26,0.27) (0.41,0.43,0.44) (0.41,0.43,0.44) (0.1,0.1,0.1) (0.25,0.26,0.27) (0.41,0.43,0.44) (0.41,0.43,0.44) (0.1,0.1,0.1) 
38 (0.76,1.1,1.22) (0.6,0.63,0.63) (0.68,0.87,0.93) (0.75,1.08,1.2) (0.76,1.1,1.22) (0.6,0.63,0.63) (0.68,0.87,0.93) (0.75,1.08,1.2) (0.76,1.1,1.22) (0.6,0.63,0.63) 
39 (0.23,0.27,0.27) (0.21,0.23,0.23) (0.22,0.25,0.25) (0.23,0.27,0.27) (0.23,0.27,0.27) (0.21,0.23,0.23) (0.22,0.25,0.25) (0.23,0.27,0.27) (0.23,0.27,0.27) (0.21,0.23,0.23) 
40 (0.67,0.72,0.77) (0.33,0.35,0.35) (0.5,0.54,0.56) (0.96,1.03,1.08) (0.67,0.72,0.77) (0.33,0.35,0.35) (0.5,0.54,0.56) (0.96,1.03,1.08) (0.67,0.72,0.77) (0.33,0.35,0.35) 
41 (0.27,0.33,0.34) (0.07,0.08,0.08) (0.17,0.2,0.21) (0.27,0.33,0.34) (0.27,0.33,0.34) (0.07,0.08,0.08) (0.17,0.2,0.21) (0.27,0.33,0.34) (0.27,0.33,0.34) (0.07,0.08,0.08) 
42 (1.02,1.25,1.27) (0.55,0.6,0.6) (0.78,0.92,0.93) (1.02,1.25,1.27) (1.02,1.25,1.27) (0.55,0.6,0.6) (0.78,0.92,0.93) (1.02,1.25,1.27) (1.02,1.25,1.27) (0.55,0.6,0.6) 
43 (0.45,0.57,0.59) (0.23,0.3,0.3) (0.34,0.43,0.44) (0.5,0.63,0.66) (0.45,0.57,0.59) (0.23,0.3,0.3) (0.34,0.43,0.44) (0.5,0.63,0.66) (0.45,0.57,0.59) (0.23,0.3,0.3) 
44 (0.86,1,1.05) (0.3,0.31,0.31) (0.58,0.66,0.68) (0.86,1,1.05) (0.86,1,1.05) (0.3,0.31,0.31) (0.58,0.66,0.68) (0.86,1,1.05) (0.86,1,1.05) (0.3,0.31,0.31) 
45 (0.46,0.47,0.47) (0.07,0.09,0.09) (0.26,0.28,0.28) (0.46,0.47,0.47) (0.46,0.47,0.47) (0.07,0.09,0.09) (0.26,0.28,0.28) (0.46,0.47,0.47) (0.46,0.47,0.47) (0.07,0.09,0.09) 
46 (0.83,0.85,0.86) (1.05,1.16,1.16) (0.94,1,1.01) (0.83,0.85,0.86) (0.83,0.85,0.86) (1.05,1.16,1.16) (0.94,1,1.01) (0.83,0.85,0.86) (0.83,0.85,0.86) (1.05,1.16,1.16) 
47 (0.33,0.4,0.41) (0.21,0.29,0.29) (0.27,0.35,0.35) (0.33,0.4,0.41) (0.33,0.4,0.41) (0.21,0.29,0.29) (0.27,0.35,0.35) (0.33,0.4,0.41) (0.33,0.4,0.41) (0.21,0.29,0.29) 
48 (0.38,0.67,0.75) (0.15,0.18,0.18) (0.26,0.42,0.46) (0.38,0.68,0.76) (0.38,0.67,0.75) (0.15,0.18,0.18) (0.26,0.42,0.46) (0.38,0.68,0.76) (0.38,0.67,0.75) (0.15,0.18,0.18) 
49 (0.32,0.35,0.35) (0.15,0.16,0.16) (0.24,0.25,0.26) (0.32,0.35,0.35) (0.32,0.35,0.35) (0.15,0.16,0.16) (0.24,0.25,0.26) (0.32,0.35,0.35) (0.32,0.35,0.35) (0.15,0.16,0.16) 
50 (0.42,0.62,0.72) (0.38,0.39,0.39) (0.4,0.5,0.55) (0.41,0.6,0.7) (0.42,0.62,0.72) (0.38,0.39,0.39) (0.4,0.5,0.55) (0.41,0.6,0.7) (0.42,0.62,0.72) (0.38,0.39,0.39) 
51 (0.36,0.43,0.45) (0.11,0.13,0.13) (0.24,0.28,0.29) (0.36,0.43,0.45) (0.36,0.43,0.45) (0.11,0.13,0.13) (0.24,0.28,0.29) (0.36,0.43,0.45) (0.36,0.43,0.45) (0.11,0.13,0.13) 
52 (1.13,1.83,5.42) (0.65,0.69,0.69) (0.89,1.26,3.06) (1.09,1.69,5.53) (1.13,1.83,5.42) (0.65,0.69,0.69) (0.89,1.26,3.06) (1.09,1.69,5.53) (1.13,1.83,5.42) (0.65,0.69,0.69) 
53 (1.01,1.05,1.09) (0.26,4.26,5.56) (0.63,2.66,3.32) (1,1.04,1.08) (1.01,1.05,1.09) (0.26,4.26,5.56) (0.63,2.66,3.32) (1,1.04,1.08) (1.01,1.05,1.09) (0.26,4.26,5.56) 
54 (0.53,0.78,0.84) (0.29,0.6,0.59) (0.41,0.69,0.72) (0.53,0.78,0.84) (0.53,0.78,0.84) (0.29,0.6,0.59) (0.41,0.69,0.72) (0.53,0.78,0.84) (0.53,0.78,0.84) (0.29,0.6,0.59) 
55 (0.54,0.6,0.63) (0.29,0.36,0.36) (0.41,0.48,0.49) (0.54,0.61,0.63) (0.54,0.6,0.63) (0.29,0.36,0.36) (0.41,0.48,0.49) (0.54,0.61,0.63) (0.54,0.6,0.63) (0.29,0.36,0.36) 
56 (0.74,0.82,0.92) (0.24,1.95,1.95) (0.49,1.38,1.43) (0.74,0.82,0.92) (0.74,0.82,0.92) (0.24,1.95,1.95) (0.49,1.38,1.43) (0.74,0.82,0.92) (0.74,0.82,0.92) (0.24,1.95,1.95) 
57 (0.34,0.42,0.44) (0.13,0.15,0.15) (0.23,0.28,0.29) (0.34,0.42,0.44) (0.34,0.42,0.44) (0.13,0.15,0.15) (0.23,0.28,0.29) (0.34,0.42,0.44) (0.34,0.42,0.44) (0.13,0.15,0.15) 
58 (0,0,0.01) (0.2,0.21,0.21) (0.1,0.11,0.11) (0,0,0.01) (0,0,0.01) (0.2,0.21,0.21) (0.1,0.11,0.11) (0,0,0.01) (0,0,0.01) (0.2,0.21,0.21) 
59 (0.41,0.43,0.44) (0.09,0.09,0.09) (0.25,0.26,0.27) (0.41,0.43,0.44) (0.41,0.43,0.44) (0.09,0.09,0.09) (0.25,0.26,0.27) (0.41,0.43,0.44) (0.41,0.43,0.44) (0.09,0.09,0.09) 
60 (0.29,0.37,0.38) (0.11,0.11,0.11) (0.2,0.24,0.25) (0.29,0.37,0.38) (0.29,0.37,0.38) (0.11,0.11,0.11) (0.2,0.24,0.25) (0.29,0.37,0.38) (0.29,0.37,0.38) (0.11,0.11,0.11) 
61 (0.32,0.35,0.51) (0.22,0.26,0.26) (0.27,0.3,0.38) (0.32,0.35,0.51) (0.32,0.35,0.51) (0.22,0.26,0.26) (0.27,0.3,0.38) (0.32,0.35,0.51) (0.32,0.35,0.51) (0.22,0.26,0.26) 
62 (0.3,0.36,0.39) (0.05,0.06,0.06) (0.18,0.21,0.23) (0.3,0.36,0.39) (0.3,0.36,0.39) (0.05,0.06,0.06) (0.18,0.21,0.23) (0.3,0.36,0.39) (0.3,0.36,0.39) (0.05,0.06,0.06) 
63 (0.83,0.85,0.85) (0.37,0.44,0.44) (0.6,0.65,0.65) (0.89,0.92,0.92) (0.83,0.85,0.85) (0.37,0.44,0.44) (0.6,0.65,0.65) (0.89,0.92,0.92) (0.83,0.85,0.85) (0.37,0.44,0.44) 
64 (0.48,0.5,0.52) (0.01,0.01,0.02) (0.25,0.25,0.27) (0.45,0.46,0.5) (0.48,0.5,0.52) (0.01,0.01,0.02) (0.25,0.25,0.27) (0.45,0.46,0.5) (0.48,0.5,0.52) (0.01,0.01,0.02) 
65 (0.41,0.51,0.62) (0.86,0.88,0.88) (0.64,0.7,0.75) (0.41,0.51,0.62) (0.41,0.51,0.62) (0.86,0.88,0.88) (0.64,0.7,0.75) (0.41,0.51,0.62) (0.41,0.51,0.62) (0.86,0.88,0.88) 
66 (0.85,0.95,0.96) (0.23,0.26,0.26) (0.54,0.61,0.61) (0.85,0.95,0.95) (0.85,0.95,0.96) (0.23,0.26,0.26) (0.54,0.61,0.61) (0.85,0.95,0.95) (0.85,0.95,0.96) (0.23,0.26,0.26) 
67 (0.13,0.21,0.22) (0.19,0.22,0.22) (0.16,0.22,0.22) (0.13,0.21,0.22) (0.13,0.21,0.22) (0.19,0.22,0.22) (0.16,0.22,0.22) (0.13,0.21,0.22) (0.13,0.21,0.22) (0.19,0.22,0.22) 
68 (0.21,0.21,0.25) (0,0,0.01) (0.11,0.11,0.13) (0.21,0.21,0.25) (0.21,0.21,0.25) (0,0,0.01) (0.11,0.11,0.13) (0.21,0.21,0.25) (0.21,0.21,0.25) (0,0,0.01) 
69 (0.62,0.79,0.79) (0.25,0.27,0.27) (0.44,0.53,0.53) (0.62,0.79,0.79) (0.62,0.79,0.79) (0.25,0.27,0.27) (0.44,0.53,0.53) (0.62,0.79,0.79) (0.62,0.79,0.79) (0.25,0.27,0.27) 
70 (0.25,0.29,0.29) (0.06,0.07,0.07) (0.15,0.18,0.18) (0.25,0.29,0.29) (0.25,0.29,0.29) (0.06,0.07,0.07) (0.15,0.18,0.18) (0.25,0.29,0.29) (0.25,0.29,0.29) (0.06,0.07,0.07) 
71 (0.68,0.84,0.93) (0.17,0.17,0.17) (0.43,0.51,0.55) (0.68,0.84,0.93) (0.68,0.84,0.93) (0.17,0.17,0.17) (0.43,0.51,0.55) (0.68,0.84,0.93) (0.68,0.84,0.93) (0.17,0.17,0.17) 
72 (0.5,0.6,0.62) (0.23,0.24,0.24) (0.37,0.42,0.43) (0.5,0.6,0.62) (0.5,0.6,0.62) (0.23,0.24,0.24) (0.37,0.42,0.43) (0.5,0.6,0.62) (0.5,0.6,0.62) (0.23,0.24,0.24) 
73 (0.41,0.53,0.62) (0,0,0) (0.21,0.26,0.31) (0.41,0.53,0.62) (0.41,0.53,0.62) (0,0,0) (0.21,0.26,0.31) (0.41,0.53,0.62) (0.41,0.53,0.62) (0,0,0) 
74 (0.35,0.38,0.38) (0.12,0.14,0.14) (0.24,0.26,0.26) (0.35,0.38,0.38) (0.35,0.38,0.38) (0.12,0.14,0.14) (0.24,0.26,0.26) (0.35,0.38,0.38) (0.35,0.38,0.38) (0.12,0.14,0.14) 
75 (0.35,0.48,0.52) (0.07,0.09,0.09) (0.21,0.28,0.3) (0.35,0.48,0.52) (0.35,0.48,0.52) (0.07,0.09,0.09) (0.21,0.28,0.3) (0.35,0.48,0.52) (0.35,0.48,0.52) (0.07,0.09,0.09) 
76 (0.41,0.46,0.54) (0.24,0.24,0.24) (0.32,0.35,0.39) (0.4,0.45,0.54) (0.41,0.46,0.54) (0.24,0.24,0.24) (0.32,0.35,0.39) (0.4,0.45,0.54) (0.41,0.46,0.54) (0.24,0.24,0.24) 
77 (0.26,0.29,0.35) (0.09,0.1,0.1) (0.17,0.2,0.22) (0.26,0.29,0.35) (0.26,0.29,0.35) (0.09,0.1,0.1) (0.17,0.2,0.22) (0.26,0.29,0.35) (0.26,0.29,0.35) (0.09,0.1,0.1) 
78 (0.24,0.3,0.33) (0.18,0.19,0.19) (0.21,0.25,0.26) (0.24,0.3,0.33) (0.24,0.3,0.33) (0.18,0.19,0.19) (0.21,0.25,0.26) (0.24,0.3,0.33) (0.24,0.3,0.33) (0.18,0.19,0.19) 
79 (0.53,0.63,0.64) (0.28,0.28,0.28) (0.41,0.46,0.46) (0.53,0.63,0.64) (0.53,0.63,0.64) (0.28,0.28,0.28) (0.41,0.46,0.46) (0.53,0.63,0.64) (0.53,0.63,0.64) (0.28,0.28,0.28) 
80 (0.51,0.54,0.55) (0.01,0.01,0.01) (0.26,0.27,0.28) (0.51,0.54,0.55) (0.51,0.54,0.55) (0.01,0.01,0.01) (0.26,0.27,0.28) (0.51,0.54,0.55) (0.51,0.54,0.55) (0.01,0.01,0.01) 
81 (0.52,0.58,0.6) (0,0,0.01) (0.26,0.29,0.3) (0.52,0.58,0.6) (0.52,0.58,0.6) (0,0,0.01) (0.26,0.29,0.3) (0.52,0.58,0.6) (0.52,0.58,0.6) (0,0,0.01) 
82 (0,0,0.14) (0.3,0.32,0.32) (0.15,0.16,0.23) (0,0,0.14) (0,0,0.14) (0.3,0.32,0.32) (0.15,0.16,0.23) (0,0,0.14) (0,0,0.14) (0.3,0.32,0.32) 
83 (0.36,0.39,0.39) (0.09,0.11,0.11) (0.23,0.25,0.25) (0.36,0.39,0.39) (0.36,0.39,0.39) (0.09,0.11,0.11) (0.23,0.25,0.25) (0.36,0.39,0.39) (0.36,0.39,0.39) (0.09,0.11,0.11) 
84 (0.27,0.27,0.3) (0.08,0.09,0.09) (0.17,0.18,0.19) (0.27,0.27,0.3) (0.27,0.27,0.3) (0.08,0.09,0.09) (0.17,0.18,0.19) (0.27,0.27,0.3) (0.27,0.27,0.3) (0.08,0.09,0.09) 
85 (0.54,0.58,0.59) (0.36,0.36,0.36) (0.45,0.47,0.48) (0.54,0.58,0.59) (0.54,0.58,0.59) (0.36,0.36,0.36) (0.45,0.47,0.48) (0.54,0.58,0.59) (0.54,0.58,0.59) (0.36,0.36,0.36) 
86 (0.63,0.66,0.66) (0.09,0.11,0.11) (0.36,0.38,0.39) (0.62,0.65,0.65) (0.63,0.66,0.66) (0.09,0.11,0.11) (0.36,0.38,0.39) (0.62,0.65,0.65) (0.63,0.66,0.66) (0.09,0.11,0.11) 
87 (0.44,0.59,0.61) (0.24,0.32,0.32) (0.34,0.45,0.47) (0.44,0.59,0.61) (0.44,0.59,0.61) (0.24,0.32,0.32) (0.34,0.45,0.47) (0.44,0.59,0.61) (0.44,0.59,0.61) (0.24,0.32,0.32) 
88 (0.45,0.47,0.49) (0.17,0.2,0.21) (0.31,0.33,0.35) (0.45,0.47,0.49) (0.45,0.47,0.49) (0.17,0.2,0.21) (0.31,0.33,0.35) (0.45,0.47,0.49) (0.45,0.47,0.49) (0.17,0.2,0.21) 
89 (0.31,0.38,0.42) (0.13,0.13,0.13) (0.22,0.25,0.27) (0.31,0.38,0.42) (0.31,0.38,0.42) (0.13,0.13,0.13) (0.22,0.25,0.27) (0.31,0.38,0.42) (0.31,0.38,0.42) (0.13,0.13,0.13) 
90 (0.4,0.49,0.5) (0.15,0.15,0.15) (0.27,0.32,0.32) (0.4,0.49,0.5) (0.4,0.49,0.5) (0.15,0.15,0.15) (0.27,0.32,0.32) (0.4,0.49,0.5) (0.4,0.49,0.5) (0.15,0.15,0.15) 
91 (1,1.2,1.2) (0.29,0.29,0.29) (0.64,0.74,0.74) (1,1.2,1.2) (1,1.2,1.2) (0.29,0.29,0.29) (0.64,0.74,0.74) (1,1.2,1.2) (1,1.2,1.2) (0.29,0.29,0.29) 
92 (0.78,0.87,0.89) (0,0,0) (0.39,0.44,0.45) (0.78,0.87,0.89) (0.78,0.87,0.89) (0,0,0) (0.39,0.44,0.45) (0.78,0.87,0.89) (0.78,0.87,0.89) (0,0,0) 
93 (0.99,1.18,1.19) (0.27,0.29,0.29) (0.63,0.73,0.74) (0.99,1.18,1.19) (0.99,1.18,1.19) (0.27,0.29,0.29) (0.63,0.73,0.74) (0.99,1.18,1.19) (0.99,1.18,1.19) (0.27,0.29,0.29) 
94 (0.67,0.72,0.78) (0.25,0.3,0.3) (0.46,0.51,0.54) (0.67,0.72,0.78) (0.67,0.72,0.78) (0.25,0.3,0.3) (0.46,0.51,0.54) (0.67,0.72,0.78) (0.67,0.72,0.78) (0.25,0.3,0.3) 
95 (0.36,0.44,0.45) (0.13,0.14,0.14) (0.25,0.29,0.3) (0.36,0.44,0.45) (0.36,0.44,0.45) (0.13,0.14,0.14) (0.25,0.29,0.3) (0.36,0.44,0.45) (0.36,0.44,0.45) (0.13,0.14,0.14) 
96 (1.16,1.52,1.6) (0.17,0.19,0.19) (0.66,0.86,0.9) (1.16,1.52,1.6) (1.16,1.52,1.6) (0.17,0.19,0.19) (0.66,0.86,0.9) (1.16,1.52,1.6) (1.16,1.52,1.6) (0.17,0.19,0.19) 
97 (0.49,0.62,0.62) (0,0,0.06) (0.24,0.31,0.34) (0.49,0.62,0.62) (0.49,0.62,0.62) (0,0,0.06) (0.24,0.31,0.34) (0.49,0.62,0.62) (0.49,0.62,0.62) (0,0,0.06) 
98 (0.47,0.55,0.57) (0.18,0.18,0.18) (0.32,0.36,0.37) (0.47,0.55,0.57) (0.47,0.55,0.57) (0.18,0.18,0.18) (0.32,0.36,0.37) (0.47,0.55,0.57) (0.47,0.55,0.57) (0.18,0.18,0.18) 
99 (1.21,1.23,1.27) (1.15,1.28,1.43) (1.18,1.25,1.35) (0.74,1.22,1.75) (1.21,1.23,1.27) (1.15,1.28,1.43) (1.18,1.25,1.35) (0.74,1.22,1.75) (1.21,1.23,1.27) (1.15,1.28,1.43) 
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Branch 
Average  Stage 1 is the leader Stage 2 is the leader Aggregation 

