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Abstract–This paper presents a method for optimizing the dual-target virtual machine provisioning problem, which 
is a challenge in cloud data centers. In the cloud environment, it is important to balance the interests of service 
providers and customers. From the producers’ viewpoint, optimizing energy consumption and reducing costs are 
essential. From the users’ point of view, it is desirable to achieve an adequate level of quality of service, and network 
latency is one of the factors that contribute to its reduction. Therefore, optimizing bandwidth usage to reduce network 
delay is the second important objective considered in this study. To solve this problem, a two-objective method based on 
a genetic algorithm is presented, which provides near-optimal results in an acceptable time. The evaluations show the 
superiority of the proposed algorithm in terms of total energy consumption and total traffic in the network compared 
with methods based on a genetic algorithm, ant colony, greedy FFD algorithm, and randomized deployment method. 
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1. Introduction 
 

Cloud computing has emerged because of the irregular 

growth of computers, and telecommunication systems have 

started to offer various services to users over the internet. 

Users should connect to data centers to use on-demand 

services. The computing needs of users have significantly 

increased the energy consumption of data centers that 

becomes a challenge for cloud computing [1]. Cloud 

computing is now recognized worldwide as an integral 

mechanism of information technology. Considering the 

variety of services such as infrastructure, platform and 

software as a service, cloud computing plays an undeniable 

role in hosting and providing services on the Internet. The 

benefits of using cloud facilities for individuals and 

organizations include reliability, quality of service, and 

strength [2]. The service producer and consumer, which 

play a central role in the interactions of the cloud 

environment, have different interests in this area. From the 

customer’s point of view, it is desirable to receive services 

of the highest quality, in accordance with the service level 

agreement, with as few violations as possible and a 

minimum payment for the use of each service. From the 

producer’s perspective, it is desirable to reduce energy 

consumption, reduce waste of resources, reduce costs, and 

comply with the provisions of the Service Level Agreement 

to gain and maintain customer confidence [3]. 

The concept of virtualization is based on the fact that 

different user programs (virtual machines (VMs)) can be 

executed on some servers (Physical Machines (PMs)). This 

process is called virtual machine provisioning and belongs 

to the category of NP-hard problems in terms of time 

complexity [4]. Despite the benefits of virtualization, real-

world experience shows that a strict reduction in energy 

consumption and resource waste can pose a threat to quality 

of service requirements (such as throughput, response time 

and network latency), that are written and documented in 

users’ service level agreements. Conversely, 

communication links, switching between physical machines, 

and the collection of data sent in different layers of the 

network are responsible for more than 30% of the total 

energy consumption of data centers[5]. Moreover, more 

than 70% of the data traffic in a data center is caused by 

data exchange between virtual machines[6]. As a rule, in 

large data centers communication between virtual machines 

not only significantly increases energy consumption, but 

can also prove to be a serious bottleneck for quality of 

service requirements (such as response time and delay) [7-

9]. This omission can lead to an increased possibility of a 
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breach of the service level agreement, which robs the user 

of confidence and satisfaction and may result in the 

application of various types of fines by the user, depending 

on the nature, extent, and severity of the breach [10]. A 

modern and promising method to address this challenge is 

to place virtual machines with a lot of data exchange at the 

smallest possible physical distance from each other. 

Therefore, when using virtual machines, a trade-off must be 

found between reducing the energy consumption of 

computer and network communication devices and 

reducing the data exchange between virtual machines over 

long distances that saturate the bandwidth and network 

topology[11]. Furthermore, consideration should be given 

to the possible bandwidth depending on the network 

topology [12].  

In [13] presented architectural principles for managing 

energy consumption in the cloud, as well as policies for 

allocating energy resources and scheduling algorithms that 

meet the expectations for quality of service and device 

power consumption. Local administrators send information 

about resource utilization and virtual machines selected for 

migration to global administrators. Various methods have 

been proposed to assign virtual machines to physical nodes. 

