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Abstract 

In this paper, we propose a dynamic hybrid web recommender system aimed at personalizing 

websites through sequential pattern discovery and link sequence similarity detection. The 

system is evaluated on two standard datasets, Zanbil and NASA, containing extensive web 

server logs. After preprocessing the logs by removing irrelevant data and segmenting user 

interactions into sessions, we perform user clustering using the PAM algorithm with three 

similarity metrics: Levenshtein Distance, Longest Common Subsequence (LCS), and 

Needleman-Wunsch (NW). The optimal number of clusters is determined through evaluation 

of Precision, Recall, and F-measure, with the best results found at 350 clusters for Zanbil and 

500 for NASA.  

User profiles are generated using FP-Growth and SPADE, which help in identifying frequent 

navigation patterns. The model is then evaluated, yielding optimal Precision of 0.91 and recall 

of 0.83 for SPADE combined with LCS. Results show that this combination produces the best 

performance, effectively capturing user behavior and providing superior personalized 

recommendations. 

The study demonstrates that this hybrid approach enhances the personalization of web, 

delivering more relevant suggestions to users based on their previous interactions. 

Keywords: Web Recommender System, Website Personalization, Sequential Pattern 

Discovery, Link Sequence Similarity, Hybrid Model.
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1. Introduction 

Web recommender systems have become 

one of the key tools in enhancing user 

experience and increasing user 

engagement with websites. These systems, 

by analyzing user behavior and 

recommending relevant content, not only 

provide a personalized experience but also 

help websites improve their efficiency in 

attracting and retaining users. With the 

growing amount of data available on 

websites and the diversity of user 

behaviors, the need for efficient and 

accurate recommender systems has 

become more crucial than ever [1].  

These systems are essential not only for 

improving user experience but also for 

increasing profitability and customer 

satisfaction in e-commerce environments 

[2]. 

Website personalization through 

recommender systems is based on 

analyzing user behavior and identifying 

similarities among them. Users, through 

their interaction with websites, leave 

behind vast amounts of direct or indirect 

data. This data can include clicks, page 

visit times, and content interactions, which 

are stored in server logs. Web logs, as rich 

sources of user information, are highly 

valuable [3].  

These data can be used to better 

understand user behavior and identify 

frequent patterns [4]. 

One method of analyzing log data is 

identifying users’ "navigation sequences" 

based on their clicks. These sequences 

represent the paths users take over time on 

a website. Identifying these navigation 

sequences and analyzing the similarities 

between them is one of the key tools in 

developing recommender systems [5]. 

By segmenting users into sessions, 

typically defined by time intervals such as 

30 minutes since the last activity, user 

behavior can be divided into analyzable 

units.  

This method helps us extract meaningful 

patterns from each session separately [6]. 

Identifying sequential patterns and 

discovering similarities among user 

sequences is a significant challenge in web 

data analysis. These patterns may include 

common paths that users follow on a 

website. Using various algorithms, these 

sequences are analyzed to identify 

similarities and repeated patterns [7]. 

One of the major challenges in this field is 

selecting the appropriate algorithm for 

sequence analysis and optimizing the 

computational processes for large datasets 

[8]. 

Several algorithms have been proposed for 

identifying similarities and discovering 

sequential patterns, each with its own 

strengths and weaknesses. Algorithms 

such as Levenshtein, LCS, and 

Needleman-Wunsch are commonly used 

for calculating similarities between 

sequences [8]. While these algorithms 

offer high accuracy in identifying 

similarities, selecting the best algorithm 

for each dataset and optimizing it for large 

datasets remains a fundamental challenge. 

Additionally, frequent pattern mining 

algorithms such as FP-Growth and 

SPADE are used to identify sequential 

patterns in user data [7]. 