Stage 1 Stage 2 System Stage 1 Stage 2 System Stage 1 Stage 2 System System 
100 (0.57,0.69,0.69) (0.18,0.22,0.22) (0.37,0.46,0.46) (0.57,0.69,0.69) (0.57,0.69,0.69) (0.18,0.22,0.22) (0.37,0.46,0.46) (0.57,0.69,0.69) (0.57,0.69,0.69) (0.18,0.22,0.22) 
101 (0.75,0.91,0.97) (0.53,0.54,0.54) (0.64,0.73,0.76) (0.74,0.88,0.94) (0.75,0.91,0.97) (0.53,0.54,0.54) (0.64,0.73,0.76) (0.74,0.88,0.94) (0.75,0.91,0.97) (0.53,0.54,0.54) 
102 (0.59,0.71,0.71) (0.17,0.22,0.24) (0.38,0.46,0.47) (0.59,0.71,0.71) (0.59,0.71,0.71) (0.17,0.22,0.24) (0.38,0.46,0.47) (0.59,0.71,0.71) (0.59,0.71,0.71) (0.17,0.22,0.24) 
103 (0.94,1.1,1.11) (0.02,0.02,0.1) (0.48,0.56,0.6) (0.94,1.1,1.11) (0.94,1.1,1.11) (0.02,0.02,0.1) (0.48,0.56,0.6) (0.94,1.1,1.11) (0.94,1.1,1.11) (0.02,0.02,0.1) 
104 (1.65,1.79,1.79) (0.46,0.49,0.49) (1.05,1.14,1.14) (1.65,1.79,1.79) (1.65,1.79,1.79) (0.46,0.49,0.49) (1.05,1.14,1.14) (1.65,1.79,1.79) (1.65,1.79,1.79) (0.46,0.49,0.49) 
105 (1.41,1.64,1.64) (0.23,0.29,0.29) (0.82,0.97,0.97) (1.41,1.64,1.64) (1.41,1.64,1.64) (0.23,0.29,0.29) (0.82,0.97,0.97) (1.41,1.64,1.64) (1.41,1.64,1.64) (0.23,0.29,0.29) 

