

Available online at http://ijdea.srbiau.ac.ir

Int. J. Data Envelopment Analysis (ISSN 2345-458X)

Vol. 11, No. 4, Year 2023 Article ID IJDEA-00422, Pages 65-78

Research Article

Dynamic Web Personalization Using a Hybrid

Recommender System with Sequential Pattern Detection

and Link Sequence Similarity

Vahid Saffari* 1, Karamollah Bagherifard1, Hamid Parvin2, Samad Nejatian3,

Vahideh Rezaei4

1 Department of Computer Engineering, Islamic Azad University, Yasooj, Iran.
2 Department of Computer Engineering, Islamic Azad University, Nourabad Mamasani,

Iran.
3 Department of Electronic Engineering, Islamic Azad University, Yasooj, Iran.

4 Department of Mathematics, Yasooj Branch, Islamic Azad University, Yasooj, Iran.

Received 20 May 2023, Accepted 14 July 2023

Abstract

In this paper, we propose a dynamic hybrid web recommender system aimed at personalizing

websites through sequential pattern discovery and link sequence similarity detection. The

system is evaluated on two standard datasets, Zanbil and NASA, containing extensive web

server logs. After preprocessing the logs by removing irrelevant data and segmenting user

interactions into sessions, we perform user clustering using the PAM algorithm with three

similarity metrics: Levenshtein Distance, Longest Common Subsequence (LCS), and

Needleman-Wunsch (NW). The optimal number of clusters is determined through evaluation

of Precision, Recall, and F-measure, with the best results found at 350 clusters for Zanbil and

500 for NASA.

User profiles are generated using FP-Growth and SPADE, which help in identifying frequent

navigation patterns. The model is then evaluated, yielding optimal Precision of 0.91 and recall

of 0.83 for SPADE combined with LCS. Results show that this combination produces the best

performance, effectively capturing user behavior and providing superior personalized

recommendations.

The study demonstrates that this hybrid approach enhances the personalization of web,

delivering more relevant suggestions to users based on their previous interactions.

Keywords: Web Recommender System, Website Personalization, Sequential Pattern

Discovery, Link Sequence Similarity, Hybrid Model.

* Corresponding author: Email: Vahid.Saffari@iau.ac.ir

International Journal of Data Envelopment Analysis Science and Research Branch (IAU)

mailto:Vahid.Saffari@iau.ac.ir

Saffari, et al./ IJDEA Vol.11, No.4, (2023), 65-78

66

1. Introduction

Web recommender systems have become

one of the key tools in enhancing user

experience and increasing user

engagement with websites. These systems,

by analyzing user behavior and

recommending relevant content, not only

provide a personalized experience but also

help websites improve their efficiency in

attracting and retaining users. With the

growing amount of data available on

websites and the diversity of user

behaviors, the need for efficient and

accurate recommender systems has

become more crucial than ever [1].

These systems are essential not only for

improving user experience but also for

increasing profitability and customer

satisfaction in e-commerce environments

[2].

Website personalization through

recommender systems is based on

analyzing user behavior and identifying

similarities among them. Users, through

their interaction with websites, leave

behind vast amounts of direct or indirect

data. This data can include clicks, page

visit times, and content interactions, which

are stored in server logs. Web logs, as rich

sources of user information, are highly

valuable [3].

These data can be used to better

understand user behavior and identify

frequent patterns [4].

One method of analyzing log data is

identifying users’ "navigation sequences"

based on their clicks. These sequences

represent the paths users take over time on

a website. Identifying these navigation

sequences and analyzing the similarities

between them is one of the key tools in

developing recommender systems [5].

By segmenting users into sessions,

typically defined by time intervals such as

30 minutes since the last activity, user

behavior can be divided into analyzable

units.

This method helps us extract meaningful

patterns from each session separately [6].

Identifying sequential patterns and

discovering similarities among user

sequences is a significant challenge in web

data analysis. These patterns may include

common paths that users follow on a

website. Using various algorithms, these

sequences are analyzed to identify

similarities and repeated patterns [7].

One of the major challenges in this field is

selecting the appropriate algorithm for

sequence analysis and optimizing the

computational processes for large datasets

[8].

