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Accept Date: 13 January 2025         Modeling and practical solution methods in the operation of 

transportation systems ensure that the damage caused by the disaster is 

minimized. This study processes a basic pre-disaster transportation 

problem at the management level, where a decision maker decides on 

different intersection locations considering different possible vehicle 

routes. A decision management model is proposed for location selection 

and distribution operations in relief strategy with conventional fuel 

consumption estimation. In the mentioned problem, the amount of 

demand of each node depends on the extent and size of the possible 

disaster. The possibility of each arch/road being closed or open and 

heterogeneous vehicle fleets in terms of vehicle size are also observed. 

This process is expressed as probabilistic multi-objective mixed integer 

linear programming whose objectives are to minimize the total system 

cost (i.e. fixed vehicle cost, fuel cost and fixed opening cost) and the 

total travel time to the destination. According to the studies carried out 

in this particular field, the proposed decision support model is unique 

in terms of the features that are simultaneously considered. The 

application of this process deals with a case study and subsequent 

numerical analysis of a possible earthquake in Tehran. Throughout the 

paper, it has been proven that the proposed model has the potential to 

assist managers in preparing for a natural disaster. A solution approach 

based on the clustering method is also proposed to solve the larger 

problems of the problem. The effective application of this heuristic 

method is demonstrated by presenting it to real-scale problems. 
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INTRODUCTION 

Humanitarian logistics involve the set of activities 

to plan, implement, and control the flow of people 

to evacuate from a disaster area to safer places and 

the flow and storage of aid materials efficiently 

and cost-effectively (Boonmee et al., 2017; Oruc 

and Kara, 2018; Kawase and Iryo, 2023). Meeting 

the needs of the victims, such as medical 

assistance, shelter, water, food, sanitation, and 

hygiene products, as soon as possible is crucial to 

minimize losses caused by disasters (Mansoori et 

al., 2020; Burkhardt et al., 2023). However, due 

to the increasing amount of needs and victims 

who are scattered in different places during or 

immediately after a disaster, different resources 

(fleet, drivers, fuel, etc.) must be used effectively 

to help victims. Meeting demand with the fewest 

number of vehicles ensures that resources are 

available to fulfill any further unexpected 

requirements that may occur. Ensuring that the 

vehicles return to their initial points serves a 

similar purpose provided that vehicles have been 

distributed to their beginning locations due to the 

potential needs of these neighborhoods. 

Moreover, minimizing the fuel required for 

logistics activities contributes to the effective use 

of fuel resources, which can become scarce in the 

event of a disaster. 

Allocation of scarce resources in an efficient 

manner is one of the main priorities of 

humanitarian organizations (van Wassenhove and 

Pedraza Martinez, 2012). Several constraints have 

to be handled in the processes such as complete or 

partial collapse of the road infrastructure or 

transport system (Cotes and Cantillo, 2019). 

Moreover, uncertainty in the problems (e.g., 

uncertain type, time and place of disasters, 

number of victims and, correspondingly, 

needs/demand, etc.) may further complicate the 

decision processes, increasing the problem 

difficulty (Tavana et al., 2018; Cotes and Cantillo, 

2019; Bilir, 2023; Turkeš et al., 2023). 

Distribution systems need to be capable of 

handling these challenges while trying to achieve 

the main goal, meeting at least the minimum/vital 

demands of disaster victims (Sabouhi et al., 

2021). 

 

There are two basic problems in the classical 

humanitarian system. The location selection 

problem is a strategic-level decision problem 

about facility location, while the vehicle routing 

problem (VRP) is an operational-level decision 

problem about vehicle routing. These problems 

can be considered separately or simultaneously, 

the location routing problem (LRP) integrates 

these two sets of decisions.  

In summary, the LRP case addresses both 

decisions and makes location selection by 

respecting actual routing costs rather than direct 

distances of facility demand–location points 

pairs, which only allude to routing cost. Making 

these two decisions independently can lead to 

suboptimal planning outcomes, whereas 

simultaneously decision-making enables to 

improve delivery efficiency (Tordecilla et al., 

2023). The LRP aims to determine facility 

locations among the potential alternatives and to 

construct vehicle routes for distribution. In 

humanitarian logistics cases, both facility location 

and routing decisions are significant for 

shortening delivery time and reducing costs 

(Nagy and Salhi, 2007; Moshref-Javadi and Lee, 

2016). 

 This research addresses a pre-incident tactical 

relief logistics problem in which a manager 

(government, municipality, non-profit 

organization, etc.) decides on different center 

locations considering possible vehicle routes. 

Cross-dock locations refer to assembling areas for 

aid materials that will be delivered to disaster 

victims. The idea here is similar to that of 

assembling points for evacuation purposes. So, 

any available flat and containable area can be a 

potential cross-dock point. Accordingly, location 

and routing decisions need to be made 

simultaneously. Note that the routing decisions 

here correspond to the distribution of vital aid 

materials, and hence the pre-disaster plan is made 

so as to meet all of the potential vital needs of the 

victims. A decision planning is described for the 

presented problem, which deals with facility 

location selection and distribution operations in 

relief logistics with explicit estimation of fuel 

consumption under uncertain demand and road 

closure and heterogeneous vehicle fleet 
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assumptions. The heterogeneous fleet may consist 

of several vehicles that differ in size, capacity or 

operating costs. The method is expressed as a 

probabilistic bi-objective mixed integer linear 

programming (BOMILP), whose objectives are to 

minimize the system cost - which includes vehicle 

costs, fuel consumption, fixed cost and vehicle 

utilization for relief operations. (eg, 

maintenance). rent, opportunity, etc and fixed 

opening cost (e.g. area reservation for transfer 

operations) - and total travel time. The model 

accounts for potential uncertainties in disaster 

victim demand and road closures due to road 

damage. Additionally, a solution approach 

utilizing a clustering algorithm has been 

suggested for addressing cases of larger scale, 

compared to those accommodated by the 

BOMILP model. The heuristic approach 

integrates the advantageous aspects of both a 

clustering algorithm and MIP-based heuristics to 

reduce the problem size and shorten the 

computation time. The effectiveness of these 

proposed techniques and the potential advantages 

derived from their implementation are 

demonstrated through numerical analyses 

conducted on a case study and a series of larger 

instances. From this point of view, the aim of this 

study is to develop a decision support model that 

simultaneously takes into account explicit fuel 

consumption estimation, heterogeneous fleet, and 

demand and road closure uncertainties in the 

context of pre-disaster humanitarian logistics. As 

far as is known, such an attempt for LRP has not 

been made yet. 