 

5. Conclusion 

The aim of this study was to use the DEA technique in the banking industry. The problem 

assumptions were considered in such a way that the problem became closer to the real world. This 

is the reason for why we used the fuzzy data. The parameters of the problem were considered as 

TFN and the problem as fully fuzzy. To solve fully fuzzy problems, two different approaches were 

used. Alpha-cuts serve as a powerful tool for extracting crisp information from fuzzy sets, enabling 

precise analysis and control in various engineering applications. By utilizing alpha-cuts, engineers 

can effectively manage uncertainty and confidence level. Another method has high computational 

simplicity. In order that the proposed models do not have the defects of traditional models and to 

differentiate between efficient units, the cross  efficiency technique was used. In order to be able 

to calculate the efficiency of the internal subsystems of each unit in order to make correct 

management decisions, we used network efficiency. A general two-stage network system was 

used, as it was compatible with the banking process. Using the combination of different 

approaches, several models were presented, each of which alone has all the mentioned conditions. 

Until now, due to the lack of a suitable model, it was not possible to measure the efficiency of the 

problem with these conditions. All the proposed models are linear, and some of them are able to 

calculate all the lower, median and upper bounds of the fuzzy number by solving one model. A 

real example from the banking industry was considered to test the proposed models.   

Use of other approaches to fuzzy problems, such as Type II fuzzy, trapezoidal numbers is 

suggested for future research. 
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Appendix: 

Table 4: Fuzzy data of application example 
Branch Personnel ATM POS and IPG Internet banking Deferred loan Expensive deposit Inexpensive deposit Letter of guarantee Loan 

1 (5,5,6) (2,2,2) (145,148,151) (691,727,733) (1746,2562,2735) (1796207,1882071,2062716) (450420,477286,567345) (2999,3550,3550) (215652,241837,257533) 
2 (7,7,7) (3,4,4) (39,42,43) (490,502,527) (7133,7383,7461) (1846229,2089250,2587535) (386418,401008,450358) (21662,36441,92386) (96793,100480,109998) 
3 (5,5,5) (1,1,1) (78,80,97) (609,673,677) (9850,9988,11421) (1804876,1861547,2233344) (780263,864372,1012914) (36236,36941,46184) (74332,75470,145294) 
4 (5,5,5) (1,1,1) (68,95,101) (425,444,454) (4352,4498,4580) (2092562,2519762,4349813) (314611,461404,767946) (1818,2000,6567) (100703,114715,143692) 
5 (5,5,5) (1,1,1) (79,82,87) (521,569,606) (359,853,14522) (675007,882247,894835) (226627,253116,470432) (1650,1850,1850) (130995,141648,166484) 
6 (6,6,6) (5,5,5) (74,74,78) (419,436,460) (778,1010,7577) (1377316,1434120,1556106) (360220,370062,436022) (1063,15873,19053) (177595,193792,240545) 
7 (12,12,12) (5,5,5) (274,296,307) (5173,5782,6136) (186076,188381,197059) (1120218,1678124,1919105) (1069911,1419617,1498300) (51226,57268,62539) (1257440,1320538,1508103) 
8 (5,5,5) (1,1,1) (56,60,62) (351,378,389) (240,250,330) (1152394,1271431,1306157) (358396,447295,477918) (7026,10399,10823) (91503,98582,102049) 
9 (5,5,5) (1,1,1) (114,123,131) (307,364,367) (262,296,523) (754906,756451,757201) (254942,308430,350662) (87,135,135) (180782,194699,198335) 