The assignment problem is divided into two parts. The first 

part refers to the replacement of virtual machines on 

physical hosts, and the second part refers to the 

optimization of virtual machine allocation. In [14] 

presented a new working framework called Green Cloud 

Computing. In their study, virtual machine management and 

scheduling is considered as one of the fundamental 

principles for reducing energy consumption. The author 

introduced his main method for reducing energy 

consumption as shutting down physical machines with low 

utilization and migrating virtual machines to other physical 

machines. In [15] investigated a physical machine 

integration algorithm that was periodically deployed to 

minimize online machines in terms of required online 

capacity and possible SLA violations. They analyzed 

different workload profiles and show that intermittent 

workloads are better suited for dynamic acquisition. The 

mapping step is performed using a heuristic first-fit method. 

while reducing the number of online users. To optimize the 

allocated resources in cloud computing, In [16] presented a 

scheduling and resource allocation method based on the 

PSO method, in which multiple queues are considered for 

resource allocation. Queues are used to manage and 

schedule tasks that are scarce at the time of resource 

allocation and are actually placed in the line. Green 

computing is a trend in computer science that seeks to 

reduce the energy consumption and carbon footprint of 

computers in distributed platforms such as clusters, 

networks, and clouds. Recent studies have estimated that 

data centers account for approximately 1.5%–2 % of the 

total energy consumption. This energy demand has sharply 

increased because of the generalization of Internet services 

and distributed computing platforms such as clusters, 

networks, and clouds. Regarding the efficiency of data 

centers, studies show that approximately 55% of the energy 

used in a data center is consumed by the computer system 

and the rest by the support system. For this reason, green 

cloud computing is essential to make the future growth of 

cloud computing sustainable. Users also want the services 

they require to be completed faster and in less time.  

Therefore, we are trying to find a suitable solution to solve 

these problems in cloud computing. The goal of this 

research is to optimize the dual objectives of energy 

consumption and network traffic load sharing when 

deploying virtual machines in cloud data centers with tree 

topologies. 

2. Instrumentation 

2-1- Formulation of the proposed method 
To construct a static two-objective VMP model for a DC 

with n VM and m PM, the mathematical model for each of 

the objectives such as the energy consumption of servers 

and network switches and the bandwidth consumption, is 

first formulated along with the corresponding constraints. 

The comprehensive model of dual-objective optimization is 

presented. Then, the presented model is coded and 

implemented using a genetic algorithm. The results of the 

GA for the local search for optimal answers are fed into the 

complementary algorithm of the local search, and the 

improved results resulting from the combination of GA and 

the complementary algorithm are analyzed and evaluated.  
 

2-2- Energy consumption model of the servers 

It is obvious that the physical equipment of DCs 

consists of electrical and electronic parts, all of which 

consume electricity. Most of the total DC energy 

consumption is caused by the operation of the PMs, but 

other equipment such as switches, routers, and cooling 

devices also consume energy, which is also considered in 

this research, the energy consumption model of the switch. 

This section focuses on PM energy consumption in two 

states: full state (when PM hosts VMs so that all CPU 

capacity is occupied) and idle mode (when PM is not 

assigned to any VM). It should be noted that there is a 

linear relationship between energy consumption and CPU 

efficiency [74]. Therefore, the PMj energy consumption can 

be expressed as Eq. (1) 
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(1)   
    

�� = � ������� − ��
��� × ����� + ��
��� �� ����� > 0  0                                                         ��ℎ������ � 

Where������ and ��
��� represent the average values of 

energy consumption in the full efficiency state and the idle 

state PMJ, respectively. 

The total power consumption (TPC) of servers in DC 

with m PM can be calculated from Eq. (2): 
 

 �! = ∑ #������� − ��
��� × ����� + ��
���$%�&' . )�           (2) 

Where )� ∈ +0,1.   a binary decision variable is equal 

to one if PMj is on and zero otherwise. 

 

2-3-Bandwidth consumption model  

The bandwidth consumption model presented in this 

section can be extended to other types of topologies without 

losing its generality. The tree model consists of identical 

switches with four ports and homogeneous communication 

lines that communicate with each other between the three 

layers (Core-Aggregation/Aggregation-Access). In the 

VMP, any VM can be placed on any PM. Therefore, the 

physical distance between PMs hosting interdependent 

VMs can be calculated by counting the hops. This concept 

refers to the number of communication lines that must be 

crossed to route data from the source PM to the destination 

PM [1]. On the other hand, different VMs can be 

independent or dependent on each other in terms of data. 