In this paper, we aim to dynamically 

examine all possible combinations of 

similarity detection and sequential pattern 

discovery algorithms. The main goal is to 

generate various models by combining 

these algorithms and then evaluate the 

accuracy of each model using evaluation 

metrics such as Precision, Recall, and F-

measure. Ultimately, by analyzing the 

results, we will propose a dynamic hybrid 

model for web recommender systems that 

can contribute to more accurate and 

efficient website personalization. 
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2. Related Work 

One of the prominent studies in this field 

was conducted by Dacrema and 

colleagues. In this research, the authors 

explored the challenges of reproducibility 

in recommender system research. They 

found that many papers in this domain 

have irreproducible results, which may be 

due to a lack of sufficient data, lack of 

access to source codes, or flaws in 

evaluation methods. The study 

recommends that researchers adopt more 

transparent and well-documented 

approaches in their work to achieve better 

results in the development of 

recommender systems [9]. 

Another significant study was conducted 

by Sun a colleague, in which the 

BERT4Rec model was introduced. 

BERT4Rec uses transformer techniques to 

generate recommendations. By employing 

bidirectional encoding and learning 

temporal sequences, BERT4Rec 

significantly improved the accuracy of 

recommendations compared to traditional 

and advanced models. This model offers a 

better understanding of user interactions 

with the system, providing more accurate 

recommendations [10]. 

Another important study was carried out 

by Zhou and colleagues, where the S3-Rec 

model was introduced. This model uses a 

self-supervised learning approach with 

mutual information maximization. By 

leveraging mutual information between 

user interactions, the model achieved 

significant improvements in 

recommendation accuracy. This approach 

has led to a better understanding of users' 

needs and preferences [11]. 

In a separate study, Ma and colleagues 

introduced memory-augmented graph 

neural networks. These models, using 

graph structures and augmented memories, 

helped improve recommendation 

accuracy. By combining graphical 

information with augmented memories, 

they outperformed previous models and 

showed significant improvements in 

recommendation precision [12]. 

Another study by Fan and colleagues 

introduced temporal collaborative graph 

networks, which enhanced recommender 

systems by continuously considering time. 

This model demonstrated that considering 

time continuously can lead to significant 

improvements in recommendation 

accuracy, as user interactions with systems 

evolve over time, and the model is better 

able to capture these changes [13]. 

Gao and colleagues, in their study, 

introduced a state-preserving RNN 

framework that retains state information 

over time to improve recommendation 

accuracy. This model, by preserving state 

information, outperformed traditional 

RNNs and showed that state retention can 

significantly enhance recommendation 

precision [14]. 

Gong and colleagues introduced a 

contrastive self-supervised learning 

model, which uses robust reinforcement to 

improve recommendation accuracy. This 

model showed that using robust 

reinforcements can lead to significant 

improvements in recommendation 

accuracy and enhance the performance of 

recommender systems [15]. 

Li and colleagues introduced temporal 

self-attention networks, which consider 

the time intervals between user 

interactions and use this information to 

improve recommendation accuracy. The 

model demonstrated that considering time 

intervals can lead to significant 

improvements in recommendation 

precision [16]. 

In a study by Wang and colleagues, 

implicit feedback refinement methods 

were introduced to filter out incorrect and 
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unreliable feedback, thereby improving 

recommendation accuracy. The study 

showed that refining implicit feedback can 

lead to significant improvements in 

accuracy and reduce issues associated with 

incorrect implicit feedback [17]. 

Xie and colleagues introduced hierarchical 

attention networks that consider the 

hierarchical structures of user interactions 

and use this information to improve 

recommendation accuracy. This model 

showed that leveraging hierarchical 

attention structures can lead to significant 

improvements in recommendation 

precision [18]. 

Research in the area of sequential 

recommendations is expanding. One study 

offers media and product suggestions to 

customers based on their past behavior and 

interests. Recent machine learning 

algorithms for sequential recommendation 

rely on deep learning and transformers. 

Given the competitive and sudden 

performance of simple nearest-neighbor 

algorithms for session-based 

recommendations, the author examined 

nearest-neighbor techniques for the 

challenges of sequential recommendation. 

In two out of four datasets, nearest-

neighbor methods outperformed the 

transformer-based BERT4Rec algorithm. 

Deep learning also outperformed simpler 

methods on larger datasets, supporting the 

idea that neural methods improve with 

data growth [19]. 