The rest of the paper is structured as follows. The 

second section of the paper presents the relevant 

literature. Section 3 includes the problem 

definition for the addressed LRP in humanitarian 

logistics, presents the proposed model for the 

defined problem, and introduces the solution 

approach. Section 4 provides numerical analyses 

performed on a case study. Section 5 summarizes 

managerial insights. The concluding section 

presents general comments on the Study and 

future research directions. 

LITERATURE REVIEW 

This section presents a literature review to reveal 

the contribution of the study. The addressed 

problem in this study lies primarily in the area of 

humanitarian logistics. Several problem types 

have been addressed in the field of humanitarian 

logistics, such as allocation problems (Natarajan 

and Swaminathan, 2017; Chang et al., 2023), 

network problems (Zhang et al., 2022), 

production routing- inventory problems (Zargary 

and Samouei, 2022), and assignment problems 

(Rabiei et al., 2023). This study proposes a 

quantitative decision model for an LRP in 

humanitarian logistics. A number of studies 

similarly addresses LRP variants for humanitarian 

and emergency logistics (see e.g., Ahmadi et al., 

2015; Bozorgi-Amiri and Khorsi, 2016; Ghasemi 

et al., 2022; Wang et al., 2022). However, instead 

of focusing only on the problems of the 

humanitarian system, all LRP literature was 

randomly reviewed in order to gain a broader 

perspective, also studies in other fields can also be 

used in humanitarian logistics.  

As observed from the literature review, various 

studies deal with LRP variants from different 

application areas such as disaster management 

(Beiki et al., 2020a; Zhong et al., 2020), 

environmental externalities management 

(Mohammadi et al., 2013; Delfani et al., 2020; 

Vakili et al., 2021; Alamatsaz et al., 2021; Araghi 

et al., 2021), or waste management (Delfani et al., 

2020; Nikzamir and Baradaran, 2020; Saeidi-

Mobarakeh et al., 2020; Delfani et al., 2021; Zhao 

et al., 2021). In addition to varying application 

areas, several problem aspects have been studied 

as well, such as inventory (e.g., Aghighi et al., 

2021; Harati et al., 2021), allocation (e.g., Javid 

and Azad, 2010; Shiripour et al., 2015), or reverse 

flow management (e.g., Zhalechian et al., 2016). 

Researchers formulate and solve the addressed 

problems through different operations research 

approaches such as linear or nonlinear 

optimization techniques, multi-objective models, 

stochastic programming, or various heuristic 

algorithms (Panadero et al., 2023). 

Rather than relying on rough numbers, several 

studies use explicit calculations while estimating 

fuel consumption amounts from freight 

transportation operations (e.g., Rafie-Majd et al., 

2018; Li et al., 2021). Explicit calculation of 

energy consumption allows for estimating fuel 



Iranian Journal of Optimization, 15(4), 305-328 December 2023 

,2023 

 2022 

 

308 
 

Fazli / Simultaneous solution of location … 

 
cost and resulting emissions more accurately. The 

literature was also examined according to whether 

the vehicle fleet consisted of homogeneous (e.g., 

Vural et al., 2021; Aghighi et al., 2021; Wang et 

al., 2023) or heterogeneous vehicle fleet that 

comprises vehicles differing in terms of capacities 

(e.g., Delfani et al., 2021; Harati et al., 2021; Li et 

al., 2021; Hashemi et al. 2022; Khoshgehbari and 

Mirzapour Al-e-Hashem, 2023). 

The listed studies consider at least one uncertain 

parameter while addressing an LRP variant. 

Demand is the most frequently tackled 

uncertainty dimension (see e.g., Zarandi et al., 

2014; Marinakis et al., 2016; Pekel and Kara, 

2019; Zhang et al., 2020; Martinez-Reyes et al., 

2021; Tordecilla et al., 2021; Roosta et al. 2023). 

A few studies deal with uncertainty on road 

conditions and closures. For instance, Xu et al. 

(2016) present a model for 72-hour post-

earthquake Abbreviations: BOMP, bi-objective 

mathematical programming; BOMILP, bi-

objective mixed integer linear programming; 

BOMINLP, bi-objective mixed-integer non-

linear programming; CCP, chance-constrained 

programming; EL, emergency logistics; F, fuel 

consumption; H, heterogeneous fleet; HL, 

humanitarian logistics; IP, integer programming; 

LAR, locationallocation- routing; LARI, 

location-allocation-routing-inventory; LR, 

location-routing; LRI, location-routing-

inventory; MIP, mixed integer programming; 

MILP, mixed integer linear programming; 

MINLP, mixed integer nonlinear programming; 

MISP, mixed integer stochastic 

programming;MOFP,multi-objective fuzzy 

programming;MOMILP,multi-objectivemixed 

integer linear programming; MOMINLP, multi-

objective mixed integer nonlinear programming; 

MOMIP, multi-objective mixed-integer 

programming; MONLM, multi-objective 

nonlinear model; MOP, multi-objective 

programming; NLIP, nonlinear integer 

programming; SILP, stochastic integer linear 

programming; SP, stochastic programming. 

LRP that considers road condition uncertainty. 