Several algorithms have been proposed for

identifying similarities and discovering

sequential patterns, each with its own

strengths and weaknesses. Algorithms

such as Levenshtein, LCS, and

Needleman-Wunsch are commonly used

for calculating similarities between

sequences [8]. While these algorithms

offer high accuracy in identifying

similarities, selecting the best algorithm

for each dataset and optimizing it for large

datasets remains a fundamental challenge.

Additionally, frequent pattern mining

algorithms such as FP-Growth and

SPADE are used to identify sequential

patterns in user data [7].

In this paper, we aim to dynamically

examine all possible combinations of

similarity detection and sequential pattern

discovery algorithms. The main goal is to

generate various models by combining

these algorithms and then evaluate the

accuracy of each model using evaluation

metrics such as Precision, Recall, and F-

measure. Ultimately, by analyzing the

results, we will propose a dynamic hybrid

model for web recommender systems that

can contribute to more accurate and

efficient website personalization.

IJDEA Vol.4, No.2, (2016).737-749

Saffari, et al./ IJDEA Vol.11, No.4, (2023), 65-78

67

2. Related Work

One of the prominent studies in this field

was conducted by Dacrema and

colleagues. In this research, the authors

explored the challenges of reproducibility

in recommender system research. They

found that many papers in this domain

have irreproducible results, which may be

due to a lack of sufficient data, lack of

access to source codes, or flaws in

evaluation methods. The study

recommends that researchers adopt more

transparent and well-documented

approaches in their work to achieve better

results in the development of

recommender systems [9].

Another significant study was conducted

by Sun a colleague, in which the

BERT4Rec model was introduced.

BERT4Rec uses transformer techniques to

generate recommendations. By employing

bidirectional encoding and learning

temporal sequences, BERT4Rec

significantly improved the accuracy of

recommendations compared to traditional

and advanced models. This model offers a

better understanding of user interactions

with the system, providing more accurate

recommendations [10].

Another important study was carried out

by Zhou and colleagues, where the S3-Rec

model was introduced. This model uses a

self-supervised learning approach with

mutual information maximization. By

leveraging mutual information between

user interactions, the model achieved

significant improvements in

recommendation accuracy. This approach

has led to a better understanding of users'

needs and preferences [11].

In a separate study, Ma and colleagues

introduced memory-augmented graph

neural networks. These models, using

graph structures and augmented memories,

helped improve recommendation

accuracy. By combining graphical

information with augmented memories,

they outperformed previous models and

showed significant improvements in

recommendation precision [12].

Another study by Fan and colleagues

introduced temporal collaborative graph

networks, which enhanced recommender

systems by continuously considering time.

This model demonstrated that considering

time continuously can lead to significant

improvements in recommendation

accuracy, as user interactions with systems

evolve over time, and the model is better

able to capture these changes [13].

Gao and colleagues, in their study,

introduced a state-preserving RNN

framework that retains state information

over time to improve recommendation

accuracy. This model, by preserving state

information, outperformed traditional

RNNs and showed that state retention can

significantly enhance recommendation

precision [14].

Gong and colleagues introduced a

contrastive self-supervised learning

model, which uses robust reinforcement to

improve recommendation accuracy. This

model showed that using robust

reinforcements can lead to significant

improvements in recommendation

accuracy and enhance the performance of

recommender systems [15].

Li and colleagues introduced temporal

self-attention networks, which consider

the time intervals between user

interactions and use this information to

improve recommendation accuracy. The

model demonstrated that considering time

intervals can lead to significant

improvements in recommendation

precision [16].

In a study by Wang and colleagues,

implicit feedback refinement methods

were introduced to filter out incorrect and

Saffari, et al./ IJDEA Vol.11, No.4, (2023), 65-78

68

unreliable feedback, thereby improving

recommendation accuracy. The study

showed that refining implicit feedback can

lead to significant improvements in

accuracy and reduce issues associated with

incorrect implicit feedback [17].

Xie and colleagues introduced hierarchical

attention networks that consider the

hierarchical structures of user interactions

and use this information to improve

recommendation accuracy. This model

showed that leveraging hierarchical

attention structures can lead to significant

improvements in recommendation

precision [18].