10 (7,7,7) (3,3,3) (98,112,139) (880,917,949) (482,864,13958) (1708273,2279112,6093922) (718488,883402,897972) (13588,14908,19600) (140021,153950,154734) 
11 (12,12,12) (6,6,6) (85,85,89) (974,999,1015) (9329,237081,259710) (3732626,3897467,4024463) (1624344,2235872,2252227) (175286,207728,247377) (2510768,2573452,2714944) 
12 (5,5,5) (1,1,1) (108,112,114) (549,572,582) (0,8,71) (1578945,1581432,1826515) (1050534,1510770,1584748) (20060,21428,40060) (135115,148534,203244) 
13 (7,7,7) (1,1,1) (66,67,67) (442,468,476) (0,0,114) (1075634,1206996,1549673) (340593,413884,418556) (4295,12843,20892) (64444,72093,101009) 
14 (5,5,5) (1,1,1) (63,67,68) (446,475,486) (87,184,270) (1304398,1313141,1329225) (632132,763077,950990) (156596,161958,180614) (60902,66538,69974) 
15 (5,5,5) (1,1,1) (106,110,111) (443,565,593) (1162,2056,6422) (1381225,1752338,1827967) (484375,500826,579290) (6240,6240,6240) (175792,179050,189221) 
16 (5,5,5) (1,1,1) (136,143,147) (843,903,917) (47864,48250,48925) (1555341,1615784,1767281) (927779,1177250,1351530) (16192,40907,322162) (173181,182850,188261) 
17 (7,7,7) (3,3,3) (123,124,133) (770,789,791) (100789,100894,101436) (2126676,2273410,2302944) (1067964,1510127,1563726) (464230,465398,714078) (1209262,1827910,2228374) 
18 (6,6,6) (2,2,2) (134,134,148) (665,777,794) (756,1627,1811) (1134373,1200020,1231481) (344232,365311,472861) (46227,56722,145726) (78398,110655,136892) 
19 (7,7,7) (4,4,4) (50,53,59) (443,454,498) (755,769,928) (1566475,1676859,2341361) (534632,607285,632619) (61186,94221,139942) (264120,295424,409538) 
20 (6,6,6) (4,4,4) (70,74,74) (466,498,522) (1172,1230,1262) (1764611,1868629,1904220) (371274,470752,690969) (15387,25070,42953) (188031,198932,253533) 
21 (6,6,6) (3,3,3) (83,90,91) (684,728,740) (317,379,490) (1488120,1531250,1664083) (940372,943393,971580) (32791,36002,47794) (105639,107784,154298) 
22 (6,6,6) (2,2,2) (145,147,155) (726,796,805) (692,744,799) (1229475,1286301,1416338) (500909,537682,624653) (8902,9217,19402) (131332,180044,181092) 
23 (6,6,6) (2,2,2) (73,75,83) (657,686,724) (2135,2205,2297) (886027,1034833,1059377) (436095,478861,773382) (14294,34359,83823) (158980,159938,184694) 
24 (6,6,6) (2,2,2) (110,112,113) (807,830,845) (30930,32345,32418) (1392195,1530066,1920991) (557519,608731,801766) (620,620,2620) (80265,109006,117361) 
25 (6,6,6) (1,1,1) (65,69,76) (583,606,613) (5469,5469,5470) (2222210,2381958,2401852) (462538,465678,476977) (20090,20090,20090) (67183,105521,132254) 
26 (6,6,6) (2,2,2) (115,116,119) (526,541,559) (15288,15695,15860) (968493,974140,1042819) (672406,786988,916768) (8016,15633,20449) (260384,300502,587671) 
27 (6,6,6) (1,1,1) (72,85,92) (358,375,392) (12650,12866,12890) (1583648,1959895,2125833) (413745,456350,515639) (5670,6875,21639) (371423,401734,405026) 
28 (6,6,6) (1,1,1) (211,215,224) (691,786,799) (732,46479,56904) (911199,1022935,1244135) (571058,620118,693454) (523,3055,3741) (202647,205959,246027) 
29 (6,6,6) (3,3,3) (134,146,155) (886,957,973) (46018,46094,80289) (2072444,2297643,4364199) (862673,883962,1277777) (105763,108765,175824) (492047,559264,611557) 
30 (10,10,10) (1,1,1) (76,88,154) (383,435,797) (1225,1511,73361) (2479039,3155525,5415538) (606648,762226,1030541) (153419,172813,259520) (287840,311858,792144) 
31 (6,6,6) (2,2,2) (419,444,471) (616,713,721) (384,984,1614) (978212,987237,1436951) (505980,571720,686542) (1167,1740,1975) (213743,256498,327304) 
32 (8,8,8) (2,2,2) (354,367,371) (429,568,591) (67,198,1279) (1133845,1237430,1259326) (476533,545829,671668) (17897,25095,26415) (145664,151176,157969) 
33 (9,9,9) (2,2,2) (551,589,597) (1227,1558,1661) (587,648,1110) (1479792,1563555,1745161) (765428,961377,1191584) (9106,23370,23874) (177723,205630,227827) 
34 (11,11,11) (2,2,2) (868,870,924) (2522,3045,3184) (1723,1998,3243) (2011453,2529782,2785293) (2032472,2974719,3847252) (91768,150917,279652) (761705,977669,1100428) 
35 (11,11,11) (3,3,3) (652,668,711) (2190,2549,2761) (368,598,18382) (1081177,1296126,3356570) (1787986,2040313,2921342) (175633,239008,539644) (521096,645429,752088) 
36 (8,8,8) (2,2,2) (259,275,299) (1378,1524,1564) (948,1153,1228) (2189391,2347153,2417984) (626037,830974,913698) (15626,26387,34190) (167825,249385,329829) 
37 (9,9,9) (3,3,3) (405,470,496) (1233,1538,1606) (331,341,662) (1118041,1502150,1548589) (748156,768673,953713) (600,1623,3623) (181927,191757,243840) 
38 (9,9,9) (3,3,3) (315,339,369) (1597,1797,1890) (1290,3675,6489) (1839678,2018011,2280102) (1153126,1665060,1918861) (125030,915960,986163) (1139883,1203569,1577924) 
39 (7,7,7) (3,3,3) (308,315,322) (508,630,643) (5592,7812,8007) (489731,525972,710189) (434893,504288,589234) (1280,1652,1685) (430019,471289,704722) 
40 (8,8,8) (3,3,3) (431,14034,22200) (1968,2064,2132) (29841,30637,34125) (3173597,3318111,3677921) (1393435,1416409,1504582) (177666,269522,393876) (626074,665882,743381) 
41 (7,7,7) (2,2,2) (439,504,508) (754,1066,1162) (7704,7724,7809) (520985,684751,744870) (494569,589840,684691) (3329,4229,5302) (135819,157598,213272) 
42 (15,15,15) (3,3,3) (476,505,531) (2429,2747,2796) (32475,32533,36220) (3299914,3749248,5400760) (1889276,2401675,2431716) (79637,131324,172149) (1093386,1183417,1215314) 
43 (8,8,8) (2,2,2) (196,202,207) (1156,1301,1406) (19208,19461,31299) (1267300,1347592,1511672) (798816,1018260,1151512) (58701,65095,66067) (433017,558666,625534) 
44 (12,12,12) (4,4,4) (848,852,890) (3035,3443,3565) (10872,12907,13128) (2725370,2734319,2965774) (1481561,1728192,1758943) (62194,108638,110438) (586104,602929,627910) 
45 (8,8,8) (2,2,2) (677,751,766) (943,1223,1350) (36873,37749,39573) (569264,812334,1069924) (692681,709323,755140) (2735,2958,3015) (236310,289303,368073) 
46 (13,13,13) (7,8,8) (468,507,520) (2090,2519,2754) (11993,14955,18454) (1886960,2253739,2301368) (1507359,1531938,1936341) (4293,4335,20348) (1991194,2209729,2309302) 
47 (11,11,11) (2,2,2) (286,329,607) (1075,1206,2045) (5487,5649,6266) (2555548,2880664,2917805) (911578,1088887,1143591) (16059,41436,41564) (407957,556380,682186) 
48 (5,5,5) (2,2,2) (97,101,106) (728,836,838) (525,761,959) (1200986,1201330,1353938) (412802,731309,816449) (424403,870260,898130) (280126,341843,618145) 
49 (6,6,6) (2,2,2) (158,166,169) (698,783,793) (692,1032,1057) (1122699,1271425,1602993) (397610,430994,498901) (44516,47662,62369) (300971,318141,326764) 
50 (5,5,5) (1,1,1) (151,160,164) (714,807,851) (616,741,807) (944077,1003875,1390280) (539968,692776,715566) (276549,522126,568281) (773044,778209,798884) 
51 (7,7,7) (2,2,2) (220,225,238) (1226,1303,1344) (1079,1088,1092) (2006519,2115698,2167109) (648545,779250,862779) (26533,28444,32791) (218711,245727,294002) 
52 (15,15,15) (4,4,4) (351,362,378) (2074,2275,2404) (167246,167609,205443) (6017237,19549383,33950146) (1399994,1729769,1997025) (713302,1006331,1069435) (1235204,1311962,1317250) 
53 (15,16,16) (2,3,3) (155,158,346) (869,938,2229) (54239,56934,60198) (2729106,2895008,3067428) (1907013,1978351,2049483) (188320,321412,333558) (568818,9486557,14142049) 
54 (8,8,8) (4,5,5) (431,495,512) (1764,2073,2124) (1118,1263,2480) (2544270,2782947,2989410) (956442,1415488,2466140) (23570,26756,55407) (555695,1144834,5548393) 
55 (6,6,6) (2,2,2) (401,402,429) (1339,1611,1748) (2190,2206,2804) (1738511,1914425,1952609) (911905,1020898,1145176) (83219,130393,142158) (556836,691089,832721) 
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Branch Personnel ATM POS and IPG Internet banking Deferred loan Expensive deposit Inexpensive deposit Letter of guarantee Loan 
56 (10,10,10) (3,4,4) (820,863,910) (2376,2704,2812) (7892,8763,17310) (2605008,2906851,3272613) (1343808,1471606,1866528) (35747,36814,48316) (450104,3713949,7163291) 
57 (5,5,6) (2,2,3) (351,379,389) (1165,1348,1442) (2245,2420,3804) (1514685,1789442,1902290) (559783,625700,658722) (33235,96606,175622) (238730,282395,344385) 
58 (7,7,7) (2,2,2) (301,305,327) (1076,1238,1269) (904,2119,2272) (1824725,2021913,2038589) (521862,689084,689654) (5295,5389,12786) (388347,409096,409351) 
59 (5,6,6) (2,2,2) (340,342,369) (1039,1188,1189) (562,588,630) (1442746,1632758,1670444) (734629,772131,812032) (12283,20592,32727) (174716,179463,199480) 
60 (6,6,6) (3,3,3) (246,262,262) (960,1056,1086) (2118,2213,2323) (2369044,2468414,2528117) (516561,661267,680942) (27253,36534,92498) (205532,210186,257762) 
61 (9,9,9) (3,3,3) (250,261,264) (948,1071,1082) (591,649,1009) (905670,998429,1067311) (639273,683577,734396) (87517,256056,322050) (410544,485862,618782) 
62 (7,7,7) (2,2,2) (234,236,249) (935,1120,1124) (254,287,436) (1403619,1587088,1702775) (546957,650210,658658) (24442,37400,69742) (188372,220438,258805) 
63 (8,8,8) (3,3,3) (228,785,795) (965,2132,2211) (4568,4911,5388) (1633130,1848927,1858662) (1466372,1502072,1548623) (71042,77759,81419) (708894,852053,1213230) 
64 (7,7,7) (3,3,3) (275,294,294) (1017,1122,1137) (125,494,499) (2734098,2902980,3254069) (536686,536800,599770) (2974,4181,22280) (327901,346027,351750) 
65 (13,14,14) (2,2,2) (246,276,461) (849,985,1928) (4260,14490,22873) (2906762,2970804,3279410) (998977,1244580,1389275) (59355,118315,147702) (1661834,1702005,1731342) 
66 (8,8,8) (3,3,3) (453,492,496) (1828,2048,2048) (15891,16168,17732) (2514002,2611101,3001684) (1078332,1208868,1214230) (132330,169524,206715) (428926,490235,600426) 
67 (11,11,11) (2,2,2) (545,551,574) (1763,2019,2134) (29269,45276,82582) (1511071,1938446,2001451) (947056,1217589,1218561) (162546,266811,410387) (656142,752447,814707) 
68 (6,6,6) (2,2,2) (233,252,257) (1032,1205,1216) (443,464,472) (3176817,3190932,4177447) (498302,653040,673979) (10226,218737,224096) (203391,239238,254728) 
69 (7,7,7) (2,2,2) (206,211,228) (905,964,1026) (5015,5047,5272) (1103674,1186503,1253040) (680825,771159,838418) (273093,380692,599578) (481920,508198,587923) 
70 (5,5,5) (1,1,1) (188,201,219) (819,963,995) (488,779,915) (1044585,1095945,1311681) (388011,497937,540403) (7880,9100,9580) (115178,136557,180532) 
71 (7,7,7) (2,2,4) (247,379,404) (1343,2106,2171) (95723,95852,95855) (2360656,2605332,2939185) (1225628,1522854,1591983) (46259,51689,82919) (572677,574897,613640) 
72 (8,8,8) (2,2,2) (269,279,304) (1476,1676,1691) (827,1411,1602) (1545353,1714049,1804555) (803195,829859,1029728) (120010,221839,453927) (450531,461138,510770) 
73 (7,8,8) (2,2,4) (202,323,342) (940,1661,1680) (3551,3631,3647) (1885358,2097956,2449487) (743427,954820,1209242) (32538,42184,74654) (218266,255742,256334) 
74 (6,6,6) (2,2,2) (191,206,212) (871,968,974) (1256,1567,2081) (1272885,1425996,1840807) (431712,457466,530666) (31776,38249,49258) (234793,267735,313401) 
75 (12,12,12) (3,3,3) (240,259,446) (1221,1316,2308) (244,585,863) (2627144,3178584,3294282) (856876,1166793,1275072) (32511,33239,35742) (246530,309279,368932) 
76 (10,10,10) (2,2,2) (238,263,527) (901,1140,2348) (17664,27155,27734) (2034222,2947722,3228952) (1113302,1250862,1378544) (30361,31425,36733) (457374,471817,501056) 
77 (5,7,7) (2,2,2) (286,286,310) (1093,1241,1319) (119538,124666,129055) (1140770,1323987,1525821) (469070,526148,585479) (15343,26310,58989) (292043,326211,331457) 
78 (6,6,6) (1,1,2) (170,390,420) (659,1669,1671) (1293,2059,4374) (2115766,2518713,2606755) (659780,829658,1001875) (11248,18366,20230) (334438,362967,386566) 
79 (12,13,13) (2,2,2) (464,488,735) (2066,2359,3475) (1148,2319,14428) (2322119,2826443,2853375) (1458673,1728217,2057801) (1103,1715,56082) (525659,528078,540793) 
80 (8,8,8) (2,2,2) (766,812,845) (1533,1837,1994) (1524,1612,2065) (1106736,1266656,1287228) (915503,974176,1010811) (1350,1400,2490) (332711,370160,370380) 
81 (7,7,7) (2,2,2) (817,834,868) (1716,2126,2231) (507,760,3334) (1174117,1179017,1257936) (943447,1051611,1077908) (140,1198,7388) (386481,411677,412932) 
82 (11,11,11) (1,1,1) (330,363,704) (907,1102,2346) (2863,3117,3749) (1114939,1320791,1477238) (1118751,1388721,1456079) (46932,50589,66139) (568876,608191,610636) 
83 (5,5,5) (2,2,2) (235,254,257) (904,1058,1079) (3349,3503,4419) (919513,931214,1085755) (503572,548579,629505) (5786,5786,18520) (180368,210857,211882) 
84 (6,6,6) (2,2,2) (335,338,340) (1025,1164,1219) (4942,5046,6828) (948012,1005071,1140108) (458404,470726,691219) (15511,64943,65290) (148761,172232,182791) 
85 (12,12,12) (2,2,2) (488,551,887) (1430,1758,3305) (9298,9424,12131) (2487423,2555703,2615113) (1467921,1571438,1645579) (17350,19447,26378) (680038,684946,694749) 
86 (8,8,8) (2,2,2) (334,362,363) (1700,1779,1839) (1385,1437,1658) (2229832,2291167,2571066) (790502,828632,1003396) (880,2780,4299) (196842,226600,250793) 
87 (7,7,7) (2,3,3) (316,334,360) (1477,1688,1713) (6835,7521,7546) (1621044,1732280,1838934) (802483,1056794,1057483) (5889,21889,31762) (468036,617178,722092) 
88 (6,6,6) (2,2,3) (331,541,598) (1116,2031,2051) (1366,1565,1638) (2029741,2329329,2410078) (808844,841481,918271) (1942,6212,7452) (363591,437710,491789) 
89 (7,7,7) (2,2,2) (477,479,486) (1448,1659,1716) (7276,16422,29636) (1364779,1713972,1857298) (551188,684980,698104) (966,1695,1745) (240115,240392,257635) 
90 (7,7,7) (2,2,2) (570,610,622) (1782,2057,2143) (6860,8284,9329) (1780117,1891027,1909343) (724506,885221,891214) (1892,2428,2428) (283359,286391,299961) 
91 (13,13,13) (5,5,6) (1197,1362,1411) (1960,2662,2910) (8593,10949,14727) (1253205,1386699,1663463) (1512431,1815564,2087350) (1265,4800,6809) (545451,556743,589072) 
92 (8,8,8) (3,3,3) (1039,1063,1101) (1800,2330,2675) (163,331,413) (986018,1107920,1309899) (1193536,1339672,1697174) (24994,28801,40726) (329535,384590,385867) 
93 (12,12,12) (4,4,4) (876,882,944) (2215,2848,3191) (831,910,1261) (2195075,2361742,2412085) (1785069,2130369,2222879) (26233,26291,51954) (505055,544493,621138) 
94 (9,9,9) (2,2,2) (907,934,960) (2102,2625,2911) (2438,2462,3628) (1822580,1916099,2033982) (1396943,1617464,1715817) (238520,248045,274860) (469149,563138,633883) 
95 (6,6,6) (2,2,4) (634,764,782) (686,1054,1310) (15,16,1557) (918847,1050650,1101744) (647492,789978,881376) (1068,1634,2200) (350121,357720,398738) 
96 (13,13,13) (8,8,9) (1403,1460,1523) (2455,3240,3591) (518,647,814) (2459512,3085910,3131577) (1996051,2619691,2759383) (22987,70792,117671) (320568,375633,488621) 
97 (10,10,10) (4,4,4) (504,554,579) (1155,1411,1561) (37,453,600) (635483,908166,1068786) (737209,942681,1070240) (1060,2060,17746) (161813,230213,273137) 
98 (7,7,7) (3,3,3) (676,685,694) (1300,1513,1660) (30649,30768,33121) (1500256,1653172,1711979) (850575,991108,1060609) (11081,12194,13161) (334157,338220,346524) 
99 (12,12,12) (3,3,3) (838,989,1006) (1367,1801,2092) (277,347,602) (1654423,1731761,2202688) (1856922,1887459,2846529) (7410,313270,340150) (2173365,2424106,2620422) 
100 (8,8,8) (2,2,2) (1101,1282,1290) (1764,2198,2466) (506,536,565) (978554,1129416,1423380) (860263,1053826,1192147) (0,0,2007) (348520,419667,515678) 
101 (14,14,14) (2,2,4) (1008,1071,1582) (2294,2804,4414) (16044,16712,26338) (2256931,2507913,2794207) (2249463,2735525,2767469) (307643,396541,403186) (1002636,1037697,1121001) 
102 (8,8,8) (3,3,3) (593,673,683) (946,1229,1441) (1108,1183,23851) (1050626,1107805,1309773) (805585,987198,1195278) (103687,105384,113118) (381392,500007,588171) 
103 (10,10,10) (2,2,2) (1585,1723,1726) (2470,3346,3690) (1366,2146,2290) (1748803,1906719,2075505) (1484425,1735413,1959897) (25754,36508,83857) (515640,613045,665484) 
104 (17,17,18) (5,5,5) (1505,1513,1590) (2987,4034,4443) (5106,5193,5584) (2479051,2537751,2656007) (2510274,2723934,2868069) (8042,12296,116420) (866208,929824,1062649) 
105 (14,14,14) (4,6,6) (1833,2183,2186) (3116,4221,4960) (51742,63228,63484) (2232198,2480267,2567913) (2141224,2492290,2674099) (14514,18246,28770) (780842,987222,1020182) 
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Table 5: Fuzzy ranking of the stages and the whole system using α-cut approach for α=0.5. 
Branch Average  Stage 1 is the leader Stage 2 is the leader Aggregation 