The study places significant emphasis on road 

network reliability between points as a crucial 

performance measure. To accurately represent 

road reliability, a random fuzzy variable is 

adopted. Subsequently, an improved genetic 

algorithm is utilized to solve the model. The case 

study demonstrates the efficiency of the proposed 

model and algorithm. The aim in the study of 

Sabouhi et al. (2021) is to minimize the expected 

arrival times of relief vehicles to the affected 

areas, taking into account the possible destruction 

of roads due to disasters. The relief supplies 

required in each affected area and on disrupted 

routes are considered mas uncertain parameters. 

In the study, a two-stage stochastic programming 

model is proposed for the distribution of relief 

supplies from distribution centers to the affected 

areas. The model is applied to a case study to 

demonstrate its applicability. Zhang et al. (2021) 

proposed a model for a multi-objective LRP, 

which aims to tackle uncertainty in the 

transportation networks and the time-varying 

demands. The primary objective of the study is to 

develop a time-varying planning approach to 

effectively respond to emergency situations, 

particularly oil spills. To solve the model, the 

researchers devised a hybrid heuristic algorithm. 

Beiki et al. (2021) proposed a multi-objective 

mixed integer mathematical model for the 

location routing of a medical assistance problem 

considering route reliability. Considering several 

different routes, determining the reliability of 

each route according to the percentage of route 

failures increases the applicability and efficiency 

of the model. An epsilon constraint method is 

used to solve the model. The performance of the 

model is tested on different scenarios, and results 

demonstrate its efficiency in minimizing costs. De 

Veluz et al. (2023) proposed a model for the 

stochastic multi-objective pre-disaster LRP. The 

model uses a scenario-based approach to 

determine the minimum number of distribution 

centers and evacuation centers to minimize the 

evacuation and relief distribution time. To 

demonstrate the applicability of the model, a case 

study of typhoons in the Philippines was 

conducted. The purpose of this case study was the 

assessment of the probability of road closure after 

a typhoon. The probability of roads being 

destroyed or blocked by landslides, fallen trees, or 

flooding varies depending on the strength of the 
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typhoon. A multi-objective particle swarm 

optimization approach is used to solve the 

developed mathematical model. The results are 

expected to contribute to the planning of decision-

makers prior to a disaster. 

The related literature review shows that this study 

contributes to the field of humanitarian logistics 

by formulating and solving an LRP with explicit 

fuel consumption estimation, heterogeneous fleet, 

and demand and road closure uncertainties under 

bi-objectives of cost and time. The applicability 

of the proposed decision support model and 

potential benefits obtained from its use have been 

demonstrated on an exemplar humanitarian 

logistics problem confronted in Tehran, Iran. 

Moreover, an alternative solution method 

utilizing a clustering algorithm for addressing 

large-scale cases has been proposed. The 

performance of the heuristic has been shown on 

larger problems. To the best of the authors’ 

knowledge, this is the first attempt to address the 

LRP with the aforementioned features 

simultaneously. 

PROBLEM DESCRIPTION, 

FORMULATION, AND SOLUTION 

APPROACH 

This section includes the problem definition for 

the LRP considered in humanitarian logistics, 

presents the proposed model for the defined 

problem, and introduces a solution methodology 

designed to efficiently tackle larger instances of 

the problem. 

Formal problem description 

This study addresses a tactical-level pre-disaster 

humanitarian logistics problem where cross-dock 

locations (available empty areas that can be 

reserved and could be utilized for transfer 

operations after a disaster) and potential routes are 

determined as a preparation prior to any potential 

disasters. The corresponding probabilistic LRP is 

defined on a graph that comprises a set of 

potential facilities (cross-dock nodes) VF = {1,2, 

…, C}, a set of demand nodes VC = {1,2, …, D}, 

and sets of capacitated vehicles Kn, located 

initially at each cross-dock points n ∈ VF. The set 

of available arcs on the graph is denoted by 𝐴 =
 (𝑖, 𝑗) ∶  𝑖 ∈  𝑉𝐹 , 𝑗 ∈  𝑉𝐶  𝑜𝑟 𝑖 ∈  𝑉𝐶 , 𝑗 ∈  𝑉𝐹  ∪
𝑉𝐶. 

The problem involves two main decisions: (i) 

where to locate cross-dock facilities that will be 

employed to distribute aid materials to the 

locations of victims in case of an emergency or 

disaster and (ii) how to derive vehicle routes that 

form a distribution plan for meeting the 

minimum/vital demands of victims. The 

minimum/vital demands of the victims, which can 

be met by one or more cross-dock points, are not 

known in advance; however, occurrence 

probabilities of a predefined set of demand 

scenarios are pre-calculated based on several 

metrics such as population density, susceptibility 

to disasters, magnitude likelihoods of disasters, 

and so forth. 

Due to unexpected circumstances, roads existing 

on the logistics network may become unavailable. 

Here, it is assumed that road closure probabilities, 

Nij assigned to each arc (i, j) ∈ A, can be 

anticipated. According to the defined road closure 

probabilities, a tactical planning-level target is 

derived as constructing robust distribution plans, 

that is, the probability that the plans will be 

required to be altered in the operational planning 

phase due to road closures should be limited. In 

other words, the probability for each route that the 

route will be completed without any detour needs 

should meet a predefined target. In summary, the 

aim is to find a route for each vehicle that starts 

from and ends at its assigned parking, which 

satisfies a predefined condition on the minimum 

probability that no arcs in the route are going to 

be closed/disrupted, ɣ. 

The problem has two objectives that need to be 

considered. The first objective minimizes the total 

cost comprising fuel cost, the vehicle fixed cost, 

and the fixed opening cost. The vehicle fixed cost 

is confronted once a vehicle is used for 

distribution operations and may comprise 

maintenance cost, rental cost, opportunity cost, 

and so forth. A fixed opening cost is assumed to 

be yielded for each selected cross-dock location 

in the resultant location routing plan, related to 

various costs such as renting an area, grading the 

field, or the opportunity cost of reserving the area 

for transfer operations. The second objective 

minimizes the total travel time of distribution 

operations. The cost minimization objective 
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ensures sustaining the efficiency of the aid chain 

for the operations to be carried out, whereas the 

time minimization objective ensures meeting the 

needs of the disaster victims as soon as possible 

after the disaster occurs. 