Research in the area of sequential

recommendations is expanding. One study

offers media and product suggestions to

customers based on their past behavior and

interests. Recent machine learning

algorithms for sequential recommendation

rely on deep learning and transformers.

Given the competitive and sudden

performance of simple nearest-neighbor

algorithms for session-based

recommendations, the author examined

nearest-neighbor techniques for the

challenges of sequential recommendation.

In two out of four datasets, nearest-

neighbor methods outperformed the

transformer-based BERT4Rec algorithm.

Deep learning also outperformed simpler

methods on larger datasets, supporting the

idea that neural methods improve with

data growth [19].

3. Proposed Method

In this section, we present a dynamic

hybrid web recommender system aimed at

personalizing websites by leveraging

sequential pattern detection and link

sequence similarity analysis. The proposed

method involves multiple stages, starting

from data preprocessing, session

generation, and user identification to

clustering users based on their browsing

patterns using three similarity metrics:

Levenshtein Distance, Longest Common

Subsequence (LCS), and Needleman-

Wunsch (NW). User profiles are generated

through two powerful sequential pattern

mining algorithms: FP-Growth and

SPADE, which help in identifying

frequent patterns in user behavior. The

system utilizes the K-Nearest Neighbors

(KNN) algorithm to recommend

personalized content based on the closest

user profiles. The process flow is detailed

in Figure 1, which visually depicts the

major steps of the proposed method.

Our flowchart has been illustrated in

Figure 1:

Figure 1: Proposed Method Flowchart

3.1 Datasets

In this research, we utilized two well-

known and standard datasets: Zanbil and

NASA [20,21]. These datasets are widely

used in web recommendation systems to

evaluate user behavior and navigation

patterns based on web server logs.

Zanbil Dataset: This dataset contains web

server logs from an e-commerce website

and includes user navigation data and

clickstreams, providing valuable insights

into customer behavior on the platform.

 NASA Dataset: This dataset consists of

web server logs from NASA’s Kennedy

IJDEA Vol.4, No.2, (2016).737-749

Saffari, et al./ IJDEA Vol.11, No.4, (2023), 65-78

69

Space Center web server, capturing user

activities such as page visits.

The details of each dataset, including the

number of records, are summarized in

Table 1. These datasets serve as the

foundation for user session generation and

subsequent processing in this study.

Table 1: Number of records in Zanbil and

NASA datasets.

Dataset Number of Records

Zanbil 4,477,843

NASA 1,048,574

3.2 Data Preprocessing and User

Identification

Web mining is the process of extracting

valuable insights from web data, and data

preprocessing is a critical initial step in this

process. Web server log files, typically

stored in the Common Log Format (CLF),

contain essential information such as client

IP addresses, timestamps, request details,

HTTP methods, and response status codes.

However, raw web logs often include

unnecessary or noisy data, making

preprocessing a fundamental step to ensure

data quality.

In this study, we refined the raw log files

from both Zanbil and NASA datasets to

extract meaningful user behaviors. The

preprocessing phase involved several key

tasks:

1. URL Normalization: We standardized

URL formats, removing redundant

parameters such as session IDs and

irrelevant query strings.

2. Exclusion of Irrelevant Content: Non-

essential requests such as images,

stylesheets, JavaScript files, and

multimedia content (e.g., videos) were

excluded to focus on primary interactions,

such as user clicks on web pages.

3. Error Handling: Requests resulting

in HTTP error codes (such as 404 or

500) were filtered out to eliminate

incomplete or failed interactions.

4. User Identification: Users were

identified based on their IP addresses

and user-agent strings to differentiate

between unique visitors and bots.

5. Session Identification: We employed

time-based heuristics, where a session

was defined as a sequence of user

activities with no more than 30 minutes

of inactivity. This approach allowed us

to group related user actions into

meaningful sessions for further

analysis.

Through these steps, we aggregated

and refined the raw data, which was

essential for generating user sessions

and preparing the datasets for

subsequent phases of pattern

recognition and recommendation. Data

preprocessing plays a vital role in

enhancing the quality and reliability of

web data, laying the groundwork for

accurate analysis and insights.