 Stage 1 Stage 2 System Stage 1 Stage 2 System Stage 1 Stage 2 System System 
1 (5,21,28) (46,54,70) (31,32,36) (5,28,30) (14,46,50) (22,30,36) (5,40,42) (46,52,65) (30,34,36) (1,46,66) 
2 (5,105,105) (1,5,51) (1,105,105) (5,105,105) (3,8,14) (2,105,105) (5,105,105) (1,6,19) (1,105,105) (1,12,102) 
3 (96,100,103) (1,19,80) (65,92,94) (96,102,103) (3,32,78) (64,94,94) (96,98,103) (1,40,82) (64,92,94) (1,60,97) 
4 (75,83,93) (8,68,83) (12,65,78) (74,83,93) (8,14,51) (12,63,78) (75,83,93) (8,47,80) (12,66,78) (1,61,88) 
5 (5,99,102) (29,41,50) (46,93,94) (5,99,101) (14,42,50) (46,93,95) (5,99,101) (24,46,50) (46,91,95) (1,34,100) 
6 (5,84,92) (6,27,48) (40,78,85) (5,84,92) (7,14,48) (40,78,84) (5,85,92) (7,20,48) (40,78,85) (1,23,80) 
7 (5,10,18) (17,88,93) (10,50,58) (5,7,18) (17,93,96) (10,49,58) (5,14,18) (17,85,96) (10,50,58) (7,8,47) 
8 (70,95,97) (13,89,97) (9,99,103) (70,95,97) (13,86,97) (9,99,103) (70,95,97) (13,86,97) (9,99,103) (30,45,101) 
9 (45,73,84) (10,64,78) (62,78,79) (45,73,84) (74,78,78) (63,78,79) (45,74,84) (13,75,78) (64,78,79) (30,75,90) 

