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INTRODUCTION 

   Integro-differential equations have emerged as 

a powerful tool for describing complex 

phenomena over recent decades (Alawneh et al., 

2010; Ahmad et al., 2021; Bakirova et al., 2021). 

These equations have found widespread 

applications in diverse fields, including physics, 

chemical kinetics, heat transfer, biological 

sciences, and viscoelasticity (MacCamy, 1977; 

Indiaminov et al., 2020; Durdiev & Rakhmonov, 

2020; Abro et al., 2023). Various numerical 

methods have been developed to solve these 

equations, with notable approaches including 

Chebyshev collocation (Zeb et al., 2021), 

Chebyshev pseudospectral methods (Sunthrayuth 

et al., 2021), hat functions (Mohammed & 

Khudair, 2023), and Haar wavelets (Amin et al., 

2021; Gürbüz, 2022). 

The concept of variable-order fractional 

operators, also known as nonlocal variable-order 

operators, was first introduced by Samko and 

Ross (1993). These nonlocal operators are 

distinguished by their ability to preserve memory 

hereditary characteristics in dynamical systems. 

While fixed-order nonlocal operators characterize 

system memory using a uniform template, 

variable-order operators offer the flexibility to 

represent memory effects with varying templates. 

This has led to extensive research in both 

differential and integro-differential equations 

incorporating nonlocal operators of fixed and 

variable orders (Moghaddam & Machado, 2017; 

Mahdy, 2018; Mostaghim et al., 2018; Tuan et al., 

2020; Amin et al., 2023). 
We study the nonlocal variable-order weakly singular 

integro-differential equation (NVOWSIDE), which 

takes the form : 

 

( )

0, ( )0

( )
( ) = ( , ( )) ( ) ,

( )

0 < ( ) < 1,

t
v t

t t

u
u t Q t u t P t d

t

t











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 (1) 

 with initial conditions : 

 
( ) (0) = , = 0,1, , 1,w

wu u w q  (2) 

where q  is a positive integer and the solution function 

( )u t  is assumed to possess continuous derivatives up 

to order ( 1)q   .The function Q  is defined as a 

jointly continuous mapping from   to  ,where 

  denotes the interval [0, ]T  .Additionally, ( )P t  

represents a known continuous function on  . In this 

formulation, we utilize Variable-Order (VO) nonlocal 

operators, which were originally introduced by Caputo 

(1967) and subsequently expanded upon in Caputo 

(1969). These operators are characterized as follows: 

Definition 1.  The VO nonlocal derivative is stated as  
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 and the VO nonlocal integral is stated as  
( ) 1
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( ( )) > 0,

t
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t
u t u d
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
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where ,t R   and ( )   denotes the Gamma 

function.  

This research advances the field of numerical 

methods for NVOWSIDEs through three 

significant contributions. First, the study 

introduces novel numerical techniques that 

demonstrate enhanced computational accuracy 

and improved convergence order compared to 

current methodological approaches. Second, the 

research comprehensively examines the impact of 

different fractional orders on the mathematical 

modeling and solution of these complex 

differential equations. Third, the work 

systematically identifies and determines the 

optimal fractional orders that maximize 

computational efficiency and precision in 

NVOWSIDEs, thereby providing a robust 

methodological framework for researchers and 

practitioners working in this specialized domain. 

The remainder of this paper is organized as 

follows. In Section 2, we present a novel and 

effective methodology for discretizing nonlocal 

operators through the application of integro spline 

quasi interpolation techniques. Section 3 serves 

two main purposes: first, we demonstrate the 

process of determining optimal Variable-orders 

through detailed analysis of two representative 

functions; second, we thoroughly investigate how 
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our proposed algorithms can be effectively 

applied to approximate NVOWSIDEs. Finally, 

Section 4 synthesizes our key findings, discusses 

the implications of our research, and presents our 

concluding remarks. 

THEORETICAL RESULTS 

   In this section, we present a numerical approach 

to solve NVOWSIDE (1). For this purpose, let us 

consider a discrete time interval   where 

=mt m  for = 0,1,..,m M .  Here,   represents 

the uniform step size, and h  denotes the size of 

each subinterval. The values of m  and M  are 

positive integers. 