After completing the preprocessing

phase, Table 2 provides the statistics of

each dataset, including the number of

records, unique users, sessions, and

unique URLs.

Table 2: Post-processed statistics for Zanbil

and NASA datasets.

Data

Set
Number of

Records

Sessions

Count

Users

Count

Zanbil 4,477,843 252,518 76,744

NASA 1,048,574 98,372 46,351

Saffari, et al./ IJDEA Vol.11, No.4, (2023), 65-78

70

3.3 Dataset Splitting

After the preprocessing phase, the datasets

were divided into three subsets: training,

validation, and testing. This splitting is a

crucial step in machine learning

workflows to ensure that models can

generalize well to unseen data. In our

study, the datasets were split as follows:

 Training Set: 60% of the data was

allocated to the training set. This

subset was used to train the

clustering and recommendation

models.

 Validation Set: 20% of the data was

reserved for validation purposes. The

primary role of this set was to fine-

tune the model and determine the

optimal number of clusters (k) for

the clustering algorithm. We applied

validation techniques to evaluate

various values of k and select the one

that yields the best results in terms of

clustering performance.

 Testing Set: The remaining 20% of

the data was used as the testing set,

which served to evaluate the final

model’s performance on unseen data

and measure its ability to provide

accurate web recommendations.

The validation set plays a key role in

identifying the optimal number of clusters

(k) in our clustering algorithm (PAM). By

experimenting with different k-values, we

ensured that the clustering structure best

represents the underlying user sessions,

which is essential for generating

meaningful user profiles and improving

the recommendation system's accuracy.

This systematic division of the data

ensures that the model is not only trained

effectively but also tested for its ability to

generalize and make accurate

recommendations based on user behavior

patterns.

Here is an updated version of the text with

the mathematical explanation for PAM

clustering added:

3.4 Clustering Step

In this step, we use the PAM (Partitioning

Around Medoids) algorithm to cluster

users based on the similarity of their web

navigation sequences. The clustering

process is crucial because we aim to group

users with similar browsing patterns,

which will later be used for building

recommendation profiles.

The clustering phase can be divided into

three main parts:

3.4.1. Determining the Optimal

Number of Clusters:

To identify the optimal number of clusters,

we begin by testing different cluster counts

ranging from 5 to √𝑛, where n is the

number of samples. For each dataset and

for each possible number of clusters, we

calculate evaluation metrics such as

Precision, Recall, and F-measure. The

process continues iteratively until further

increases in the number of clusters do not

significantly reduce the error. As shown in

Figures 2 and 3, by analyzing the F-

measure, we observe that for Dataset 1, the

optimal cluster count is 500, and for

Dataset 2, the optimal count is 350. The

optimal values of k for Datasets 1 and 2 are

also shown in Tables 3 and 4.

Table 3: Determining the Optimal Number of

Clusters for Dataset1

Number of

Clusters

(K)

Evolution Metrics

Precis

ion
Recall

F-

Measure

10 0.72 0.65 0.68

40 0.78 0.70 0.74

80 0.82 0.76 0.79

130 0.86 0.81 0.83

200 0.88 0.84 0.86

300 0.89 0.85 0.87

500 0.90 0.86 0.88

600 0.88 0.84 0.86

IJDEA Vol.4, No.2, (2016).737-749

Saffari, et al./ IJDEA Vol.11, No.4, (2023), 65-78

71

Figure 2: F-Measure Comparison for the

Zanbil

Table 4: Determining the Optimal Number of

Clusters for Dataset2

Number of

Clusters

(K)

Evolution Metrics

Precis

ion
Recall

F-

Measure

10 0.68 0.60 0.64

50 0.74 0.69 0.71

100 0.79 0.74 0.76

200 0.85 0.80 0.82

350 0.91 0.88 0.89

500 0.89 0.86 0.87

700 0.87 0.83 0.85

Figure 3: F-Measure Comparison for the

NASA

 3.4.2. Similarity Metrics:

To measure the similarity between users

based on their click sequences, we employ

three different sequence similarity

algorithms: Levenshtein Distance,

Longest Common Subsequence (LCS),

and Needleman-Wunsch (NW).