For example, suppose that VMi and VMj are located on 

PMk and PMℓ respectively, with an average data 

dependency rate of dv. The best scenario is when PMk and 

PMℓ are the same, meaning k=l. Otherwise, PMk and PMℓ 

are connected to each other in one of the following ways: 

- Access switch: 2 hops for data transmission 

- Aggregation switch: 4 hops for data transmission 

- Core switch: 6 hops for data transmission. 

 

The DC network can therefore be divided into 4 virtual 

zones, as described in Table ١. The basis for this 

segmentation is to monitor the positions of the PMs hosting 

dependent VMs. Figure 1 shows the coverage areas of each 

zone. 

 

Figure 1: Sections covered by virtual regions in a tree-structured grid 

[1] 
Table 1:  Virtual regions of the DC network [1] 

 

 

 

 

 

 

 

 

For each connection from VMi located on PMk to VMj 

located on PMℓ, a connection is defined as!/,ℓ ∈ 12. The 

volume of traffic between VMi and VMj and generally 

between any pair of VMs can be extracted from the TPM. 

An example of a TPM is shown in equation (3). 

 

  
(3)  

34' 345 ⋯ 347
 �4 =  34'345⋮347

9000 250125 000 ⋯ 320⋯ 260⋮ ⋮400 112 ⋱ ⋮⋯ 000@ 

In the matrix, all data are given in megabytes per second 

(MBps). TPM information can be obtained in various ways, 

for example, by checking the DC profile or by extracting 

the behavior of VMs using data mining techniques. Since 

this study refers to static VMP, a specific TPM is used for 

the calculations, whose elements are all extracted from the 

history of data exchanged between VMs and are known in 

advance. According to the previous definitions, the DT 

between VMi is based on PMk, and VMj based on PMℓ can 

be expressed as follows: 

(4)  A �!/,ℓ = ℎ�B�!/,ℓ ×  �4�34
 , 34� 
 
where ℎ�B�!/,ℓis calculated according to the virtual 

region covering PMk and PMℓ. 
 

2-4- Model of the energy consumption of switches 

The energy consumption model for switches presented 

in this section can be used in all tree topologies, considering 

the communication structure of the connections. If the 

communication data are located on a server, the ToR switch 

does not need to be switched on. In this particular case, all 

network switches are therefore idle. Note that the inactive 

switches in the DC are not switched off because restarting 

and configuring them is time-consuming. In DCs that 

Zone PMk &PMℓ  H

ops  

Z0 Same ()  0 

Z1 Under the access switch 2 

Z2 Under the aggregation 
switch 

4 

Z3 Under the core switch 6 
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should be constantly ready to receive and process VMs, this 

waste of time is not logical. The switches consume little 

energy when idle and in a half-lit state, which we ignore. If 

the communication data are in zone 1 (Figure 1), step 2 is 

activated. Communication data in zone 2 requires 4 steps 

and three switches to be switched on. Similarly, 

communication data in zone 3, which must pass through the 

core switch, requires 6 steps and five switches to be 

switched on. Therefore, the number of switches required to 

establish a connection between the data can be calculated 

from equation Eq. (5): 

(5)  !�CD�_��FG��� = ℎ�B − 1 

Therefore, the energy consumption of all switches can 

be calculated from Eq. (6) as follows: 

(6)  �HI= J �_��FG���   ×    !�CD�_��FG��� �� ℎ�B� ≥  0                                                         ��ℎ������
The mathematical model of communication-driven two-

objective optimization is defined in the form of Eq. (7) to 

(15). 