A probabilistic bi-objective mixed integer 

linear programming model 
The introduced problem is first formulated as a 

probabilistic BOMILP model. Table 1 presents 

the notation table that shares information related 

to the sets, parameters, technical parameters, and 

variables required for the description of the 

proposed model. The proposed model has two 

objective functions (1.1, 1.2) and 16 constraint 

sets (2, …,16). The mathematical model is as 

follows:  
𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡) 

∑ ∑ ∑ ∑ 𝑃𝑠 [𝜆 (𝑦𝑛𝑚 (
𝑎𝑖𝑗

𝑔𝑖𝑗

) 𝑋𝑖𝑗𝑛𝑚

𝑠∈𝑆𝑚∈𝐾𝑛𝑛∈𝑉𝐹𝑖,𝑗∈𝐴

+ 𝛾𝛽𝑛𝑚𝑎𝑖𝑗𝑔𝑖𝑗
2 𝑋𝑖𝑗𝑛𝑚 + 𝛾𝑟(𝜇𝑛𝑚𝑋𝑖𝑗𝑛𝑚 + 𝐹𝑖𝑗𝑛𝑚𝑠)𝑎𝑖𝑗)] + 𝑙

+ ∑ 𝑧𝑖𝑌𝑖

𝑖∈𝑉𝐹

+ ∑ ∑ ∑ 𝑋𝑖𝑗𝑛𝑚𝜋𝑖𝑚 ,

𝑚∈𝐾𝑛𝑗∈𝑉𝐶:(𝑖,𝑗)∈𝐴𝑖∈𝑉𝐹

     (1.1)   

 
Table 1: Notation table 

Symbol Description 

Sets 
VF 

 
Set of potential cross-dock points {1,2, …, C} 

VC Set of demand points {1,2, …, D} 

Kn Set of vehicles at each cross-dock point 𝑛 ∈ VF {1,2, …, E} 

A Set of arcs, (𝑖, 𝑗)  ∈ VF ∪VC: i ∈ VF, j ∈ VC or 𝑖 ∈ VC, 𝑗 ∈ VF ∪ VC 

S Set of scenarios, {1,2, … , 𝐹} 

Parameters  

dis Demand of point 𝑖 ∈  𝑉𝐶  under scenario 𝑠 ∈  𝑆 in kg 

ti j Travel time from 𝑖 to 𝑗, (𝑖, 𝑗) ∈  𝐴 in second 

zi Fixed opening cost of cross-dock point, 𝑖 ∈  𝑉𝐹 in € 

ps Probability of occurrence of the demand scenario, 𝑠 ∈  𝑆 

bnm Capacity of vehicle 𝑚 ∈  𝐾𝑛 at cross-dock point n ∈ VC in kg 

ai j Distance between 𝑖 and j, (𝑖, 𝑗) ∈  𝐴 𝑖𝑛 𝑘𝑚 

gi j Vehicle speed between 𝑖 and 𝑗, (𝑖, 𝑗) ∈  𝐴 𝑖𝑛 𝑚
𝑠⁄  

πim Fixed cost of using vehicle 𝑚 ∈  𝐾𝑛 from cross-dock point 𝑖 ∈ VF in € 

Nij Probability of road closure, (𝑖, 𝑗) ∈  𝐴, [0 − 1) 

ɣ Probability target that no arcs in each obtained route is going to be closed/disrupted, (0,1) 

l Fuel cost in € 

Technical parameters  

ynm Technical parameter, knmVnmNnm 

βnm Technical parameter, 0.5CnmdAnmρ in kg 

μnm Technical parameter, curb weight of vehicle in kg 

λ Technical parameter, ξ/κψ 

γ Technical parameter, 1/(1000 ηntf) in €/liter 

r Technical parameter, 𝜏 +  𝛿𝑠𝑖𝑛𝜑 +  𝛿𝐻𝑟𝑐𝑜𝑠 𝜑 

Decision variables  

Xi jnm 
Binary variable equals to 1 if vehicle 𝑚 ∈ Kn travels from cross-dock point 𝑛 ∈ VF, in arc 

(𝑖, 𝑗)  ∈  𝐴, and 0 otherwise, {0,1} 

Yi Binary variable equals to 1 if cross-dock points i ∈ VF opens and 0 otherwise, {0,1} 

Fi jnms 
Amount of load carried by vehicle m ∈ Kn from cross-dock point 𝑛 ∈ VF, in arc (𝑖, 𝑗)  ∈  𝐴 

under scenario 𝑠 ∈  𝑆 in kg 

Qinms 

Amount of load delivered by vehicle 𝑚 ∈ Kn from cross-dock point 𝑛 ∈ VF to demand 

point 

𝑖 ∈ VC, under scenario s ∈ S in kg 

 

 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 (𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑎𝑣𝑒𝑙 𝑇𝑖𝑚𝑒) 
 

∑ ∑ ∑ 𝑋𝑖𝑗𝑛𝑚t𝑖𝑚𝑠

𝑚∈𝐾𝑛𝑖,𝑗∈𝐴𝑖∈𝑉𝐹

,                      (1,2) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 

∑ ∑ 𝑄𝑖𝑛𝑚𝑠  =  𝑑𝑖𝑠 ,

𝑚∈𝐾𝑛𝑛∈𝑉𝐹

  ∀𝑖 ∈  𝑉𝐶 , 𝑠 ∈  𝑆,   (2) 

∑ ∑ 𝐹𝑖 𝑗𝑛𝑚𝑠

𝑚∈𝐾𝑛𝑗∈𝑉𝐶:(𝑖,𝑗)∈𝐴

≤ ∑ 𝑏𝑛𝑚𝑌𝑖,

𝑚∈𝐾𝑛

 

∀𝑖 ∈  𝑉𝐹 , 𝑠 ∈  𝑆, 𝑛 =  𝑖,                            (3) 
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∑ ∑ 𝑋𝑖𝑗𝑛𝑚