- Levenshtein Distance: Measures the

minimum number of single-character

edits (insertions, deletions, or

substitutions) required to change one

sequence into another.

- Longest Common Subsequence

(LCS): Finds the longest subsequence

present in both sequences without

changing the order of elements.

- Needleman-Wunsch (NW): A

dynamic programming algorithm used

to align two sequences optimally by

maximizing the similarity score.

𝑑𝑛𝑤(𝑠1, 𝑠2)
= 𝑚𝑎𝑥(𝑎𝑙𝑖𝑔𝑛𝑚𝑒𝑛𝑡 𝑠𝑐𝑜𝑟𝑒 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 𝑠1 𝑎𝑛𝑑 𝑠2)

Each similarity measure will be applied

separately during clustering to evaluate the

best fit for the dataset.

 3.4.3. Clustering with PAM:

Once the similarity measures are

calculated, we apply the PAM algorithm to

cluster users. PAM is particularly suitable

for handling sequence data because it

identifies representative sequences

(medoids) that minimize the total

dissimilarity within clusters.

1. Initial Medoid Selection: Given a

dataset X= {𝑥1,𝑥2…,𝑥𝑛}, PAM

initially selects k random points from

the dataset to serve as medoids:

M= {𝑚1, 𝑚2, … , 𝑚𝑘}, 𝑚𝑖∈X

Saffari, et al./ IJDEA Vol.11, No.4, (2023), 65-78

72

These medoids represent the initial cluster

centers.

2. Assignment of Points to Medoids:

Each point 𝑥𝑖 in the dataset is

assigned to the nearest medoid

based on the selected similarity

metric:

where d (𝑥𝑖, 𝑚𝑗) is the distance between

point 𝑥𝑖 and medoid 𝑚𝑗.

3. Medoid Update: PAM iteratively

replaces medoids with other points

in the cluster to minimize the total

dissimilarity:

The goal is to find the medoids that

minimize the total distance T, which

represents the sum of the dissimilarities

within each cluster.

4. Stopping Criterion: The algorithm

terminates when changing the

medoids no longer reduces the total

dissimilarity.

5. Final Clustering:
Using the optimal number of clusters

determined from the validation

dataset, we apply PAM clustering with

each of the three-similarity metrics

(Levenshtein, LCS, and NW)

separately. This allows us to evaluate

the clustering results and identify the

most effective sequence similarity

measure for grouping users with

similar browsing behaviors.

3.5. User Profile Generation

User Profile refers to a structured

representation of a user's preferences,

behavior, and interests, typically

constructed from their interaction history.

In the context of web recommendation

systems, a user profile is created based on

the user’s activity, such as the sequence of

URLs they visit, the time spent on pages,

and the actions they take. These profiles

are vital for personalizing content and

improving the accuracy of

recommendation algorithms. The key to an

effective recommendation system is

extracting frequent patterns from user

sessions and using these patterns to build

robust profiles for future predictions.

To identify frequent patterns, we will

employ two well-known sequential pattern

mining algorithms: FP-Growth and

SPADE. Each algorithm uncovers

frequent patterns in a dataset, which can be

used to form user profiles.

FP-Growth (Frequent Pattern Growth) is

an efficient algorithm for mining frequent

itemset without candidate generation. The

algorithm works in two steps:

1) Construction of the FP-Tree: This is a

compact structure that retains the

itemset information, where each node

represents an item and its frequency.

2) Mining frequent itemset from the FP-

Tree: The tree is recursively divided

into conditional FP-trees, and frequent

patterns are extracted.

3) The mathematical representation of

FP-Growth is as follows:

4) Let D represent the dataset of

transactions and 𝐼 = {𝑖1, 𝑖2, … , 𝑖𝑖} be

the set of items.

5) The support of an itemset X is defined

as the number of transactions in which

X appears:

6) The FP-tree is built by sorting items in

descending order of their frequency

and inserting them into the tree.

7) Frequent patterns are mined by

IJDEA Vol.4, No.2, (2016).737-749

Saffari, et al./ IJDEA Vol.11, No.4, (2023), 65-78

73

recursively generating conditional

trees for subsets of items and

extracting patterns that meet a

minimum support threshold.