(7)  min O �� × )�
%

�&' = O P������� − ��
���%
�&'

× O Q�R!BC
 × S
�
7


&'
+ ��
���T × )� 

(8)  U�D O O ℎ�B�!/,ℓ ×  �4�34
 , 34�7
�&'

7

&'  

(9)  U�D O O !�CD�_��FG��� × �_��FG���7
�&'

7

&'  

  �CVW�X�  ��: 
(10)  )�  ∈  +0,1. 
(11)  Z, ℓ ∈ +1, … , U. 
(12)  O O )
� = 1%

�&'
7


&' , �ℎ���    )
�  ∈  +0,1. 
(13)  O O S
� = 1%

�&'
7


&' , �ℎ���    S
�  ∈  +0,1. 

(14)  O O Q�R!BC
 × S
� ≤ !BC ℎ�%
�&' × )�

7

&'  

(15)  O O Q�R4�U
 × S
� ≤ 4�U ℎ�%
�&' × )�

7

&'  

To solve this hybrid two-objective optimization problem, 

which requires simultaneous optimization of three functions 

of equal importance, we present a genetically based hybrid 

metaheuristic algorithm, the details of which are explained 

below. 

2-5- Genetic Algorithm (GA) 

Conventional genetics was originally designed for the 

optimization of single-purpose functions. Therefore, to 

solve some equally important target functions with genetic 

algorithm, changes must be made to it. In addition, the 

necessary data building must be defined in which the 

information of the servers is stored. the structure of genes 

and chromosomes is also defined for problem coding.In the 

problem statement, it was specified that n requested VM 

numbers should be inserted on m numbers; therefore, the 

length of the chromosome is equal to n, and the genes are 

natural numbers belonging to +1, … , U. . To create the 

initial population, a two-dimensional matrix is defined as ��B]1. . ��BH�^�_] 1. . D_ , where PopSize is a constant 

indicating the size (number of chromosomes) of the initial 

population. Each individual ��B]i_]1. . n_of the population 

is represented as chromosome Chi and is a random solution 

to the problem. Therefore, ��B]�_]W_ = Z in a solution 

means that VMj is placed on PMk. Each PMj has a data 

structure called DSj, so that all individuals in the initial 

population (Pop) have their own specific data structure. As 

a result, the two-dimensional matrix DS]1. . ��BH�^�_]1. . U_ can be extracted from ��B]1. . ��BH�^�_] 1. . D_and vice versa. 
 

3- Experiments  
3-1- Scenarios, datasets, and parameter settings 

The performance and efficiency of the proposed method 

should be tested and analyzed under different scenarios to 

ensure its accuracy. Because the performance of the 

proposed method depends on the size and number of VMs 

and PMs, different scenarios are defined to cover different 

situations.  Under the conditions where the number of 

PMs is fixed and the number of requested VMs increases, 

and under the conditions where the number of VMs and 

PMs gradually increases, the results of the algorithm are 

checked according to the specified parameters and the 
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changes in the results are monitored. To perform the 

evaluations, we used a family of Dell servers with 6000 

MIPS processing power and 8 GB memory capacity in a 

homogeneous DC, which consumes energy from any server 

in idle mode. The active mode is ��b��� = 162 cDd ������ =215 . We have opted for a fat tree and a homogeneous DC 

topology, where the switches can cover up to 16 physical 

servers with some ports p=4s. Moreover, this algorithm can 

be extended to heterogeneous DCs and other topologies on 

a larger scale. Different scenarios were designed to obtain 

reliable results. Here, we design five different scenarios, 

each of which is implemented on 3 different datasets with 

different correlation coefficients between the source vectors. 

Considering the appropriate value for the variable Bc� ϵ ]0. .1.0_,we obtain the source vectors with correlation 

coefficients in the range {-0.85,-0.07,+0.85}. In addition, 

the threshold of physical server resources for hosting VMs 

is set at 90%. In addition, the traffic pattern matrix (TPM) 

variable determines the amount of data flow between each 

pair of VMs, which can be [25-250 MB]. Of course, the 

volume of data sent between independent VMs is assumed 

to be zero. Note that the values of the components of this 

matrix can be extracted from the switches and DC or from 

data mining techniques. 