𝑚∈𝐾𝑛𝑗∈𝑉𝐹 ∪𝑉𝐶:(𝑖,𝑗)∈𝐴

≤ 0 

∀𝑖 ∈  𝑉𝐹  , 𝑛 ∈  𝑉𝐹  , 𝑛 ≠ 𝑖 ,                                             (4) 

∑ ∑ 𝑋𝑖𝑗𝑛𝑚

𝑚∈𝐾𝑛𝑗∈𝑉𝐹 ∪𝑉𝐶:(𝑖,𝑗)∈𝐴

≤ 0   ∀ 𝑖 ∈  𝑉𝐹  , 𝑛 ∈  𝑉𝐹  , 𝑛

≠  𝑖,                                                       (5) 

∑ 𝑋𝑖𝑗𝑛𝑚

𝑗∈𝑉𝐹 ∪𝑉𝐶:(𝑖,𝑗)∈𝐴

≤ 𝑌𝑖  , 

∀𝑖 ∈  𝑉𝐹  , 𝑛 ∈  𝑉𝐹  , 𝑛 =  𝑖, 𝑚 ∈ 𝐾𝑛 ,                       (6) 

∑ 𝑋𝑖𝑗𝑛𝑚

𝑗∈𝑉𝐹 ∪𝑉𝐶:(𝑖,𝑗)∈𝐴

= ∑ 𝑋𝑖𝑗𝑛𝑚

𝑗∈𝑉𝐹 ∪𝑉𝐶:(𝑖,𝑗)∈𝐴

 , 

∀𝑖 ∈  𝑉𝐶 , 𝑛 ∈  𝑉𝐹  , 𝑚 ∈  𝐾𝑛 ,                                        (7) 
 

∑ 𝑋𝑖𝑗𝑛𝑚

𝑗∈𝑉𝐶:(𝑖,𝑗)∈𝐴

= ∑ 𝑋𝑗𝑖𝑛𝑚

𝑗∈𝑉𝐶:( 𝑗,𝑖)∈𝐴

 ,

∀𝑖 ∈  𝑉𝐹  , 𝑛 =  𝑖, 𝑚 ∈  𝐾𝑛 ,           (8) 

 

∑ 𝑋𝑖𝑗𝑛𝑚

𝑗∈𝑉𝐹 ∪𝑉𝐶:(𝑖,𝑗)∈𝐴

= 1 , 

∀𝑖 ∈  𝑉𝐹  ∪ 𝑉𝐶 , 𝑛 ∈ 𝑉𝐹  , 𝑚 ∈  𝐾𝑛 ,                              (9) 

 

∑ 𝐹𝑖 𝑗𝑛𝑚𝑠

𝑗∈𝑉𝐹 ∪𝑉𝐶:(𝑖,𝑗)∈𝐴

= ∑ 𝐹𝑖 𝑗𝑛𝑚𝑠  −  𝑄𝑖𝑛𝑚𝑠

𝑗∈𝑉𝐹 ∪𝑉𝐶:( 𝑗,𝑖)∈𝐴

 

∀𝑖 ∈  𝑉𝐶 , 𝑠 ∈  𝑆, 𝑛 ∈  𝑉𝐹  , 𝑚 
∈  𝐾𝑛 ,                                                     (10) 

𝐹𝑖 𝑗𝑛𝑚𝑠  ≤  𝑋𝑖𝑗𝑛𝑚𝑏𝑛𝑚, 

∀𝑠 ∈  𝑆, 𝑛 ∈  𝑉𝐹  , 𝑚 ∈ 𝐾𝑛 , (𝑖, 𝑗)  ∈  𝐴,               (11) 

 

∏ (1 −  𝑁𝑖𝑗  𝑋𝑖𝑗𝑛𝑚  ) ≥  ɣ,

(𝑖,𝑗)∈𝐴

 

∀ 𝑛 ∈  𝑉𝐹  , 𝑚 ∈  𝐾𝑛 ,                                                        (12) 

𝑋𝑖𝑗𝑛𝑚  ∈  {0, 1},   ∀ (𝑖, 𝑗)  ∈  𝐴, 𝑛 ∈  𝑉𝐹  , 𝑚 ∈  𝐾𝑛 , 𝑠 

∈  𝑆,                                                       (13) 

𝑌𝑖 ∈  {0, 1} ,     ∀𝑖 ∈  𝑉𝐹  ,                                              (14) 

𝑌𝑖  𝐹𝑖 𝑗𝑛𝑚𝑠  ≥  0,   

  ∀ (𝑖, 𝑗)  ∈  𝐴, 𝑛 ∈  𝑉𝐹  , 𝑚 ∈  𝐾𝑛 , 𝑠 ∈  𝑆,             (15) 

𝑄𝑖𝑛𝑚𝑠  ≥  0,     
∀𝑖 ∈  𝑉𝐹  , 𝑛 ∈  𝑉𝐹  , 𝑚 ∈  𝐾𝑛 , 𝑠 ∈  𝑆.                         (16) 

The objective function (1.1) includes fuel cost, 

fixed opening cost (i.e., reserving the area for 

transfer operations), and vehicle fixed cost of 

employing a vehicle for distribution operations 

(i.e., maintenance, rental, opportunity, etc.). Here, 

fuel consumption amounts are estimated by the 

approach used by Barth et al. (2005). The 

objective function (1.2) calculates the total travel 

time of the distribution operation. Constraint (2) 

guarantees that the demand points are satisfied in 

all scenarios. The total amount of cargo sent from 

any point in the region with the limit (3) does not 

exceed the capacity of that point. With the help of 

constraints (4) and (5), vehicles return to the 

cross-dock points where they were initially 

located. Constraint (4) ensures that only the 

vehicles that belong to the particular cross-dock 

point leave the cross-dock point, preventing all 

other vehicles’ departures. Constraint (5) 

similarly ensures that only the vehicles that 

belong to the particular cross-dock point arrive at 

the cross-dock point, preventing all other 

vehicles’ arrivals. Constraint (6) prevent flow 

from unopened cross-dock points. Constraint set 

(3) and constraint set (11) include constraint set 

(6). However, constraint set (6) is used to tighten 

the formulation of the model and accelerate the 

convergence to the optimal solution. Flow 

conservation in the logistics network is ensured 

by constraints (7) and (8). Constraint (9) enables 

that each vehicle can visit each point at most once. 