SPADE (Sequential Pattern Discovery

using Equivalent Class) is designed to

mine sequential patterns efficiently by

exploring frequent sequences in a depth-

first search manner. It uses lattice

structures to generate sequence patterns

and applies constraints to reduce the

search space.

The mathematical description of SPADE

is as follows:

1. Let D be the sequence database, where

each sequence is a list of itemset

ordered by time.

2. A sequence S = (𝑎1, 𝑎2, … , 𝑎𝑘) is

frequent if the number of sequences in

which SSS appears is greater than or

equal to a predefined minimum

support threshold.

3. SPADE uses vertical database

representation to store sequences,

meaning each item is associated with a

list of all transactions in which it

appears.

4. The support of a sequence is

calculated as:

5. The algorithm explores frequent

sequences by intersecting lists of items

and recursively combining them to

form longer sequences.

Both algorithms, FP-Growth and SPADE,

will be implemented to generate user

profiles. These profiles will then be used

to make personalized recommendations

based on user behavior. By using two

different pattern-mining techniques, we

aim to compare their efficiency and

accuracy in building comprehensive user

profiles. The performance of these

methods will be evaluated to determine the

optimal approach for sequence pattern

discovery.

3.7. Model Evaluation

For the evaluation of the recommendation

model, we rely on the test dataset and three

primary metrics: Precision, Recall, and the

F-measure. These metrics are widely used

to assess the performance of

recommendation systems, providing

insight into the accuracy and relevance of

the recommendations made by the system.

1. Precision is defined as the ratio of

correctly recommended links (true

positives) to the total number of

recommended links (true positives +

false positives):

𝑃𝑟𝑒𝑐𝑖𝑠𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 × 100

Precision indicates how many of the

recommended links are relevant to the

user.

2. Recall is the ratio of correctly

recommended links to the total

number of relevant links in the test

dataset (true positives + false

negatives):

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 × 100

Recall measures how many of the relevant

links were successfully recommended by

the system.

3. F-Measure is the harmonic mean of

Precision and Recall, providing a

balance between the two:

This metric helps evaluate the trade-off

between Precision and Recall, providing a

Saffari, et al./ IJDEA Vol.11, No.4, (2023), 65-78

74

single score that summarizes the model’s

effectiveness.

To select the most appropriate profile and

recommend links to users, we utilize the

K-Nearest Neighbors (KNN) algorithm.

KNN is a non-parametric method used to

find the closest profiles based on the

similarity between users' behavior

sequences. It works as follows:

1. Profile Matching: For each user in the

test set, we compute the similarity

between their session sequences and

the profiles generated during the

training phase using a similarity

metric.

2. KNN-based Recommendation: The

K most similar user profiles are

identified using KNN. The system

then aggregates the recommendations

from these profiles to suggest the most

relevant links for the target user.

3. Prediction Process: The KNN model

recommends the next possible link for

the user based on the most frequent

patterns found in the K nearest

profiles.

The evaluation metrics will be calculated

for each recommendation model

configuration to determine the most

effective combination of pattern mining

algorithms, similarity metrics, and

clustering methods. In Table 5, 6 the

Precision, Recall, and F-measure values

for each model configuration will be

presented, helping us identify the most

accurate model for dynamic web

recommendation.

3.8. Link Recommendation and

Website Personalization

In this phase, the system leverages the user

profiles selected by the K-Nearest

Neighbors (KNN) algorithm from the

previous step. Each user profile contains a

sequence of previously visited links,

forming a behavioral pattern. Based on this

sequence, we can dynamically predict the

next likely link the user might choose,

providing personalized content

recommendations in real-time.

3.9. Link Prediction Process

1. Profile-based Link Sequence: Once a

user selects a link, the system uses the

profile's link sequence to suggest the next

possible link. This approach ensures that

the recommendations are tailored to the

user's browsing behavior, providing

personalized and relevant options.

2. Dynamic Recommendations: As the

user interacts with the website by clicking

on various links, the system continually

updates the recommendations. Each new

interaction refines the sequence of

suggestions based on the patterns

discovered in the user's profile, improving

personalization.