 

3. Proposed Method 

In this section, we present a dynamic 

hybrid web recommender system aimed at 

personalizing websites by leveraging 

sequential pattern detection and link 

sequence similarity analysis. The proposed 

method involves multiple stages, starting 

from data preprocessing, session 

generation, and user identification to 

clustering users based on their browsing 

patterns using three similarity metrics: 

Levenshtein Distance, Longest Common 

Subsequence (LCS), and Needleman-

Wunsch (NW). User profiles are generated 

through two powerful sequential pattern 

mining algorithms: FP-Growth and 

SPADE, which help in identifying 

frequent patterns in user behavior. The 

system utilizes the K-Nearest Neighbors 

(KNN) algorithm to recommend 

personalized content based on the closest 

user profiles. The process flow is detailed 

in Figure 1, which visually depicts the 

major steps of the proposed method. 

Our flowchart has been illustrated in 

Figure 1: 

 

Figure 1: Proposed Method Flowchart 

 

3.1 Datasets 

In this research, we utilized two well-

known and standard datasets: Zanbil and 

NASA [20,21]. These datasets are widely 

used in web recommendation systems to 

evaluate user behavior and navigation 

patterns based on web server logs.  

Zanbil Dataset: This dataset contains web 

server logs from an e-commerce website 

and includes user navigation data and 

clickstreams, providing valuable insights 

into customer behavior on the platform. 

 NASA Dataset: This dataset consists of 

web server logs from NASA’s Kennedy 
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Space Center web server, capturing user 

activities such as page visits. 

The details of each dataset, including the 

number of records, are summarized in 

Table 1. These datasets serve as the 

foundation for user session generation and 

subsequent processing in this study. 

Table 1: Number of records in Zanbil and 

NASA datasets. 

Dataset Number of Records 

Zanbil 4,477,843 

NASA 1,048,574 

 

3.2 Data Preprocessing and User 

Identification  

Web mining is the process of extracting 

valuable insights from web data, and data 

preprocessing is a critical initial step in this 

process. Web server log files, typically 

stored in the Common Log Format (CLF), 

contain essential information such as client 

IP addresses, timestamps, request details, 

HTTP methods, and response status codes. 

However, raw web logs often include 

unnecessary or noisy data, making 

preprocessing a fundamental step to ensure 

data quality. 

In this study, we refined the raw log files 

from both Zanbil and NASA datasets to 

extract meaningful user behaviors. The 

preprocessing phase involved several key 

tasks: 

1. URL Normalization: We standardized 

URL formats, removing redundant 

parameters such as session IDs and 

irrelevant query strings. 

2. Exclusion of Irrelevant Content: Non-

essential requests such as images, 

stylesheets, JavaScript files, and 

multimedia content (e.g., videos) were 

excluded to focus on primary interactions, 

such as user clicks on web pages. 

3. Error Handling: Requests resulting 

in HTTP error codes (such as 404 or 

500) were filtered out to eliminate 

incomplete or failed interactions. 

4. User Identification: Users were 

identified based on their IP addresses 

and user-agent strings to differentiate 

between unique visitors and bots. 

5. Session Identification: We employed 

time-based heuristics, where a session 

was defined as a sequence of user 

activities with no more than 30 minutes 

of inactivity. This approach allowed us 

to group related user actions into 

meaningful sessions for further 

analysis. 

Through these steps, we aggregated 

and refined the raw data, which was 

essential for generating user sessions 

and preparing the datasets for 

subsequent phases of pattern 

recognition and recommendation. Data 

preprocessing plays a vital role in 

enhancing the quality and reliability of 

web data, laying the groundwork for 

accurate analysis and insights. 

After completing the preprocessing 

phase, Table 2 provides the statistics of 

each dataset, including the number of 

records, unique users, sessions, and 

unique URLs. 

Table 2: Post-processed statistics for Zanbil 

and NASA datasets. 

Data 

Set 
Number of 

Records 

Sessions 

Count 

Users 

Count 

Zanbil 4,477,843 252,518 76,744 

NASA 1,048,574 98,372 46,351 
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3.3 Dataset Splitting 

After the preprocessing phase, the datasets 

were divided into three subsets: training, 

validation, and testing. This splitting is a 

crucial step in machine learning 

workflows to ensure that models can 

generalize well to unseen data. In our 

study, the datasets were split as follows: 

 Training Set: 60% of the data was 

allocated to the training set. This 

subset was used to train the 

clustering and recommendation 

models. 