The load of each vehicle in all scenarios can be 

tracked by constraint (10). Constraint (11) ensures 

that no cargo is transported on an arc that is not 

traversed by any vehicle. The minimum 

probability condition that no arcs in the route are 

going to be closed/disrupted is imposed by 

constraint (12). Constraints (13)–(16) represent 

the restrictions imposed on the decision variables. 

    Note that constraint (12) is not linear. Hence, 

the following linearization steps have been 

performed in order to have a linear constraint set. 

∏ (1 − 𝑁𝑖𝑗  𝑋𝑖𝑗𝑛𝑚  )  =

(𝑖,𝑗)∈𝐴

  ∏ (1 −  𝑁𝑖𝑗)𝑋𝑖𝑗𝑛𝑚       ,

(𝑖,𝑗)∈𝐴

 

 ∀ 𝑛 ∈  𝑉𝐹  , 𝑚 ∈  𝐾𝑛                                                   (17) 

 

∏ (1 −  𝑁𝑖𝑗  𝑋𝑖𝑗𝑛𝑚  )  ≥  ɣ

(𝑖,𝑗)∈𝐴

, ∀ 𝑛 ∈ 𝑉𝐹  , 𝑚 

∈ 𝐾𝑛;                                             (17,1) 

 

∏ (1 − 𝑁𝑖𝑗  𝑋𝑖𝑗𝑛𝑚 )  ≥  ɣ

(𝑖,𝑗)∈𝐴

, ∀ 𝑛 ∈  𝑉𝐹  , 𝑚 

∈  𝐾𝑛                                            (17,2) 

 

∑ 𝑋𝑖𝑗𝑛𝑚 log(1 − 𝑁𝑖𝑗  ) ≥ log(ɣ) ,

(𝑖,𝑗)∈𝐴

     

∀ 𝑛 ∈  𝑉𝐹  , 𝑚 ∈  𝐾𝑛 .                                                 (17,3) 

In Eq. (17), since 𝑋𝑖𝑗𝑛𝑚 are binary decision 

variables, the variables can be moved to the power 

of the expression without resulting in any 
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changes. Hence, the constraints on aggregate 

road closure probabilities in (17.1) can be updated 

as (17.2). Then, for power loss in constraints, the 

logarithm of both left and right sides of the 

equation is considered (17.3). Constraint (17.3) 

presents the final version of the constraint set on 

the aggregate road closure probabilities. 

     As a result, the probabilistic BOMILP 

comprises the objective functions (1.1) and (1.2) 

and the constraints (2)–(11), (13)–(16), and 

(17.3). The following section presents a solution 

approach to address larger instances. 

Clustering-based solution approach 

A solution method that employs a route-based 

myopic clustering idea has been proposed to 

implement the BOMILP model in particularly 

large-sized instances. The clustering approach in 

routing problems is traditionally based on 

partitioning the points to be visited into clusters 

according to certain characteristics and 

determining routes separately for each cluster 

before combining them (Erdo˘gan and Miller-

Hooks, 2012; Sutrisno and Yang, 2023). 

Partitioning the points to be visited reduces the 

problem size and shortens the computation time. 

As a result, the BOMILP model can be used in 

any problem size since the size of subproblems 

(clusters) will be user-defined based on the 

computational availabilities. 

     The developed solution approach, which is 

based on the idea of solving large-sized problems 

by breaking them down into smaller parts, for the 

addressed problem can be summarized as follows: 

 

• The clustering process starts with assigning one 

potential cross-dock point to each cluster. The 

process initially checks the travel times between 

potential cross-dock points. One cross-dock, the 

total distance (in terms of travel time) of which is 

the highest from selected cross-docks for other 

clusters, is selected as a starting node of a cluster 

to form initial routes with one node (depot, cross-

dock, depot). 

• Cross-docks are iteratively added to these 

routes. In each iteration, all remaining cross-dock 

points are checked for each arc (𝑖, 𝑗) in each route 

whether traveling from i to j indirectly through the 

cross-dock increases the total travel time the least 

min (tin + tn j − ti j), where n represents candidate 

cross-docks, and (𝑖, 𝑗) represents current arcs). 

The cross-dock point with minimum cost increase 

is added to the determined route, replacing the 

determined arc. 

• To prevent too large clusters that would remain 

unsolvable with the BOMILP model, each cross-

dock route within a cluster can be at most twice 

the average route length. 

• Once cross-docks are clustered into routes, 

demand points are added to the routes using the 

same least-time-increase approach. The demand 

points here can be added to clusters subject to the 

total capacity of the cross-docks in the route. Note 

that there still will be a single milk run in each 

cluster, as the purpose is not to form routes but 

only is to form clusters. 

• The problem is solved by addressing each 

cluster as a sub-problem in the BOMILP model. 