3. Website Personalization: By

continuously predicting the next link the

user might visit; the system dynamically

personalizes the browsing experience.

This method allows the website to adapt to

the user’s behavior, presenting tailored

content and enhancing user engagement.

In the next section, we will evaluate the

system's performance in making

accurate link predictions by reviewing

the Precision, Recall, and F-measure

metrics. These results will demonstrate

the effectiveness of the dynamic web

recommendation model in

personalizing the user experience.

4. Results Analysis

The first step in the analysis is to visualize

the results of the clustering process

performed using the PAM algorithm

across both datasets: Zanbil and NASA.

Clustering was done using the three

IJDEA Vol.4, No.2, (2016).737-749

Saffari, et al./ IJDEA Vol.11, No.4, (2023), 65-78

75

similarity measures discussed earlier—

Levenshtein Distance, Longest Common

Subsequence (LCS), and Needleman-

Wunsch (NW). The figures (Figures 4-7)

below demonstrate the clustering

distribution for each dataset based on these

similarity metrics.

Next, we evaluate the performance of the

recommendation models generated based

on different configurations for each

dataset. The evaluation is conducted based

on three metrics: Precision, Recall, and F-

measure. The results are presented in

separate tables for the Zanbil and NASA

datasets. Each table summarizes the

combination of clustering algorithms,

sequential pattern mining algorithms (FP-

Growth and SPADE), and similarity

measures (Levenshtein, LCS, NW).

Table 5: Model Evaluation Results for Zanbil Dataset

Sequential Pattern Mining Algorithm Similarity Metric Precision Recall F-Measure

FP-Growth

Levenshtein 0.82 0.75 0.78

LCS 0.85 0.77 0.81

NW 0.78 0.71 0.74

SPADE

Levenshtein 0.88 0.81 0.84

LCS 0.91 0.83 0.87

NW 0.83 0.77 0.80

Table 6: Model Evaluation Results for NASA Dataset

Sequential Pattern Mining Algorithm Similarity Metric Precision Recall F-Measure

FP-Growth

Levenshtein 0.76 0.70 0.73

LCS 0.80 0.74 0.77

NW 0.72 0.68 0.70

SPADE

Levenshtein 0.84 0.78 0.81

LCS 0.86 0.80 0.83

NW 0.79 0.73 0.76

In addition to the tabular results, we

provide a visual comparison of the

Precision and Recall values for each

dataset across the three-similarity metrics

(Levenshtein, LCS, and NW) and for both

sequential pattern mining algorithms (FP-

Growth and SPADE). The x-axis in each

chart represents the three-similarity

metrics, while the y-axis shows the

Precision or Recall scores. Each similarity

metric will have two values corresponding

to the results of FP-Growth and SPADE,

respectively.

Figure 4: Precision Comparison for the

Zanbil

Saffari, et al./ IJDEA Vol.11, No.4, (2023), 65-78

76

Figure 5: Precision Comparison for the

NASA Dataset

Figure 6: Recall Comparison for the Zanbil

Dataset

Figure 7: Recall Comparison for the NASA

These visual comparisons provide a

clearer understanding of how each

similarity metric and pattern mining

algorithm performs, helping us determine

the most effective configuration for both

datasets.

5. Conclusion

In this research, we designed a dynamic

hybrid web recommender system aimed at

personalizing websites for users by

leveraging sequential pattern mining and

link sequence similarity detection. By

clustering users based on the similarity of

their browsing patterns and using various

similarity metrics (Levenshtein, LCS, and

NW), we were able to build and evaluate

personalized recommendation models.

The system was tested on two distinct

datasets—Zanbil and NASA—to verify its

effectiveness. Our results show that the

SPADE algorithm combined with the LCS

similarity metric consistently

outperformed other configurations,

providing higher precision and recall

scores, making it the most suitable

approach for both datasets.

For future work, we suggest enhancing the

user profiling process by incorporating

Recurrent Neural Networks (RNNs),

which are well-suited for modeling

sequential data. By using RNNs, the

system could potentially better capture the

complex, long-term dependencies in users’

browsing behaviors, leading to more

accurate predictions and an even more

effective recommendation engine.