10 (62,90,94) (11,40,50) (6,86,87) (62,90,92) (11,14,40) (6,86,86) (62,89,92) (11,35,76) (6,86,86) (25,30,94) 
11 (57,70,92) (29,92,100) (43,80,97) (57,70,92) (29,94,100) (43,80,97) (57,70,92) (29,91,100) (43,80,97) (66,69,72) 
12 (2,2,105) (28,101,104) (2,42,76) (2,2,105) (28,104,104) (2,42,76) (2,2,105) (28,104,104) (2,42,76) (1,59,100) 
13 (5,99,103) (15,103,105) (8,104,104) (5,100,103) (15,104,105) (8,104,104) (5,100,103) (15,105,105) (8,104,104) (4,49,105) 
14 (96,100,102) (1,101,105) (44,102,103) (96,100,102) (3,101,102) (44,102,103) (96,100,102) (1,101,101) (44,102,103) (49,93,96) 
15 (76,77,91) (27,45,47) (26,75,85) (76,77,91) (24,27,67) (26,74,85) (76,77,91) (27,30,54) (26,74,85) (49,71,99) 
16 (69,77,104) (9,86,97) (66,95,100) (69,77,104) (9,84,94) (66,95,100) (68,77,104) (9,94,95) (66,95,100) (43,49,59) 
17 (50,68,101) (58,92,99) (59,69,90) (50,68,101) (58,90,99) (59,68,90) (50,68,101) (58,89,99) (59,69,90) (58,67,95) 
18 (5,14,87) (22,26,63) (17,20,81) (5,14,87) (22,49,67) (17,17,81) (5,14,87) (9,22,51) (17,18,81) (1,33,97) 
19 (58,104,104) (23,66,70) (67,98,102) (58,104,104) (14,70,81) (67,98,102) (58,104,104) (20,70,81) (67,98,102) (68,81,97) 
20 (53,84,93) (4,34,79) (29,77,88) (53,85,93) (3,34,61) (29,77,88) (53,84,93) (4,34,62) (29,77,88) (13,82,97) 
21 (76,90,92) (16,36,85) (11,86,87) (76,90,93) (16,83,85) (11,87,87) (76,90,93) (16,83,85) (11,87,87) (51,92,97) 
22 (5,17,25) (17,37,76) (18,30,42) (5,17,25) (10,38,79) (13,31,44) (5,20,47) (17,37,79) (19,30,44) (3,20,97) 
23 (52,98,98) (24,52,70) (48,91,93) (52,98,98) (14,23,52) (48,91,92) (52,98,102) (25,52,70) (48,93,94) (24,97,98) 
24 (1,89,93) (6,11,84) (3,84,99) (1,89,94) (1,18,85) (1,85,99) (44,91,94) (7,12,84) (4,84,99) (19,93,97) 
25 (5,97,101) (1,29,46) (1,92,95) (5,97,99) (3,14,27) (2,92,93) (1,97,99) (1,28,81) (1,92,92) (17,95,97) 
26 (83,88,94) (16,18,64) (61,83,89) (83,88,94) (14,47,64) (61,83,89) (83,88,94) (19,54,64) (61,83,89) (76,79,97) 
27 (66,75,82) (22,43,70) (35,65,77) (66,75,82) (4,37,42) (35,63,77) (66,76,82) (23,43,65) (35,65,77) (21,46,75) 
28 (68,74,81) (10,90,94) (5,96,98) (68,74,81) (10,85,93) (5,96,98) (68,74,79) (10,93,93) (5,96,98) (39,42,86) 
29 (10,19,99) (8,39,85) (4,49,55) (14,19,99) (10,39,95) (4,50,57) (6,19,99) (9,39,87) (4,49,55) (4,41,67) 
30 (51,69,89) (14,27,66) (40,63,67) (51,69,89) (4,66,67) (40,63,64) (51,69,89) (17,66,79) (40,65,67) (33,70,87) 
31 (1,24,70) (48,51,80) (28,62,79) (1,24,70) (14,54,79) (32,62,79) (5,35,70) (39,55,80) (32,62,79) (33,43,65) 
32 (5,72,85) (40,78,100) (32,80,101) (5,72,85) (40,71,99) (32,80,101) (5,73,85) (40,72,101) (32,80,101) (5,33,76) 
33 (33,45,69) (13,44,75) (16,41,42) (44,45,69) (10,44,75) (33,41,42) (47,50,69) (11,44,76) (21,42,42) (21,33,50) 
34 (65,87,95) (47,56,92) (58,82,94) (65,87,95) (58,67,92) (58,82,94) (65,87,95) (36,59,92) (58,82,94) (64,70,104) 
35 (54,58,91) (12,80,101) (46,53,101) (54,58,91) (14,15,101) (45,53,101) (54,58,91) (15,70,101) (46,53,101) (6,71,102) 
36 (28,33,54) (10,31,71) (16,24,38) (28,30,54) (14,30,76) (22,23,43) (22,40,54) (9,31,77) (17,24,43) (8,35,71) 
37 (5,21,41) (6,54,83) (14,46,50) (30,43,44) (54,67,83) (22,46,50) (5,23,40) (13,54,83) (18,46,50) (5,46,71) 
38 (10,53,98) (25,70,99) (10,44,99) (10,53,98) (14,26,99) (11,44,99) (10,53,98) (29,65,99) (11,44,99) (5,40,105) 
39 (5,102,103) (29,77,87) (87,97,101) (5,102,103) (14,48,87) (87,97,101) (5,102,103) (34,65,87) (87,97,101) (28,78,89) 
40 (1,10,20) (23,33,90) (5,27,52) (1,7,20) (14,33,90) (6,27,51) (1,10,20) (33,54,90) (11,27,51) (5,21,27) 
41 (5,23,47) (9,42,57) (19,26,53) (5,23,45) (44,57,81) (27,36,53) (5,23,35) (27,48,57) (23,27,53) (26,40,57) 
42 (68,75,96) (1,36,69) (61,66,68) (68,75,96) (3,14,69) (61,67,69) (69,75,96) (2,39,69) (61,66,68) (29,61,90) 
43 (4,17,78) (21,31,65) (4,14,60) (4,17,78) (4,65,78) (3,20,60) (4,17,78) (27,65,70) (7,14,60) (21,37,81) 
44 (5,6,7) (23,62,80) (7,10,56) (4,5,7) (6,19,60) (3,6,54) (5,7,10) (20,45,62) (6,10,56) (21,37,52) 
45 (5,49,59) (19,92,92) (14,57,68) (5,21,59) (19,90,95) (14,56,68) (5,44,59) (19,88,95) (14,56,68) (37,50,86) 
46 (5,33,50) (38,59,91) (25,31,91) (5,17,50) (14,22,91) (13,23,91) (5,20,47) (44,45,91) (23,25,91) (8,43,49) 
47 (61,73,81) (35,59,60) (58,72,72) (61,73,81) (14,28,62) (58,71,72) (61,73,79) (33,45,60) (58,72,72) (9,69,89) 
48 (3,65,88) (59,60,94) (2,62,95) (3,65,88) (14,64,94) (2,62,95) (3,65,88) (54,65,94) (2,62,95) (2,68,99) 
49 (4,5,30) (59,69,74) (11,31,72) (4,5,30) (14,69,74) (12,22,72) (4,5,48) (39,67,74) (12,38,72) (27,64,82) 
50 (52,86,90) (29,59,102) (41,81,102) (52,86,90) (14,60,102) (41,81,102) (52,86,90) (24,61,102) (41,81,102) (34,66,101) 
51 (35,40,60) (7,32,72) (15,25,39) (35,42,60) (32,67,73) (25,36,41) (27,32,60) (7,32,74) (15,25,41) (12,53,63) 
52 (1,1,100) (1,10,37) (1,1,20) (1,1,100) (1,3,14) (1,1,20) (1,1,100) (1,3,23) (1,1,20) (60,64,87) 
53 (87,90,101) (2,2,98) (82,91,98) (87,90,101) (2,2,98) (82,91,98) (87,90,101) (1,2,98) (82,91,98) (61,91,94) 
54 (33,35,82) (51,58,104) (31,36,104) (35,39,82) (59,67,104) (22,36,104) (23,32,82) (39,60,104) (26,36,104) (27,45,96) 
55 (14,16,80) (40,47,89) (10,18,89) (14,16,80) (14,53,89) (11,19,89) (10,16,80) (30,54,89) (7,19,89) (11,12,97) 
56 (33,48,53) (3,70,103) (5,31,103) (39,48,53) (5,14,103) (5,22,103) (44,48,53) (4,54,103) (5,34,103) (58,65,68) 
57 (4,5,9) (32,52,55) (6,12,51) (4,5,9) (14,33,55) (5,10,51) (4,5,9) (24,41,55) (4,10,51) (11,12,53) 
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Branch Average  Stage 1 is the leader Stage 2 is the leader Aggregation 
 Stage 1 Stage 2 System Stage 1 Stage 2 System Stage 1 Stage 2 System System 
58 (5,25,33) (36,55,56) (27,34,52) (5,23,25) (14,55,56) (15,33,52) (5,35,35) (56,57,65) (33,34,52) (40,48,53) 
59 (33,35,55) (5,24,80) (13,19,43) (35,39,55) (14,24,80) (19,22,45) (35,35,55) (5,24,80) (13,19,45) (12,33,53) 
60 (5,28,40) (18,21,81) (13,22,44) (5,28,42) (14,18,68) (13,33,39) (5,23,27) (6,18,71) (13,14,39) (12,14,53) 
61 (5,62,89) (32,62,100) (54,84,100) (5,62,89) (14,67,100) (54,84,100) (5,62,89) (27,70,100) (54,84,100) (3,53,72) 
62 (5,21,50) (63,87,99) (49,57,74) (5,23,50) (63,87,98) (48,56,74) (5,23,40) (63,87,98) (48,57,74) (21,22,53) 
63 (8,10,57) (4,51,88) (3,10,88) (7,8,57) (6,14,88) (3,6,88) (8,15,57) (5,39,88) (3,12,88) (31,43,88) 
64 (5,21,48) (30,102,104) (23,65,75) (5,23,44) (31,99,102) (24,66,75) (5,35,40) (30,100,102) (23,65,75) (10,29,36) 
65 (72,74,75) (20,51,83) (64,71,85) (72,75,76) (10,35,83) (66,71,85) (71,72,75) (22,45,83) (63,71,85) (62,71,75) 
66 (5,6,64) (21,40,45) (6,8,38) (5,7,64) (14,38,45) (6,8,38) (5,10,64) (24,36,45) (7,7,38) (32,59,92) 
67 (5,67,71) (47,89,91) (37,90,96) (5,66,71) (47,88,91) (37,90,96) (5,67,71) (47,89,91) (37,90,96) (37,67,92) 
68 (14,21,65) (12,102,102) (7,64,67) (7,21,65) (12,99,103) (7,65,67) (6,21,65) (12,103,103) (7,64,67) (12,30,92) 
69 (66,72,83) (16,51,77) (61,76,77) (66,72,83) (6,17,77) (61,76,77) (66,72,83) (18,45,77) (61,76,77) (73,85,92) 
70 (5,77,79) (14,42,77) (33,69,76) (5,78,79) (14,43,70) (33,70,76) (5,79,79) (12,42,68) (33,69,76) (18,57,92) 
71 (25,46,97) (14,92,95) (21,56,59) (25,45,97) (14,88,92) (21,57,59) (24,44,97) (14,91,92) (21,57,59) (5,7,47) 
72 (11,49,58) (40,70,81) (16,47,81) (11,49,59) (14,66,81) (15,48,81) (11,49,59) (45,69,81) (16,48,81) (16,63,70) 
73 (21,45,79) (36,57,59) (27,34,35) (23,44,79) (14,31,36) (15,24,34) (23,52,79) (36,39,54) (23,30,34) (16,27,55) 
74 (5,21,41) (47,53,61) (22,31,54) (5,30,41) (14,57,61) (22,34,55) (5,32,50) (39,56,61) (26,33,54) (16,21,56) 
75 (48,67,71) (26,88,98) (22,50,100) (44,67,71) (26,88,102) (22,49,100) (40,67,72) (26,88,99) (22,49,100) (16,48,78) 
76 (78,86,94) (25,26,59) (41,74,79) (78,86,94) (25,43,67) (42,75,79) (78,86,94) (25,32,54) (41,75,79) (16,63,74) 
77 (5,17,41) (7,90,96) (4,55,60) (5,17,41) (1,85,97) (2,55,60) (5,32,35) (6,86,97) (3,55,60) (16,27,69) 
78 (28,73,79) (41,51,59) (30,39,72) (28,73,79) (14,41,52) (31,39,71) (47,73,79) (41,53,77) (31,39,73) (16,74,83) 
79 (79,80,81) (7,17,59) (59,70,70) (79,80,81) (9,14,59) (59,70,71) (77,80,81) (8,16,59) (59,70,70) (16,84,85) 
80 (5,28,30) (36,40,73) (23,27,71) (5,28,49) (14,36,73) (25,39,71) (5,19,32) (30,42,73) (22,24,71) (16,44,53) 
81 (44,47,54) (33,40,90) (33,38,90) (30,43,54) (14,34,90) (22,35,90) (5,49,54) (30,38,90) (35,39,90) (16,28,42) 
82 (74,88,95) (27,70,82) (82,83,88) (74,88,95) (14,25,82) (82,83,88) (74,88,95) (26,54,82) (82,83,88) (74,79,91) 
83 (5,17,35) (13,53,59) (21,22,49) (5,23,35) (13,14,53) (15,21,49) (5,23,40) (13,53,54) (21,30,49) (37,46,76) 
84 (5,6,6) (32,34,35) (6,9,28) (5,6,7) (6,30,35) (6,7,28) (5,6,6) (30,35,36) (5,8,28) (12,16,76) 
85 (77,81,84) (15,32,67) (64,71,73) (77,81,84) (14,14,67) (65,69,73) (77,81,84) (14,29,67) (63,71,73) (76,84,92) 
86 (21,35,59) (21,77,82) (16,31,45) (23,35,59) (14,21,62) (15,16,37) (35,35,59) (21,63,77) (16,34,37) (31,56,76) 
87 (21,45,51) (17,51,76) (22,27,74) (30,44,51) (6,16,76) (15,22,74) (23,27,51) (16,45,76) (22,26,74) (10,76,80) 
88 (30,50,56) (36,68,74) (22,47,62) (30,50,56) (14,63,68) (22,47,62) (32,50,56) (30,64,68) (26,47,62) (36,41,76) 
89 (5,21,28) (23,25,44) (18,20,27) (5,21,28) (23,46,67) (15,18,29) (5,23,27) (23,36,50) (18,23,29) (51,76,76) 
90 (5,40,55) (30,38,70) (29,31,38) (5,48,55) (20,37,67) (28,30,36) (1,35,55) (21,38,54) (28,30,31) (42,48,76) 
91 (5,63,64) (40,59,72) (53,57,70) (5,63,64) (14,41,72) (53,57,70) (5,63,64) (45,54,72) (53,57,70) (32,55,76) 
92 (5,55,61) (8,84,93) (45,56,92) (5,55,61) (82,84,93) (46,56,92) (5,55,61) (8,84,93) (45,56,92) (12,41,76) 
93 (28,40,63) (20,73,79) (22,40,80) (28,42,63) (14,72,80) (33,40,80) (18,25,63) (20,73,79) (19,40,80) (35,76,77) 
94 (15,59,71) (32,59,75) (15,48,75) (15,58,71) (29,67,75) (14,47,75) (15,58,71) (37,45,75) (15,47,75) (62,73,76) 
95 (1,20,41) (61,96,96) (37,68,96) (1,17,41) (65,96,96) (38,68,96) (1,23,35) (66,96,96) (38,68,96) (5,76,104) 
96 (16,47,52) (3,51,86) (3,47,48) (16,47,52) (14,51,89) (12,47,50) (16,26,47) (3,51,89) (3,47,50) (12,15,76) 
97 (5,61,63) (14,65,86) (51,55,86) (5,61,63) (10,77,86) (51,55,86) (5,61,63) (13,78,86) (51,55,86) (5,45,76) 
98 (35,40,46) (9,20,47) (15,19,31) (23,35,46) (11,14,20) (15,15,18) (27,42,46) (10,20,70) (15,20,34) (38,38,76) 
99 (55,57,85) (1,10,105) (43,51,105) (56,57,85) (1,12,105) (43,52,105) (56,57,85) (1,11,105) (43,52,105) (62,103,103) 