 Validation Set: 20% of the data was 

reserved for validation purposes. The 

primary role of this set was to fine-

tune the model and determine the 

optimal number of clusters (k) for 

the clustering algorithm. We applied 

validation techniques to evaluate 

various values of k and select the one 

that yields the best results in terms of 

clustering performance. 

 Testing Set: The remaining 20% of 

the data was used as the testing set, 

which served to evaluate the final 

model’s performance on unseen data 

and measure its ability to provide 

accurate web recommendations. 

The validation set plays a key role in 

identifying the optimal number of clusters 

(k) in our clustering algorithm (PAM). By 

experimenting with different k-values, we 

ensured that the clustering structure best 

represents the underlying user sessions, 

which is essential for generating 

meaningful user profiles and improving 

the recommendation system's accuracy. 

This systematic division of the data 

ensures that the model is not only trained 

effectively but also tested for its ability to 

generalize and make accurate 

recommendations based on user behavior 

patterns. 

Here is an updated version of the text with 

the mathematical explanation for PAM 

clustering added: 

3.4 Clustering Step 

In this step, we use the PAM (Partitioning 

Around Medoids) algorithm to cluster 

users based on the similarity of their web 

navigation sequences. The clustering 

process is crucial because we aim to group 

users with similar browsing patterns, 

which will later be used for building 

recommendation profiles. 

The clustering phase can be divided into 

three main parts: 

 

3.4.1. Determining the Optimal 

Number of Clusters: 

To identify the optimal number of clusters, 

we begin by testing different cluster counts 

ranging from 5 to √𝑛, where n is the 

number of samples. For each dataset and 

for each possible number of clusters, we 

calculate evaluation metrics such as 

Precision, Recall, and F-measure. The 

process continues iteratively until further 

increases in the number of clusters do not 

significantly reduce the error. As shown in 

Figures 2 and 3, by analyzing the F-

measure, we observe that for Dataset 1, the 

optimal cluster count is 500, and for 

Dataset 2, the optimal count is 350. The 

optimal values of k for Datasets 1 and 2 are 

also shown in Tables 3 and 4. 

Table 3: Determining the Optimal Number of 

Clusters for Dataset1 

Number of 

Clusters 

(K) 

Evolution Metrics 

Precis

ion 
Recall 

F-

Measure 

10 0.72 0.65 0.68 

40 0.78 0.70 0.74 

80 0.82 0.76 0.79 

130 0.86 0.81 0.83 

200 0.88 0.84 0.86 

300 0.89 0.85 0.87 

500 0.90 0.86 0.88 

600 0.88 0.84 0.86 
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Figure 2: F-Measure Comparison for the 

Zanbil 

 

Table 4: Determining the Optimal Number of 

Clusters for Dataset2 

Number of 

Clusters 

(K) 

Evolution Metrics 

Precis

ion 
Recall 

F-

Measure 

10 0.68 0.60 0.64 

50 0.74 0.69 0.71 

100 0.79 0.74 0.76 

200 0.85 0.80 0.82 

350 0.91 0.88 0.89 

500 0.89 0.86 0.87 

700 0.87 0.83 0.85 

 

 

Figure 3: F-Measure Comparison for the 

NASA 

 

 

 3.4.2. Similarity Metrics: 

To measure the similarity between users 

based on their click sequences, we employ 

three different sequence similarity 

algorithms: Levenshtein Distance, 

Longest Common Subsequence (LCS), 

and Needleman-Wunsch (NW). 

- Levenshtein Distance: Measures the 

minimum number of single-character 

edits (insertions, deletions, or 

substitutions) required to change one 

sequence into another. 

 

- Longest Common Subsequence 

(LCS): Finds the longest subsequence 

present in both sequences without 

changing the order of elements. 

 

- Needleman-Wunsch (NW): A 

dynamic programming algorithm used 

to align two sequences optimally by 

maximizing the similarity score. 