We define ( )t  as a quadratic polynomial on each 

subinterval 1[ , ]j jt t   where

0 10 = < < < =mt t t T . Specifically, ( )t  is 

referred to as an integro quadratic spline quasi-

interpolant (IntQuaSpline-QI) function, 

constructed with respect to the given mesh points

0 1= [ , , , ]mt t t t . Assuming that lJ  represents the 

integral of ( )u t  over each subinterval 1[ , ]l lt t  ,  we 

can express this relationship as follows : 
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 consequently, l  is solely determined by the 

integral values over the interval 3[ , ]l lt t  . 

Corollary 1 (Wu et al., 2020). [Assume
3( ) ( )u t C   ,hence

( ) ( ) 3( ) ( ) = ( ), = 0,1.n n n

t tt u t n 

    (8) 

Corollary 2 (Wu et al., 2018). Assume =
T

M
  , 

  is divided to m  uniform sub-intervals and

( ) ( )u t C  ,  we have  
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For the time points mt  , where =1,..., 1m M   , we 
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For each = 0,1, , 1l m ,  we utilize an 

IntQuaSpline-QI function ( )t  with mesh points 

at lt  to approximate the function ( )u t  ,resulting in 

the expressions: 
1
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By substituting Eq. (14) into Eq. (11), we obtain:  
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Consequently, we derive the following 

propositions : 

Proposition 1.  Assume that 
4( ) ( )qu t C    be a 

function, 1< ( )q t q   .The discretization of 

the nonlocal derivative can be stated from the 

IntQuaSpline-QI approximation as shown below  
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Proposition 3.  Let 3( ) ( )qu t C    be a function, 

1< ( )q t q  , and
( 3) ( )q

t u t

   ,  where

> 0  .Under these assumptions, the truncated 

error of presented algorithm is bounded, 

satisfying the following inequality : 
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( ( ))
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t
d
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t
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


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 
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

 

 

 
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









 



 

 





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( )
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( )
( ) 41

( ( ) 1)

= .
( ( ) 1)

t
m

m

q t
m

q t
m

m

q t

m

q t


 




  




  

  

Proposition 5.  Let 3( ) ( )u t C   be a function, 

and
3 ( )t u t    , where > 0 . Under these 

assumptions, the truncated error of presented 

algorithm is bounded, satisfying the following 

inequality : 

 ( ) ( )

0, 0,

1 ( )
4 ( )

= [ ( )] [ ( )]

(23)

.
1 ( )

t t
v v

t tm m m
approx

t
m

t
m

m

AE u t u t

m

t

 













 


 

Proof. Suppose ( )t  is an IntQuaSpline-QI 

function that approximates ( )u t  within the 

subinterval 1[ , ]l lt t    ,where = 0,1,..., 1l m  .

For an arbitrary value 1( , )l l lt t   , we can 

establish the following relationship : 

 

3
3( ) = ( ) ( ) = ( ),

12
t lt u t t u  


 

 
thus 
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 ( ) ( )
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( ) ( )
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( )

0

31
1 ( ) 3
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= ( ) ( )
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








 

  
 
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Proposition 6.  Let 
4

1( ) ( )u t C   be a function 

defined on the interval 1 2 2= [ , ]Mt t    .Here, 

( ( )) > 0Re t and
4

1( )t u t     ,where 1 > 0 . 

Under these conditions, the truncated error of 

presented algorithm is bounded and can be 

expressed as follows : 

 

 ( ) ( )

0, 0,

1 ( )
5 ( )1

[ ( )] [ ( )]

(24)

,
1 ( )

t t
v v

t t
m m

approx

t
m

t
m

m

u t u t

m

t

 













 


 

 where = 2,3, , 3m M   . 

Proof. Consider 
1
( )t  as an IntQuaSpline-QI 

function utilized to approximate ( )u t  within the 

subinterval 1[ , ]l lt t    , where = 2,3,...,l m .  