100 (5,22,40) (19,67,97) (20,24,97) (5,22,30) (78,82,97) (22,26,97) (5,17,22) (18,82,97) (15,26,97) (26,48,52) 
101 (12,64,86) (39,51,71) (17,54,73) (12,64,86) (14,39,71) (16,54,73) (12,64,86) (43,45,71) (17,54,73) (44,65,98) 
102 (3,6,56) (40,43,95) (8,8,93) (3,7,56) (14,45,95) (6,9,93) (3,6,56) (30,49,95) (5,9,93) (10,12,54) 
103 (5,66,67) (49,77,84) (60,63,83) (5,67,67) (14,56,84) (60,63,83) (5,66,67) (58,74,84) (60,63,83) (2,12,60) 
104 (5,13,62) (28,59,85) (13,52,84) (5,13,62) (14,21,85) (13,52,84) (5,13,62) (31,75,85) (13,52,84) (12,53,83) 
105 (5,60,60) (49,87,98) (45,69,89) (5,60,60) (49,92,98) (45,69,89) (5,60,60) (49,94,98) (45,69,89) (12,27,39) 
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Table 6: Fuzzy ranking of the stages and the whole system using Hatami Marbini’s approach [39]. 
Branch Average  Stage 1 is the leader Stage 2 is the leader Aggregation 

 Stage 1 Stage 2 System Stage 1 Stage 2 System Stage 1 Stage 2 System System 
1 (84,84,87) (59,61,62) (80,85,85) (84,85,87) (58,60,62) (81,84,85) (62,66,68) (58,60,62) (58,64,64) (79,81,84) 
2 (88,89,89) (83,87,90) (90,93,93) (88,89,89) (84,87,90) (92,93,93) (97,97,97) (85,88,90) (98,99,100) (102,102,103) 
3 (68,76,77) (88,89,92) (78,86,86) (68,76,77) (87,89,92) (78,86,86) (58,60,65) (88,91,94) (66,67,69) (64,69,70) 
4 (55,59,61) (82,84,86) (63,67,73) (54,59,61) (83,85,86) (62,66,73) (73,74,79) (82,86,86) (75,77,87) (92,93,98) 
5 (103,103,104) (77,77,79) (103,104,104) (103,103,104) (77,77,79) (103,104,104) (101,102,103) (78,78,79) (100,101,101) (101,101,101) 
6 (98,99,101) (66,67,68) (95,97,98) (98,99,101) (65,66,68) (95,97,99) (68,75,75) (66,67,69) (70,72,74) (95,99,99) 
7 (24,24,30) (11,15,15) (21,22,22) (25,26,30) (11,15,15) (23,23,23) (35,35,41) (11,15,15) (26,27,29) (24,24,27) 
8 (100,100,101) (94,96,98) (103,103,104) (100,100,101) (96,96,98) (103,103,104) (82,84,86) (97,98,99) (93,94,94) (97,97,98) 
9 (102,102,103) (93,93,97) (105,105,105) (102,102,103) (95,95,96) (105,105,105) (103,104,105) (94,95,97) (105,105,105) (99,100,100) 