𝑑𝑛𝑤(𝑠1, 𝑠2)
= 𝑚𝑎𝑥(𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝑠𝑐𝑜𝑟𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠1 𝑎𝑛𝑑 𝑠2) 

Each similarity measure will be applied 

separately during clustering to evaluate the 

best fit for the dataset. 

 

 3.4.3. Clustering with PAM: 

Once the similarity measures are 

calculated, we apply the PAM algorithm to 

cluster users. PAM is particularly suitable 

for handling sequence data because it 

identifies representative sequences 

(medoids) that minimize the total 

dissimilarity within clusters. 

1. Initial Medoid Selection: Given a 

dataset X= {𝑥1,𝑥2…,𝑥𝑛}, PAM 

initially selects k random points from 

the dataset to serve as medoids: 

M= {𝑚1, 𝑚2, … , 𝑚𝑘}, 𝑚𝑖∈X 
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These medoids represent the initial cluster 

centers. 

2. Assignment of Points to Medoids: 

Each point 𝑥𝑖 in the dataset is 

assigned to the nearest medoid 

based on the selected similarity 

metric: 

 

where d (𝑥𝑖, 𝑚𝑗) is the distance between 

point 𝑥𝑖 and medoid 𝑚𝑗. 

3. Medoid Update: PAM iteratively 

replaces medoids with other points 

in the cluster to minimize the total 

dissimilarity: 

 

The goal is to find the medoids that 

minimize the total distance T, which 

represents the sum of the dissimilarities 

within each cluster. 

4. Stopping Criterion: The algorithm 

terminates when changing the 

medoids no longer reduces the total 

dissimilarity. 

5. Final Clustering: 
Using the optimal number of clusters 

determined from the validation 

dataset, we apply PAM clustering with 

each of the three-similarity metrics 

(Levenshtein, LCS, and NW) 

separately. This allows us to evaluate 

the clustering results and identify the 

most effective sequence similarity 

measure for grouping users with 

similar browsing behaviors. 

 

3.5. User Profile Generation 

User Profile refers to a structured 

representation of a user's preferences, 

behavior, and interests, typically 

constructed from their interaction history. 

In the context of web recommendation 

systems, a user profile is created based on 

the user’s activity, such as the sequence of 

URLs they visit, the time spent on pages, 

and the actions they take. These profiles 

are vital for personalizing content and 

improving the accuracy of 

recommendation algorithms. The key to an 

effective recommendation system is 

extracting frequent patterns from user 

sessions and using these patterns to build 

robust profiles for future predictions. 

To identify frequent patterns, we will 

employ two well-known sequential pattern 

mining algorithms: FP-Growth and 

SPADE. Each algorithm uncovers 

frequent patterns in a dataset, which can be 

used to form user profiles. 

FP-Growth (Frequent Pattern Growth) is 

an efficient algorithm for mining frequent 

itemset without candidate generation. The 

algorithm works in two steps: 

1) Construction of the FP-Tree: This is a 

compact structure that retains the 

itemset information, where each node 

represents an item and its frequency. 

2) Mining frequent itemset from the FP-

Tree: The tree is recursively divided 

into conditional FP-trees, and frequent 

patterns are extracted. 

3) The mathematical representation of 

FP-Growth is as follows: 

4) Let D represent the dataset of 

transactions and 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑖} be 

the set of items. 

5) The support of an itemset X is defined 

as the number of transactions in which 

X appears:  

 

6) The FP-tree is built by sorting items in 

descending order of their frequency 

and inserting them into the tree. 

7) Frequent patterns are mined by 
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recursively generating conditional 

trees for subsets of items and 

extracting patterns that meet a 

minimum support threshold. 

SPADE (Sequential Pattern Discovery 

using Equivalent Class) is designed to 

mine sequential patterns efficiently by 

exploring frequent sequences in a depth-

first search manner. It uses lattice 

structures to generate sequence patterns 

and applies constraints to reduce the 

search space. 

The mathematical description of SPADE 

is as follows: 

1. Let D be the sequence database, where 

each sequence is a list of itemset 

ordered by time. 

2. A sequence S = (𝑎1, 𝑎2, … , 𝑎𝑘) is 

frequent if the number of sequences in 

which SSS appears is greater than or 

equal to a predefined minimum 

support threshold. 