Additionally, experimenting with more

advanced deep learning models such as

LSTM and GRU could further improve

recommendation accuracy in dynamic

environments.

IJDEA Vol.4, No.2, (2016).737-749

Saffari, et al./ IJDEA Vol.11, No.4, (2023), 65-78

77

References

[1] Aggarwal, C. C. (2016). Recommender

Systems: The Textbook. Springer.

[2] Ricci, F. R. (2015). Recommender Systems

Handbook. Springer.

[3] Tan, P. N. (2018). Introduction to Data

Mining. Pearson Education. Pearson.

[4] Cooley, R. M. (1999). Data Preparation

for Mining World Wide Web Browsing

Patterns. Knowledge and Information

Systems 1, 5–32.

[5] Liu, B. L. (2018). Sequence-Aware

Recommender Systems: An Overview.

ACM Computing Surveys (CSUR), 54(4),

1-36.

[6] Mobasher, B. D. (2002). Discovery and

Evaluation of Aggregate Usage Profiles

for Web Personalization. Data Mining and

Knowledge Discovery 6, 61-82.

[7] Zaki, M. (2020). An efficient algorithm

for mining frequent sequences. Machine

Learning, 42, 31–60.

[8] Navarro, G. (2021). A Guided Tour to

Approximate String Matching. ACM

Computing Surveys., 33.

[9] Dacrema, M. F. (2021). A Troubling

Analysis of Reproducibility and Progress

in Recommender Systems Research. ACM

Transactions on Information

SystemsVolume 39, 1–49.

[10] Sun, F. L. (2019). BERT4Rec: Sequential

Recommendation with Bidirectional

Encoder Representations from

Transformer. Proceedings of the 28th

ACM International Conference on

Information and Knowledge Management,

(pp. 1441–1450).

[11] Zhou, K. W. (2020). S3-Rec: Self-

supervised learning for sequential

recommendation with mutual information

maximization. Proceedings of the 29th

ACM International Conference on

Information & Knowledge Management,

(pp. 1893–1902).

[12] Ma, R. S. (2020). Memory augmented

graph neural networks for sequential

recommendation. Proceedings of the

AAAI Conference on Artificial

Intelligence 34(04), (pp. 5045-5052).

[13] Fan, Y. M. (2021). Continuous-time

sequential recommendation with temporal

graph collaborative networks. The 30th

ACM International Conference on

Information and Knowledge Management.

[14] Gao, C. G. (2020). A state-preserving

RNN framework for sequential

recommendation. Proceedings of the 26th

ACM SIGKDD International Conference

on Knowledge Discovery & Data Mining.

[15] Gong, S. C. (2021). Contrastive self-

supervised sequential recommendation

with robust augmentation. Proceedings of

the 30th ACM International Conference

on Information and Knowledge

Management (CIKM).

[16] Li, S. W. (2020). Time interval aware self-

attention for sequential recommendation.

Proceedings of the 13th International

Conference on Web Search and Data

Mining (WSDM).

[17] Wang, S. Y. (2021). Denoising implicit

feedback for recommendation.

Proceedings of the 44th International

ACM SIGIR Conference on Research and

Development in Information Retrieval.

[18] Xie, Y. Z. (2020). Sequential

recommender system based on

hierarchical attention network.

Proceedings of the 13th ACM

International Conference on Web Search

and Data Mining (WSDM).

[19] S. Latifi, D. J. (2022). Sequential

recommendation: A study on transformers

, nearest neighbors and sampled metrics.

Inf. Sci.(Ny)., vol. 609, 660–678.

[20] Zaker, F. (2019). Harvard Dataverse, V1.

Retrieved from Online Shopping Store -

Web Server Logs:

https://doi.org/10.7910/DVN/3QBYB5.

https://doi.org/10.7910/DVN/3QBYB5

Saffari, et al./ IJDEA Vol.11, No.4, (2023), 65-78

78

[21] N.S. (2018). Retrieved from NASA:

https://www.kaggle.com/datasets/souhaga

a/nasa-access-log-dataset.