10 (45,48,49) (104,104,105) (59,61,66) (45,48,49) (102,102,103) (58,61,65) (39,48,51) (101,102,103) (53,58,64) (61,62,63) 
11 (12,13,16) (4,6,6) (6,8,8) (14,15,18) (4,6,6) (7,9,9) (20,21,22) (4,6,6) (10,12,14) (9,10,17) 
12 (17,18,25) (81,85,86) (29,30,39) (18,20,27) (81,90,91) (31,32,41) (26,26,37) (83,83,84) (39,39,50) (17,17,22) 
13 (88,90,91) (93,100,100) (96,99,99) (88,90,91) (93,97,97) (97,98,99) (96,99,99) (96,96,96) (102,102,103) (104,104,105) 
14 (60,62,67) (98,99,101) (78,79,84) (60,64,67) (101,101,101) (78,79,85) (77,78,80) (100,100,102) (90,90,93) (60,61,63) 
15 (93,93,95) (67,70,72) (90,92,92) (93,94,95) (66,69,72) (90,91,92) (75,79,79) (67,70,72) (77,79,80) (86,89,90) 
16 (52,52,59) (82,84,88) (58,60,69) (51,52,59) (83,85,88) (57,60,68) (69,70,74) (83,86,88) (73,75,82) (37,39,43) 
17 (7,8,12) (11,11,13) (10,11,11) (8,8,11) (11,11,13) (10,11,12) (15,16,19) (11,11,13) (14,15,15) (6,8,9) 
18 (92,92,95) (81,85,86) (95,96,97) (91,92,93) (82,85,86) (95,95,96) (76,81,83) (84,85,87) (86,88,89) (89,90,91) 
19 (78,78,83) (54,54,55) (73,74,76) (78,78,83) (52,54,56) (72,74,76) (82,92,92) (53,54,56) (76,85,88) (73,82,85) 
20 (96,97,98) (62,66,67) (93,94,95) (96,97,98) (62,65,67) (93,94,96) (59,63,65) (62,65,68) (59,62,66) (91,92,94) 
21 (54,64,66) (80,83,87) (63,74,77) (54,64,66) (82,84,87) (61,74,76) (54,64,64) (82,85,87) (57,67,68) (50,58,59) 
22 (79,81,82) (104,105,105) (91,91,91) (79,81,82) (104,104,104) (90,91,91) (87,88,89) (105,105,105) (95,96,97) (71,76,79) 
23 (97,98,99) (72,75,77) (94,96,98) (97,98,99) (71,75,77) (94,96,98) (83,85,86) (72,75,77) (83,86,88) (93,94,95) 
24 (68,71,75) (90,90,94) (79,82,87) (68,71,75) (90,91,94) (79,82,87) (84,86,90) (94,95,95) (91,93,95) (80,81,83) 
25 (95,99,100) (85,89,89) (100,101,101) (95,99,100) (86,89,89) (100,100,101) (95,98,100) (87,89,92) (98,99,100) (92,96,97) 
26 (78,80,81) (51,52,53) (72,75,76) (78,80,81) (51,52,53) (73,74,76) (78,80,81) (50,52,53) (71,71,72) (66,67,69) 
27 (92,96,97) (39,41,42) (81,81,83) (92,96,97) (38,40,41) (80,81,83) (55,56,57) (39,40,42) (49,50,51) (91,93,94) 
28 (86,89,90) (78,80,84) (90,92,94) (86,89,90) (79,81,84) (90,92,94) (94,98,99) (79,81,84) (98,99,101) (84,86,87) 
29 (23,30,33) (48,48,49) (29,37,41) (24,30,32) (48,48,49) (29,38,41) (35,42,51) (47,48,49) (38,44,46) (29,42,43) 
30 (19,38,40) (49,51,51) (26,42,44) (20,38,41) (50,51,51) (27,42,44) (27,60,64) (49,51,51) (32,54,55) (48,53,56) 
31 (73,76,80) (57,59,61) (71,76,77) (73,76,80) (57,59,59) (71,75,77) (90,91,91) (57,59,60) (85,86,87) (69,72,75) 
32 (91,94,94) (87,88,91) (97,98,99) (92,94,95) (88,88,91) (97,98,99) (100,101,101) (89,90,92) (102,103,103) (87,87,88) 
33 (47,48,49) (65,66,69) (49,49,52) (47,48,49) (64,66,68) (49,49,53) (57,59,60) (66,67,70) (59,59,62) (45,45,47) 
34 (2,2,4) (45,94,96) (6,10,17) (2,2,4) (43,93,94) (6,11,19) (4,5,9) (41,93,93) (10,13,21) (1,1,3) 
35 (3,6,6) (20,20,23) (8,12,13) (3,6,7) (20,20,23) (8,10,13) (6,7,8) (20,21,23) (12,14,17) (5,6,7) 
36 (58,58,67) (58,60,71) (53,55,67) (57,58,67) (56,58,70) (53,55,66) (57,58,61) (58,58,71) (56,57,63) (52,52,58) 
37 (51,64,65) (63,68,69) (54,64,64) (50,63,65) (63,67,69) (54,63,64) (38,40,44) (64,68,70) (45,49,51) (48,56,58) 
38 (10,14,20) (6,8,8) (9,12,13) (10,13,20) (6,8,8) (9,12,13) (18,19,29) (6,8,8) (15,16,18) (13,18,23) 
39 (86,87,88) (36,36,37) (65,70,71) (86,87,88) (36,37,37) (64,69,70) (95,96,96) (36,36,37) (80,82,85) (88,89,90) 
40 (27,29,30) (15,19,19) (22,25,25) (12,16,16) (15,19,19) (12,20,20) (1,1,3) (15,19,19) (1,2,4) (10,16,19) 
41 (79,79,80) (75,76,78) (81,84,86) (79,79,80) (75,76,78) (81,84,86) (72,73,74) (76,76,78) (72,74,78) (71,72,74) 
42 (7,8,9) (7,9,10) (7,9,10) (7,7,9) (7,10,10) (6,8,10) (2,38,45) (7,10,10) (3,24,24) (9,11,11) 
43 (44,45,46) (24,24,32) (39,40,41) (36,36,40) (24,24,32) (34,35,38) (27,28,31) (24,24,32) (28,29,31) (33,34,37) 
44 (14,16,16) (16,23,23) (19,20,20) (15,17,17) (16,23,23) (20,22,22) (7,8,9) (16,23,23) (11,17,19) (15,16,16) 
45 (44,56,60) (73,74,76) (49,58,60) (44,55,60) (73,74,76) (51,57,60) (66,73,76) (73,75,76) (69,73,78) (53,59,60) 
46 (17,22,25) (2,4,4) (3,6,7) (17,23,27) (1,3,4) (2,6,7) (8,9,11) (2,4,4) (3,6,7) (13,20,21) 
47 (67,70,70) (28,28,35) (46,46,47) (67,70,70) (28,28,35) (46,46,47) (41,43,46) (28,28,35) (37,39,40) (54,55,56) 
48 (31,33,58) (46,47,50) (36,40,51) (31,33,58) (46,47,50) (36,40,50) (42,49,72) (46,47,50) (42,45,65) (29,31,59) 
49 (72,74,76) (47,50,50) (61,67,70) (72,74,76) (47,49,50) (57,66,69) (89,89,92) (49,51,52) (76,81,84) (83,83,85) 
50 (32,36,50) (10,16,16) (28,29,33) (34,41,53) (10,16,16) (28,29,33) (49,55,71) (10,16,16) (34,38,40) (27,29,44) 
51 (61,62,63) (58,58,60) (57,59,60) (61,62,63) (57,58,60) (56,58,59) (42,47,50) (56,57,59) (44,47,50) (55,55,57) 
52 (1,1,7) (5,7,7) (2,3,4) (1,3,6) (5,7,7) (2,3,4) (1,2,5) (5,7,7) (2,4,5) (4,4,6) 
53 (9,15,15) (1,1,24) (1,1,15) (8,14,15) (1,1,25) (1,1,17) (16,21,22) (1,1,25) (1,1,22) (8,13,14) 
54 (27,27,36) (9,10,18) (19,19,31) (28,28,36) (9,9,19) (19,19,31) (10,12,15) (9,9,19) (11,12,19) (23,23,28) 
55 (34,38,40) (17,17,19) (30,31,32) (34,39,39) (17,17,18) (30,30,32) (30,34,37) (17,17,18) (26,29,30) (33,38,38) 
56 (22,22,25) (2,2,29) (2,3,23) (21,24,26) (2,2,29) (2,4,24) (10,12,12) (2,2,29) (3,5,13) (10,11,15) 
57 (63,65,69) (52,53,56) (56,57,62) (63,65,69) (53,54,55) (55,56,60) (45,46,47) (53,55,55) (46,47,49) (60,61,62) 
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Branch Average  Stage 1 is the leader Stage 2 is the leader Aggregation 
 Stage 1 Stage 2 System Stage 1 Stage 2 System Stage 1 Stage 2 System System 
58 (104,104,105) (37,40,40) (102,102,102) (104,104,105) (39,42,42) (102,102,102) (66,67,68) (37,41,43) (54,55,58) (62,64,68) 
59 (55,63,66) (68,71,73) (55,66,66) (55,62,66) (67,70,73) (55,65,65) (50,58,61) (68,71,73) (53,60,62) (52,54,57) 
60 (72,73,77) (60,63,65) (74,75,77) (72,73,77) (60,63,65) (73,75,77) (43,44,48) (60,64,65) (47,51,52) (68,71,75) 
61 (55,71,75) (33,33,34) (45,48,51) (54,71,75) (33,33,34) (45,49,51) (72,88,90) (33,33,34) (56,67,68) (57,73,77) 
62 (71,73,75) (79,81,83) (80,80,82) (71,73,75) (80,81,82) (80,80,82) (87,87,91) (80,81,81) (90,91,92) (63,65,66) 
63 (18,21,26) (12,14,14) (18,21,21) (14,19,23) (12,14,14) (16,21,21) (11,11,14) (12,14,14) (9,16,18) (18,22,22) 
64 (42,51,54) (92,92,95) (56,65,68) (45,56,58) (99,100,100) (63,71,77) (65,70,71) (97,98,98) (73,82,83) (67,75,78) 
65 (41,50,52) (3,5,5) (14,16,18) (42,50,51) (3,5,5) (14,15,18) (18,18,20) (3,5,5) (6,9,11) (33,44,45) 
66 (15,17,20) (32,32,33) (20,23,23) (16,18,19) (32,32,33) (21,24,25) (21,24,28) (32,32,33) (25,28,30) (24,27,28) 
67 (94,96,101) (37,38,38) (78,82,87) (94,96,101) (37,38,38) (78,82,87) (102,103,104) (37,38,38) (89,91,96) (95,96,100) 
68 (90,91,93) (96,101,102) (100,100,101) (90,91,93) (97,104,104) (100,101,101) (98,100,102) (100,103,103) (104,104,104) (66,68,74) 
69 (26,28,29) (25,31,31) (26,27,31) (27,29,29) (24,31,31) (26,27,30) (37,40,41) (24,31,31) (34,35,38) (28,30,30) 
70 (83,85,87) (78,79,80) (87,88,89) (83,84,87) (78,80,80) (87,88,89) (93,94,95) (79,80,80) (96,97,97) (78,81,88) 
71 (21,23,24) (43,47,48) (27,28,28) (22,24,25) (44,47,48) (26,27,28) (30,33,36) (43,47,48) (33,36,37) (20,20,21) 
72 (39,39,42) (30,35,36) (37,41,42) (39,40,43) (30,35,36) (37,41,42) (32,32,36) (30,35,36) (32,32,35) (38,40,41) 
73 (39,49,53) (101,102,103) (52,62,75) (40,49,52) (103,103,105) (52,61,75) (45,51,56) (99,99,101) (60,61,68) (43,44,46) 
74 (66,69,74) (55,57,57) (59,65,68) (66,69,74) (55,56,57) (58,64,67) (83,85,85) (55,56,57) (75,78,81) (78,79,82) 
75 (53,54,65) (74,75,76) (53,55,70) (53,53,65) (74,75,76) (54,54,70) (69,71,82) (74,75,77) (70,70,84) (46,47,54) 
76 (51,56,59) (28,34,34) (43,43,45) (51,56,59) (28,34,35) (43,43,45) (23,23,23) (28,34,34) (25,25,27) (41,48,49) 
77 (77,83,84) (69,70,70) (83,83,84) (77,83,84) (68,69,70) (83,83,84) (93,93,94) (69,69,71) (92,94,95) (74,77,77) 
78 (81,82,86) (42,44,44) (69,72,72) (81,82,86) (43,44,45) (68,71,72) (67,67,69) (42,44,45) (56,57,61) (70,72,76) 
79 (35,35,37) (21,30,30) (32,35,37) (35,35,38) (21,30,30) (32,36,38) (31,31,34) (21,30,30) (28,31,31) (26,26,26) 
80 (38,47,50) (95,95,99) (53,61,62) (38,47,50) (93,94,99) (52,59,59) (55,62,63) (89,90,91) (61,66,69) (32,41,42) 
81 (37,42,44) (97,97,100) (50,52,54) (37,43,45) (92,92,95) (48,52,53) (52,54,56) (91,92,93) (60,63,65) (31,35,36) 
82 (102,104,104) (17,21,21) (79,89,89) (102,104,104) (17,22,22) (79,89,89) (104,105,105) (17,22,22) (83,89,92) (102,105,105) 
83 (62,68,72) (62,64,64) (64,71,73) (62,68,72) (62,64,64) (62,70,72) (80,84,88) (62,64,65) (79,84,87) (70,73,76) 
84 (82,85,85) (72,73,74) (85,88,88) (82,85,85) (72,72,74) (85,88,88) (70,76,77) (72,73,74) (71,76,79) (80,84,86) 
85 (33,43,45) (14,18,18) (26,32,33) (33,44,46) (14,18,18) (26,33,34) (20,22,24) (14,18,18) (16,22,24) (25,30,31) 
86 (28,34,36) (63,64,65) (38,43,44) (28,34,37) (61,61,63) (39,43,44) (39,52,54) (63,63,63) (48,53,55) (40,51,53) 
87 (41,43,47) (22,22,27) (35,36,40) (42,44,47) (21,21,27) (37,37,40) (27,28,29) (20,21,27) (26,27,30) (36,37,42) 
88 (46,57,57) (41,42,45) (45,47,48) (46,56,57) (40,41,45) (45,47,48) (53,61,62) (40,42,44) (46,52,54) (39,50,51) 
89 (69,70,74) (55,59,61) (63,68,69) (69,70,74) (54,59,61) (63,67,68) (43,44,49) (54,59,61) (48,48,52) (64,65,65) 
90 (53,56,57) (49,53,54) (47,48,51) (52,55,57) (49,52,53) (47,48,51) (33,36,38) (48,52,54) (36,40,41) (49,50,51) 
91 (10,10,11) (20,27,27) (12,15,17) (9,10,11) (20,27,27) (13,15,16) (17,17,19) (20,27,27) (20,20,22) (12,12,12) 
92 (19,20,23) (102,103,103) (34,38,39) (19,22,25) (99,100,102) (34,39,40) (25,29,32) (104,104,104) (41,43,45) (21,25,25) 
93 (11,11,12) (22,29,29) (16,16,18) (10,11,12) (22,29,29) (16,18,18) (13,14,16) (22,29,29) (17,19,20) (7,7,8) 
94 (26,28,29) (25,25,26) (25,27,30) (26,29,30) (25,25,26) (25,28,29) (34,39,40) (25,25,26) (34,35,36) (67,82,85) 
95 (60,61,64) (52,56,56) (54,56,57) (60,61,64) (71,78,79) (62,67,69) (77,78,81) (66,74,77) (77,80,81) (103,103,104) 
96 (5,5,6) (43,43,46) (11,14,14) (5,5,6) (43,44,46) (11,14,14) (2,3,4) (43,44,46) (7,7,8) (3,3,4) 
97 (37,40,41) (82,98,99) (50,50,58) (37,41,42) (83,98,98) (50,50,56) (53,59,63) (82,101,102) (63,65,74) (46,47,49) 
98 (43,46,48) (41,45,46) (42,44,46) (43,46,48) (42,45,46) (42,44,46) (26,30,33) (41,45,46) (33,33,37) (36,39,40) 
99 (5,8,9) (1,3,3) (1,4,4) (4,9,22) (2,3,4) (3,3,4) (10,13,14) (1,3,3) (2,5,6) (80,96,98) 

100 (32,32,35) (39,39,40) (34,36,38) (32,32,35) (39,39,40) (35,36,39) (48,50,53) (39,39,40) (42,43,44) (34,35,35) 
101 (18,19,21) (8,12,12) (13,15,17) (21,21,23) (8,12,12) (15,17,17) (24,25,25) (8,12,12) (18,21,21) (18,19,19) 
102 (31,31,34) (35,38,44) (33,34,35) (31,31,33) (34,36,41) (31,33,35) (46,47,52) (35,38,45) (41,42,43) (32,32,34) 
103 (13,13,14) (71,91,91) (24,24,24) (12,13,13) (55,71,73) (22,24,25) (13,15,17) (50,61,61) (23,23,23) (14,14,15) 
104 (1,3,3) (9,13,13) (2,5,5) (1,1,3) (9,13,13) (1,5,5) (3,5,6) (9,13,13) (4,8,9) (1,2,2) 
105 (2,4,4) (26,26,31) (5,7,9) (2,4,5) (26,26,31) (5,7,8) (4,6,7) (26,26,31) (8,10,13) (2,5,5) 

 