 

Algorithm 1 

Initialize parameters 

Define number of clusters, Nc 

Define number of cross-dock points, Ncd 

Define number of demand points, Nd 

Define maximum route length 

Define soft route length limit 

Define soft route length violation penalty coefficient, pen 

Define starting cross-docks set, SN involving the most distant Nc cross-dock nodes from each other 

Insert depot to SN 

For n = 1 to Ncd 

Insert to SN cross-dock node m satisfying ■(max@m)∑▒t_nm  

Assume that there are Nc routes that start from depot visiting one cross-dock node from SN and return to depot 

Iteratively insert other cross-docks that myopically increase the traveled time the least 
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     For n = 1 to Ncd - Nc 

        For sn = 1 to Nc 

           If route sn reached to maximum route length, break 

Let Z be the number of arcs in route sn 

For z = 1 to Z (for each arc in route sn) 

Let i,j be the starting and ending nodes of arc z 

Calculate the travel time increase tinc = tin + tn j - ti j 

If route length is reached to soft route length limit, multiply tinc with the penalty coefficient 

(tinc = tinc * pen) 

       If minimum tinc, record which cross-dock is added to which arc of which route 

Add the latest recorded insertion plan 

Iteratively insert demand nodes that myopically increase the traveled time the least 

     For n = 1 to Nd 

        For sn = 1 to Nc 

If route sn reached to maximum demand capacity of its cross-docks, break 

Let Z be the number of arcs in route sn 

For z = 1 to Z (for each arc in route sn) 

Let i,j be the starting and ending nodes of arc z 

Calculate added the travel time increase tinc = tin + tn j - ti j 

If minimum tinc, record which demand node is added to which arc of which route 

Add the latest recorded insertion plan 

 

 

NUMERICAL ANALYSES 

This section presents the application of the 

proposed model to a humanitarian logistics 

problem based on real data obtained in Tehran, 

Iran. First, the case description is presented and 

then the numerical analysis is presented. 

Base case data description 

Many earthquakes have occurred throughout 

history because many fault lines pass through 

Iran. These earthquakes had destructive effects. 

Using the studies, nine locations out of 81 

potential intersection point locations (VF = 

{1,2,...,9}) are selected, which are expressed as 

empty areas in the kartal region. 20 

neighborhoods (VC= {1,2, …, 20}) in the region 

were considered as demand points. It is assumed 

that there is one vehicle at each cross-dock point 

for delivery operations: a small vehicle at F1, F4, 

F7. A medium vehicle in F2, F5, F8. And a large 

vehicle in F3, F6, F9 be available. 

The demand values of the points have been 

determined by taking into account the 

"Earthquake Potential Loss Estimation Booklet". 

Using a table called "number of houses damaged 

by earthquake", four equally probable scenarios 

(ps = 0.25, 𝑠 ∈  𝑆, | 𝑆|  =  4) are designed 

according to the damage status of the buildings. 

In a possible Tehran earthquake with an 

instantaneous magnitude of 7.5. The damage 

conditions of the buildings are severe damage, 

severe damage, moderate damage and minor 

damage. Based on each scenario, the amount of 

demand (dis) for providing aid packages to 3.75 

people (estimated in the study of Unal, 2011) has 

been calculated for each household. In addition, 

the weight of each aid package is considered to be 

1 kg per person when calculating the demand 

values. The obtained figures are rounded after 

calculation. 

    The data regarding the distance among all 

cross-dock and demand points (ai j) are arranged 

by considering the connection status between the 

roads because not all roads are interconnected. 

The speed parameter (𝑔 𝑖 𝑗) is uniformly random 

in a range of 50–90 km/h. Travel time (𝑡 𝑖 𝑗) was 

calculated using the distance and speed 

parameters. 

    The road closure probabilities in the network 

were calculated based on the map prepared by 

considering the estimated number of damaged 

buildings when an earthquake of Mw = 7.5 

occurred in the district. Arbitrary road closure 

probability indicators are assigned to each node, 

according to the color of the area the node belongs 
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to (i.e., 0 to the lightest color, which refers to no 

road closure, 0.04, 0.05, and 0.06 to the darker 

colors in line with the higher number of road 

closure expectations). Then, road closure 

probabilities are calculated for each arc (Ɲi j) as 

average of road closure probability indicators of 

starting (𝑖) and ending (𝑗) nodes of the arc. The 

probability target that no arcs in each route of 

each vehicle are going to be closed/disrupted (Ɣ) 

is assumed to be 60%.   

   The initial fixed opening fee for each potential 

cross-dock point is $150. There is direct transport 

between the depot and berthing points. The costs 

of this direct shipment will be added to the initial 

opening cost if the cross-dock point is used. When 

calculating transportation costs here, cars assume 

20 liters of fuel per 100 km at a fuel price of $1.57 

per liter. 

Base case solution 

The probabilistic BOMILP comprises two 

objective functions, which can be solved by 

means of ∈-constraint method (Haimes, 1971). 

This section first introduces the solution 

approach, and then the results for the base case are 

presented. This approach has also been utilized in 

several studies involving multi-objective models 

within the realm of humanitarian logistics 

(Kimms and Maiwald, 2018; Oruc and Kara, 

2018; Zhang and Chen, 2023). 

∈-constraint-based solution approach 

The ∈-constraint method facilitates the generation 

of Pareto optimal solutions in multi-objective 

optimization problems. This approach involves 

treating each objective function iteratively as the 

primary focus while formulating the remaining 

objectives as inequality constraints (Kazanc et al., 

2021; Curtis et al., 2023). 

The base case is addressed through the solution 

of two ∈-constraint variants derived from the 

proposed model. In the first variant, the objective 

is to minimize the total cost, subject to the 

constraint on the maximum travel time (∈1). 

Conversely, the second variant focuses on 

minimizing the total travel time required for 

delivery operations, with a constraint imposed on 

the maximum cost (∈2). 

 
Table 2: The summary results for the base case 

KPIs Total cost minimizationa Total travel time 

minimizationb 

Total fixed opening cost (€) 588.1 1001.2 

Total vehicle cost (€) 189.9 284.3 

Total fuel cost (€) 68.6  72.9 

Total cost (€) 846.7  1358.4 

Total travel time (seconds) 6954.1  5317.5 

Opened cross-docks F5, F6, F9  F1, F4, F5, F6, F9 

 

Total cost minimization variant   Total travel time minimization variant 

Minimize total cost (1.1):   Minimize total travel time (1.2): 

S.t.   S.t. 