Hence, for any arbitrary value 1( , )l l lt t  ,the 

following relation holds : 
2 2

41

1 1

( ) ( )
( ) = ( ) ( ) = ( ),

30

l l
t l

t t t t
t u t t u 

 

 
 

 
Hence 

 ( ) ( )

0, 0,

( ) ( )

0, 0,
1

( )
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2 21
1 ( ) 41

=0

[ ( )] [ ( )]

= [ ( )] [ ( )]

= ( ) ( )
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m m
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m t l
t
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u t u t

u t t

t d

t t
t u d

 

 







  

 
  












  









 
 


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1 ( ) 1 ( )
5 ( )41 1= .

1 ( ) 1 ( )

t t
m m

tm m

m m

t m

t t

 
 

 

 


  
 

 It is worth 

noting that if the values of 
( ) ( ), = 0,1, ,q

mu t m M  are not available, we can 

apply the following backward finite difference 

quotient : 

( )

=0

1
( ) = ( 1) ( ) ( ), (25)

q
q i

m q
i

q
u t u t i

i

 
     

  
  

 where q   is an arbitrary number and   

represents the step size. 

 

NUMERICAL DEMONSTRATIONS 

Volterra integro-differential equations have 

found widespread applications across various 

scientific domains, as documented extensively in 

the literature. These applications span diverse 

phenomena, including diffusion processes, the 

formation of wind ripples in desert landscapes, 

heat transfer mechanisms, and neutron transport 

dynamics (Mandal & Chakrabarti, 2016). To 

validate the effectiveness of our proposed 

methodology, this section presents several 

carefully selected examples focusing on 

Nonlinear Variable-Order Weakly Singular 

Integro-Differential Equations (NVOWSIDEs). 

All numerical computations and simulations were 

performed using MATLAB version 2019 on a 

computing system equipped with an Intel (R) 

Core (TM) i7-8850 H processor operating at 2.60 

GHz. To provide a comprehensive evaluation of 

our approach, we conduct detailed comparative 

analyses against existing numerical methods, 

examining both computational efficiency and 

solution accuracy. These comparisons serve to 

highlight the advantages and potential limitations 

of our proposed methodology in handling such 

complex mathematical systems. 

A key objective of this research is to determine 

the optimal nonlocal variable-order (ONVO) that 

minimizes the mean absolute error (MAE). To 

evaluate the performance of our approach, we 

employ two crucial metrics: the mean absolute 

error ( M ) and the convergence order ( ECO ), 

defined as follows: 
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=1

= , (26)
M

m
M

m

AE

M


 = . (27)log MECO


 

The MAE serves as a measure of the average 

discrepancy between the numerical 

approximation and the exact solution, while the 

ECO quantifies the method’s convergence rate. 

These metrics are calculated using the error 

formulations presented in Eq. (21) and (23), 

where 
MAE  represents the absolute difference 

between the exact and numerical solutions at each 

point, and M  denotes the number of interior mesh 

points. To construct the ONVO for our examples, 

we consider two decreasing functions with 

several unknown parameters, specifically 

structured as follows. 

1 1 2

1 2

2 3 4 5

3 4 5

( ) = ,

1 < < , 1 < < 1
(28)

( ) = exp( ),

1 < < , 1 < , < 1

t c c t

q c q c

t c c c t

q c q c c




 



  

 

To determine the optimal values of the parameters 

ic ( =1,2, ,5)i , we employ a genetic 

optimization algorithm. The algorithm operates 

by minimizing the MAE across all discretized 

points for various step sizes  ,expressed 

mathematically as  

=1

 .
M

m

m

AE
Min

M
  

It is important to note that during this optimization 

process, the values of ic  are constrained to ensure 

that both functions 1( )t  and 2 ( )t  remain strictly 

bounded within the interval ( 1, )q q . This 

constraint is essential for maintaining the 

mathematical validity and physical significance 

of our solution. 