 
3-2- Evaluation 
To evaluate the proposed GA-based two-objective 

algorithm (BOGA), we compared the results of its 

implementation with the GA-based multi-objective VMP 

method (MOGA) in [1], the ACO-based two-objective 

method (BOACO) [48], the famous innovative FFD method 

[35], and the random VMP method in terms of the total 

energy consumption of servers and switches and the total 

bandwidth consumption. The results of the implementations 

and evaluations are listed in Tables 2 -6. The following 

scenarios are designed for a fixed number of PMs (16 PMs), 

with the number of requested VMs increasing gradually. 

 - Scenario 1 contains 15 requested VMs to be deployed 

on 16 PMs. 

- Scenario 2 contains 20 requested VMs to be deployed 

on 16 PMs. 

- Scenario 3 contains 25 requested VMs to be deployed 

on 16 PMs. 

- Scenario 4 contains 30 VMs to be deployed on 16 PMs. 

- Scenario 5 contains 35 requested VMs to be deployed 

on 16-PM. 

 

 

 

 

Table 2: Comparison and evaluation of scenario 1 

Total 
Energy 

Band 
Width 

Algorithm Corre
lation 

Num
ber of 
VM 

604.8933 

613.5497 
627.8030 
789.8030 
789.8030 

604.8431 

616.9292 
616.9292 
778.9292 
778.9292 

580.1452 

588.3252 
588.3252 
616.9292 
616.9292 

83752 

63800 
70900 
71200 
72400 

67000 

67100 
68500 
73150 
73650 

56560 

56700 
57150 
57150 
58400 

BOGA 

MOGA 
BOACO 

FFD 
RD 

BOGA 

MOGA 
BOACO 

FFD 
RD 

BOGA 

MOGA 
BOACO 

FFD 
RD 

 
 

-0.85 
 
 

 

-0.07 

 
 
 

 

0.85 
 

 
 
 
 
 
 
 
 

20 

 

Table 3: Comparison and Evaluation of Scenario 2 

Total 
Energy 

Band 
Width 

Algorith
m 

Corre
lation 

Numb
er of VM 

770.1005 

798.1011 
798.2607 
850.3300 
960.2607 

1010.900 

1011.300 
1011.300 
1011.300 
1011.300 

 
800.0100 

800.0486 
800.0486 
800.0486 
800.0486 

120100 

121450 
134400 
171850 
164050 

151150 

151100 
155550 
148700 
163600 

 
111200 

114500 
116800 
119050 
124150 

BOGA 

MOGA 
BOACO 

FFD 
RD 

BOGA 

MOGA 
BOACO 

FFD 
RD 

BOGA 

MOGA 
BOACO 

FFD 
RD 

 
 

-0.85 
 
 

 

-0.07 

 
 
 

 

0.85 

 

 
 
 
 
 
 
 
 

25 

 
Table 4: Comparison and evaluation of scenario 3  

Total 
Energy 

Band 
Width 

Algoritm Correlation number 
of VM 

943.7210 

969.7314 
979.4034 
1141.400 
1141.400 

973.9090 

973.9280 
973.9280 
1135.900 
1135.900 

1001.150 

1015.400 
1015.400 
1015.400 
1015.400 

271500 

271500 
276400 
286800 
317800 

292800 

292800 
297600 
293100 
314350 

245940 

246000 
259250 
290500 
277650 

BOGA 

MOGA 
BOACO 

FFD 
RD 

BOGA 

MOGA 
BOACO 

FFD 
RD 

BOGA 

MOGA 
BOACO 

FFD 
RD 

 
 

-0.85 
 
 

 

-0.07 

 
 
 

 

0.85 
 

 
 
 
 
 
 
 
 

30 
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Table 5: Comparison and Evaluation of Scenario 4 

Total 
Energy 

Band 
Width 

Algorith
m 

Corr
elation 

Numbe
r of VM 

1012.340 

1173.800 
1183.800 
1345.800 
1345.800 

1190.200 

1202.800 
1202.800 
1364.800 
1364.800 

1161.020 

1175.600 
1175.600 
1175.600 
1175.600 

418510 

418500 
427100 
466950 
454900 

410900 

410950 
445500 
448050 
480750 

375900 

376000 
377800 
439800 
423400 

BOGA 

MOGA 
BOACO 

FFD 
RD 

BOGA 

MOGA 
BOACO 

FFD 
RD 

BOGA 

MOGA 
BOACO 

FFD 
RD 

 
 