3. SPADE uses vertical database 

representation to store sequences, 

meaning each item is associated with a 

list of all transactions in which it 

appears. 

4. The support of a sequence is 

calculated as: 

  

5. The algorithm explores frequent 

sequences by intersecting lists of items 

and recursively combining them to 

form longer sequences. 

Both algorithms, FP-Growth and SPADE, 

will be implemented to generate user 

profiles. These profiles will then be used 

to make personalized recommendations 

based on user behavior. By using two 

different pattern-mining techniques, we 

aim to compare their efficiency and 

accuracy in building comprehensive user 

profiles. The performance of these 

methods will be evaluated to determine the 

optimal approach for sequence pattern 

discovery. 

 

3.7. Model Evaluation 

For the evaluation of the recommendation 

model, we rely on the test dataset and three 

primary metrics: Precision, Recall, and the 

F-measure. These metrics are widely used 

to assess the performance of 

recommendation systems, providing 

insight into the accuracy and relevance of 

the recommendations made by the system. 

1. Precision is defined as the ratio of 

correctly recommended links (true 

positives) to the total number of 

recommended links (true positives + 

false positives): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 × 100 

Precision indicates how many of the 

recommended links are relevant to the 

user. 

2. Recall is the ratio of correctly 

recommended links to the total 

number of relevant links in the test 

dataset (true positives + false 

negatives): 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 × 100 

Recall measures how many of the relevant 

links were successfully recommended by 

the system. 

3. F-Measure is the harmonic mean of 

Precision and Recall, providing a 

balance between the two: 

 

This metric helps evaluate the trade-off 

between Precision and Recall, providing a 
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single score that summarizes the model’s 

effectiveness. 

To select the most appropriate profile and 

recommend links to users, we utilize the 

K-Nearest Neighbors (KNN) algorithm. 

KNN is a non-parametric method used to 

find the closest profiles based on the 

similarity between users' behavior 

sequences. It works as follows: 

1. Profile Matching: For each user in the 

test set, we compute the similarity 

between their session sequences and 

the profiles generated during the 

training phase using a similarity 

metric. 

2. KNN-based Recommendation: The 

K most similar user profiles are 

identified using KNN. The system 

then aggregates the recommendations 

from these profiles to suggest the most 

relevant links for the target user. 

3. Prediction Process: The KNN model 

recommends the next possible link for 

the user based on the most frequent 

patterns found in the K nearest 

profiles. 

The evaluation metrics will be calculated 

for each recommendation model 

configuration to determine the most 

effective combination of pattern mining 

algorithms, similarity metrics, and 

clustering methods. In Table 5, 6 the 

Precision, Recall, and F-measure values 

for each model configuration will be 

presented, helping us identify the most 

accurate model for dynamic web 

recommendation. 

 

3.8. Link Recommendation and 

Website Personalization 

In this phase, the system leverages the user 

profiles selected by the K-Nearest 

Neighbors (KNN) algorithm from the 

previous step. Each user profile contains a 

sequence of previously visited links, 

forming a behavioral pattern. Based on this 

sequence, we can dynamically predict the 

next likely link the user might choose, 

providing personalized content 

recommendations in real-time. 

 

3.9. Link Prediction Process 

1. Profile-based Link Sequence: Once a 

user selects a link, the system uses the 

profile's link sequence to suggest the next 

possible link. This approach ensures that 

the recommendations are tailored to the 

user's browsing behavior, providing 

personalized and relevant options. 

2. Dynamic Recommendations: As the 

user interacts with the website by clicking 

on various links, the system continually 

updates the recommendations. Each new 

interaction refines the sequence of 

suggestions based on the patterns 

discovered in the user's profile, improving 

personalization. 

3. Website Personalization: By 

continuously predicting the next link the 

user might visit; the system dynamically 

personalizes the browsing experience. 

This method allows the website to adapt to 

the user’s behavior, presenting tailored 

content and enhancing user engagement. 

In the next section, we will evaluate the 

system's performance in making 

accurate link predictions by reviewing 

the Precision, Recall, and F-measure 

metrics. These results will demonstrate 

the effectiveness of the dynamic web 

recommendation model in 

personalizing the user experience. 