Example 1.   Consider the NVOWSIDE  

( )

0, 2( )0 sin

( )
( ) = ( ) ,

(29)( )

0 < ( ) 1,

t
v t

t t

u
u t Q t d

t

t












 

with initial condition (0) = 0u  , where  
21 ( )cos

3 12( ),cos
2 2

2 2

1 ( )

3 1
( ),

2 2

( )

( ) =
( )(1 ( ))cos cos

(30)
( )

(2 ( ))

t

t

t

t

t ts t

Q t
t t

ts t t

t
















 

 

 and , ( )s t   is the Lommel function. It should be 

noted that ( ) = sin( )u t t  is the exact solution of 

(29).  

For Example 1, Table 1 presents the optimized 

values of coefficients ic  and the corresponding 

minimum MAE values for B-spline (Moghaddam 

& Machado, 2017) and proposed approachs, 

computed with parameters =1q  and 
1

=
32

  over 

the interval [0,2 ]t  . A comparative analysis 

between our proposed method, the B-spline 

approach (Moghaddam & Machado, 2017), and 

the exact solution is provided in Table 2. The 

results demonstrate that our numerical solutions 

exhibit excellent agreement with the exact 

solution. Furthermore, the proposed algorithm 

achieves superior accuracy compared to the B-

spline method presented in (Moghaddam & 

Machado, 2017). 

 

Table 1: The minimum values of MAE and optimal parameters of example 1 with 1 1 2= c c t  and 

2 3 4 5( ) = exp( )t c c c t  for 
1

=
32

  in [0,2 ]t   

MAE 

(Moghaddam 

et al. 2017) 

MAE 1c
 2c

 3c
 4c

 5c
 

1.60×10-4 2.32×10-5 0.16 -0.0008 0 0 0 

1.70×10-4 1.78×10-8 0 0 0.5 0.001 0.00025 

 

Table 2: Performance comparison between the B-spline method (Moghaddam & Machado, 2017) 
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and our developed algorithm for Example 1, showing maximum error (

M
), convergence order ( ECO ), and 

computational time (in seconds). Results obtained using optimal variable-order functions 
1( ) = 0.16 0.0008t t  and 

2 ( ) = 0.5 0.01exp(0.00025 )t t  for various step sizes   over [0,2 ]t   

  
B-spline algorithm (Moghaddam & 

Machado, 2017) 
Developed algorithm 

( )t    M  
ECO  CPu time  M  

ECO  CPu time  

 
1

 
16  

45.72 10  2.69 2.686 54.57 10  3.60 3.844 

1( )t
 

1
 

32  

41.60 10  2.52 9.000 52.32 10  3.08 14.562 

 
1

 
64  

53.51 10  2.48 36.030 51.17 10  2.74 60.063 

 
1

 
16  

46.63 10  2.64 2.594 72.17 10  5.50 3.953 

2 ( )t
 

1
 

32  

41.70 10  2.51 9.532 81.78 10  5.13 16.156 

 
1

 
64  

43.48 10  2.48 2.047 94.23 10  4.64 65.016 

 

Fig. 1 illustrates two key comparisons for Eq. (29) 

with variable-order function 

( ) = 0.5 0.01exp(0.00025 )t t  over the interval 

[0,2 ]t   using step size 
1

=
32

  :the 

comparison between exact and approximate 

solutions obtained by our developed algorithm, 

and the logarithmic absolute errors (
10

( )log AE ) 

for both our method and the B-spline approach  

(Moghaddam & Machado, 2017). 

 
Fig. 1. (Top panel) Comparison of the numerical and exact solutions of (Moghaddam et al., 2021), (Bottom panel) 

magnitude of the 
10

( )log AE  ,with the B-spline (Moghaddam & Machado, 2017) and proposed schemes, 

( ) = 0.5 0.01exp(0.00025 )t t and step size
1

=
32

 . 
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   Example 2.  Consider the NVOWSIDE  

( )

0, 2( )0 cos

( )
( ) = ( ) ,

(31)( )

1 < ( ) 2,

t
v t

t t

u
u t Q t d

t

t












 

 with initial condition (0) = 0.25u  ,where 

2 2 2 ( )

2 2

2 4 ( )