-

0.85 
 
 

 

-

0.07 
 
 
 

 

0.85 
 

 
 
 
 
 
 
 
 

35 

 

Table 6: Comparison and Evaluation of Scenario 5 

Total 
Energy 

Band 
Width 

Algorithm Correlation Number 
of VM 

1124.404 
1426.900 
1442.100 
1766.100 
1880.500 

1213.500 
1398.300 
1398.300 
1560.300 
1570.300 

1232.300 
1241.800 
1403.800 
1403.800 
1565.800 

638920 
639900 
655200 
662650 
680500 

627700 
628150 
653000 
656300 
660250 

565650 
565650 
588200 
646250 
653250 

BOGA 
MOGA 

BOACO 
FFD 
RD 

BOGA 
MOGA 
BOACO 

FFD 
RD 

BOGA 
MOGA 

BOACO 
FFD 
RD 

 
 

-0.85 
 
 

 

-0.07 
 
 
 

 

0.85 
 

 
 
 
 
 
 
 
 

40 

 

As can be seen from the tables and diagrams, the three 

metaheuristic methods at the top of the tables are very close 

to each other in terms of optimizing total energy 

consumption and bandwidth. In terms of bandwidth 

consumption, the MOGA algorithm is very similar to the 

proposed algorithm because the solution to reduce traffic 

and bandwidth in both algorithms follows a similar strategy. 

However, as far as the energy consumption of all servers 

and switches is concerned, the MOGA algorithm is more 

efficient because of its focus on the energy of the switches; 

the proposed algorithm of this research shows certain 

superiority. 

 

4-Results  

The results of the mathematical model of the proposed 

method consist of the energy consumption model of servers, 

the energy consumption model of switches, and the 

bandwidth consumption model, which has been formulated 

and presented in the form of a comprehensive two-objective 

optimization model. To solve this hybrid problem with two 

objectives, a hybrid meta-heuristic algorithm based on a 

genetic algorithm was presented. In this way, first the 

genetic algorithm was implemented and its results were 

applied to the complementary algorithm for local search 

and discovery of the possible optimal answers in the 

neighborhood of the answers and finally the relative 

optimal final results were computed. The calculations in the 

scenarios and the correlation coefficients {-0.85, -0.07, 

+0.85} between the processor and memory resource 

requirements were performed as follows: 

- Scenario 1: 20 VM on 25 PM  

- Scenario 2: 25 VM on 30 PM 

 -Scenario 3: 30 VM on 35 PM 

 -Scenario 4: 35 VM on 40 PM  

- Scenario 5: 40 VM on 45 PM. 

The efficiency of the proposed algorithm (BOGA) has 

been compared with the meta-heuristic three-objective 

method based on GA (MOGA), the meta-heuristic two-

objective method based on the ACO algorithm (BOGA), the 

heuristic FFD method and the random search method (RD). 

The results of the simulations have shown the significant 

superiority of the proposed method compared to the other 

mentioned methods in terms of saving the total energy 

consumption and reducing the amount of data stored on the 

shared channels of the data center network. Furthermore, 

the results of the simulations on the tree topology of the fat-

tree network show that the proposed algorithm has a high 

scalability for development and implementation on tree 

networks compared to other tested methods. With 

considering given results, the following items were also 

proposed to improve the model in future. 1- considering the 

possibility of new virtual machines entering the system at 

any time and calculating the cost and energy of migration to 

provide a dynamic model for virtual machine deployment. 

2- Presenting a comprehensive model for energy 

computation in wired and wireless networks b) Practical 

suggestions 1- Computing the  

possibility of traffic distribution in heterogeneous 

networks with asymmetric topologies to reduce the number 

of servers and switches required to increase the size of the 

network. 2- Using data mining to extract communication 

patterns in wireless networks to calculate the sent traffic in 

the comprehensive network model. 
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