 

4. Results Analysis 

The first step in the analysis is to visualize 

the results of the clustering process 

performed using the PAM algorithm 

across both datasets: Zanbil and NASA. 

Clustering was done using the three 
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similarity measures discussed earlier—

Levenshtein Distance, Longest Common 

Subsequence (LCS), and Needleman-

Wunsch (NW). The figures (Figures 4-7) 

below demonstrate the clustering 

distribution for each dataset based on these 

similarity metrics. 

Next, we evaluate the performance of the 

recommendation models generated based 

on different configurations for each 

dataset. The evaluation is conducted based 

on three metrics: Precision, Recall, and F-

measure. The results are presented in 

separate tables for the Zanbil and NASA 

datasets. Each table summarizes the 

combination of clustering algorithms, 

sequential pattern mining algorithms (FP-

Growth and SPADE), and similarity 

measures (Levenshtein, LCS, NW).  

Table 5: Model Evaluation Results for Zanbil Dataset 

Sequential Pattern Mining Algorithm Similarity Metric Precision Recall F-Measure 

FP-Growth 

Levenshtein 0.82 0.75 0.78 

LCS 0.85 0.77 0.81 

NW 0.78 0.71 0.74 

SPADE 

Levenshtein 0.88 0.81 0.84 

LCS 0.91 0.83 0.87 

NW 0.83 0.77 0.80 

 

Table 6: Model Evaluation Results for NASA Dataset 

Sequential Pattern Mining Algorithm Similarity Metric Precision Recall F-Measure 

FP-Growth 

Levenshtein 0.76 0.70 0.73 

LCS 0.80 0.74 0.77 

NW 0.72 0.68 0.70 

SPADE 

Levenshtein 0.84 0.78 0.81 

LCS 0.86 0.80 0.83 

NW 0.79 0.73 0.76 

 

In addition to the tabular results, we 

provide a visual comparison of the 

Precision and Recall values for each 

dataset across the three-similarity metrics 

(Levenshtein, LCS, and NW) and for both 

sequential pattern mining algorithms (FP-

Growth and SPADE). The x-axis in each 

chart represents the three-similarity 

metrics, while the y-axis shows the 

Precision or Recall scores. Each similarity 

metric will have two values corresponding 

to the results of FP-Growth and SPADE, 

respectively. 
 

 

Figure 4: Precision Comparison for the 

Zanbil 

 



Saffari, et al./ IJDEA Vol.11, No.4, (2023), 65-78 

 

76 

 

Figure 5: Precision Comparison for the 

NASA Dataset 

 

 

Figure 6: Recall Comparison for the Zanbil 

Dataset 

 

 

Figure 7: Recall Comparison for the NASA 

These visual comparisons provide a 

clearer understanding of how each 

similarity metric and pattern mining 

algorithm performs, helping us determine 

the most effective configuration for both 

datasets. 

 

5. Conclusion  

In this research, we designed a dynamic 

hybrid web recommender system aimed at 

personalizing websites for users by 

leveraging sequential pattern mining and 

link sequence similarity detection. By 

clustering users based on the similarity of 

their browsing patterns and using various 

similarity metrics (Levenshtein, LCS, and 

NW), we were able to build and evaluate 

personalized recommendation models. 

The system was tested on two distinct 

datasets—Zanbil and NASA—to verify its 

effectiveness. Our results show that the 

SPADE algorithm combined with the LCS 

similarity metric consistently 

outperformed other configurations, 

providing higher precision and recall 

scores, making it the most suitable 

approach for both datasets. 

For future work, we suggest enhancing the 

user profiling process by incorporating 

Recurrent Neural Networks (RNNs), 

which are well-suited for modeling 

sequential data. By using RNNs, the 

system could potentially better capture the 

complex, long-term dependencies in users’ 

browsing behaviors, leading to more 

accurate predictions and an even more 

effective recommendation engine. 

Additionally, experimenting with more 

advanced deep learning models such as 

LSTM and GRU could further improve 

recommendation accuracy in dynamic 

environments. 
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