2 2

2 2
22 ( )sin

2 2

2

( ) =

1 ( ) 3 ( )
[ ,1],[2 , ]; ( ( ) 7 ( ) 12)
2 2 2 2

2 (5 ( ))

3 ( ) 5 ( )
[ , 2],[3 , ];
2 2 2 2

(5 ( ))

1 ( ) 1 ( )sin sin
[ ,1],[1 , ];
2 2 2 2

, (32)
4 ( )sin

t

t

t

Q t

t t
F t t t t

t

t t
F t t

t

t t
F t t

t





 
     

 


 

 
   

 


 

 
   

 


                

 and 1 1( , , ; , , ; )s v s vF b b a a t  is the 

hypergeometric function. It should be noted that 
2exp( )

( ) =
4

t
u t


 is the exact solution of (31). 

Following the analysis approach used in Example 

1, Table 3 presents the optimized coefficients ic  

and corresponding minimum MAE values for 

Example 2 for IQS-Moghaddam et al. (2021) and 

proposed approaches, computed with parameters 

= 2q  and 
1

=
32

  over [0,10]t  .Table 4 

demonstrates that our method achieves superior 

accuracy compared to the IQS algorithm 

Moghaddam et al. (2021). Figure 2 provides a 

visual comparison for 
1

=
32

  with variable-order 

function ( ) =1.63 0.1exp(0.01 )t t ,  displaying 

the logarithmic absolute errors (
10

( )log AE ) of 

both our proposed method and the IQS approach 

Moghaddam et al. (2021) across the entire interval

[0,10]t . 

 

 

 

Table 3: The minimum values of MAE and optimal parameters of example 2 with 1 1 2= c c t  and 

2 3 4 5( ) = exp( )t c c c t  for 
1

=
32

  in [0,10]t  

MAE 

(Moghaddam 

et al., 2021) 

MAE 
1c  2c  3c  4c  5c  

2.71×10-4 1.89×10-6 1.51 -0.001 0 0 0 

3.21×10-4 1.97×10-6 0 0 1.63 0. 1 0.01 

 
Table  4: Comparison of ,  and computational time (based on sec.) of 2 using the IQS- Moghaddam et al. (2021)  

and developed algorithms, with optimal values of 
1 =1.51 0.001t  and 2 ( ) =1.63 0.1exp(0.01 )t t  and  various 

values of  in [0,10]t  

  IQS algorithm Moghaddam et al. (2021) Developed algorithm 

( )t    M  ECO  CPu time  
M  ECO  CPu time  

 
1

 
16

 47.35 10  2.59 22.562 63.11 10  4.58 18.220 

1( )t  
1

 
32

 42.71 10  2.36 80.718 61.89 10  3.80 78.938 

 
1

 
64

 59.85 10  2.22 350.188 79.73 10  3.31 318.000 

 
1

 
16

 48.69 10  2.53 25.718 63.25 10  4.54 19.968 
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  IQS algorithm Moghaddam et al. (2021) Developed algorithm 

2 ( )t  
1

 
32

 43.21 10  2.32 91.938 61.97 10  3.77 86.188 

 
1

 
64

 41.21 10  2.16 413.844 79.96 10  4.58 18.220 

 

 
Fig.  2. (Top panel) Comparison of the numerical and exact solutions of (31), (Bottom panel) magnitude of the with 

the IQS- Moghaddam et al. 2021 and proposed schemes, and step size 

 

CONCLUSION 

   This study has presented an efficient explicit 

numerical approach based on Integro spline 

quasi-interpolation for approximating variable-

order fractional derivatives. The method was 

successfully extended to address nonlocal 

variable-order weakly singular integro-

differential equations, offering a robust solution 

for complex fractional systems. Numerical results 

demonstrated the method’s high accuracy, with 

optimal error rates achieved by minimizing the 

mean absolute error. The computational 

efficiency and precision of the proposed approach 

make it a valuable tool for solving fractional 

differential equations, particularly in scenarios 

involving nonlocal effects and weak singularities. 

Future research directions may include extending 

this method to broader classes of integro-

differential equations and further optimizing its 

performance for large-scale problems. 
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