Constraints (2)–(11), (13)–(16), and (17.3)   Constraints (2)–(11), (13)–(16), and (17.3) 

The total travel time (1.2)≤ ∈1 (18)  The total cost (1.1)≤ ∈2 (19) 

 

The probabilistic BOMILP model offers two 

variants: the total cost minimization variant 

incorporates the objective function (1.1) focused 

on minimizing the total cost, along with 

constraints (2)–(11), (13)–(16), (17.3), and (18). 

On the other hand, the total travel time 

minimization variant features the objective 

function (1.2) aimed at minimizing total time, 

along with the set of constraints (2)–(11), (13)–

(16), (17.3), and (19). 

      The initial values of ∈1 and ∈2 can be 

established by assigning suitably large numerical 

values to them. Subsequently, the respective 

values can be updated at fixed intervals during a 

Pareto analysis. IBM ILOG CPLEX Optimization 

Studio 20.1 has been used to formulate and solve 

the problem. 

a The optimal solution’s computation time is approximately 17 minutes. 
b The optimal solution’s computation time is approximately two minutes. 
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Numerical results for the base case 

Table 2 presents the summary results in terms of 

the defined Key Performance Indicators (KPIs).  

The results reveal that the type of objective 

function employed alters the location and routing 

decisions. The time minimization objective 

requires opening relatively more facilities to 

reduce travel times, though total cost increases 

due to fixed costs. The cost minimization 

objective ensures finding a delivery plan with a 

significantly reduced total cost. Table 3 presents 

the routes obtained in both scenarios. 

According to the results, the desired probability 

target (Ɣ), which is set to 60%, is satisfied for all 

vehicle routes since the aggregate route non-

closure probability for each route is higher than 

0.6. 

Note that the proposed BOMILP model can be 

easily adapted to respect additional scenario 

pending parameters and decisions. The sample 

model respects travel time, vehicle speed and road 

closure probability parameters and scenario-

dependent routing decisions. 

 

Table 3: Obtained routes for the base case                                                      

 
 Objectives Route # Aggregate 

route 

non-closure 

probabilities 

Delivery plans         

Total cost Route1 0.76  F5 DP11 DP3 DP12 DP7 F5     

minimization Route2 0.63  F6 DP10 DP15 DP8 DP2 DP19 DP16 DP18 DP20 F6 
 Route3 0.68  F9 DP17 DP5 DP9 DP4 DP14 DP6 DP13 DP1 F9 

Total travel time Route4 0.91  F1 DP19 F1        

minimization Route5 0.91  F4 DP13 F4        
 Route6 0.76  F5 DP10 DP12 DP3 DP11 F5     

 Route7 0.66  F6 DP20 DP18 DP16 DP2 DP8 DP7 DP15 F6  

 Route8 0.71  F9 DP1 DP6 DP14 DP4 DP9 DP5 DP17 F9  

 

Pareto analysis between the total travel time 

and total cost objectives 

The set of Pareto efficient solutions for the 

considered problem is obtained by using the ∈- 

constrained method. This subsection conducts a 

trade-off analysis between the objectives of total 

travel time and total cost. To achieve this, the 

value of ∈1, specified for the total travel time ∈- 

constraint, is varied within the range of 5400 to 

7000 seconds, with intervals of 100 seconds. 

Note that the Pareto efficient solutions obtained 

are mutually indifferent. Trade-offs exist among 

them, indicating that to enhance performance in 

terms of one dimension, compromises must be 

made in the other one. The results show the cost 

of decreasing total distribution duration 

incrementally. The decision-makers may set the 

∈-constraints according to their resources and 

urgency assessments for aid distribution. Note 

that the lowest total cost and travel time values 

that could be obtained are €846.7 and 5317.5 

seconds, respectively. The reason that delivery 

plans with relatively lower total travel times have 

higher total logistics costs is the fact that to reduce 

total travel time, more cross-dock points are 

required, resulting in higher opening costs. 

The decision-makers may set the ∈-constraints 

according to their resources and urgency 

assessments for aid distribution. Note that the 

lowest total cost and travel time values that could 

be obtained are €846.7 and 5317.5 seconds, 

respectively. The reason that delivery plans with 

relatively lower total travel times have higher 

total logistics costs is the fact that to reduce total 

travel time, more cross-dock points are required, 

resulting in higher opening costs. 

Analysis on the effects of different aggregate 

route non-closure probabilities 

The constraint set (17.3) in the model allows to 

take route closure probabilities into account. In 

the base case, an optimal delivery plan is obtained 

by assuming the minimum probability that no arcs 

in the route are going to be closed/disrupted (Ɣ) 

as 0.6. In this section, delivery plans are obtained 

by considering three additional settings where Ɣ 

is set to 0.5, 0.7 and 0.8. Table 5 presents the 
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summary results for different aggregate route 

non-closure probabilities. 

 

 
Table 4: Summary results for different aggregate route non-closure probabilities 

         Total cost minimization Total travel time minimization 

KPIs ɣ = 0.5a  ɣ = 0.6a ɣ = 0.7b ɣ = 0.8c  ɣ = 0.5d ɣ = 0.6d ɣ = 0.7d ɣ = 0.8e 

Total fixed opening cost (€) 588.1  588.1 763.2 1173.2 1001.2 1001.2 1176.3 1601.9 

Total vehicle cost (€) 189.9  189.9 237.1 339.4 284.3 284.3 331.5 454.0 

Total fuel cost (€) 68.6 68.6 72.8 72.8 98.9 72.9 72.9 74.4 

Total cost (€) 846.7  846.7 1073.2 1611.5 1358.4 1358.4 1582.2 2152.6 

Total travel time (seconds) 6954.1   6954.1 8050.2 12863 5317.5 5317.5 5685.9 7695.0 

Opened cross-docks F5, F6, F5, F6, F5, F6, F1, F2, F1, F4, F1, F4, F1, F4, F1, F2, 

 F9 F9 F7, F9 F3, F5, F5, F5, F3, 

    F5, F6, F9 F6, F9 F6, F4, 

    F6, F7   F7, F9 F5, 

        F6, 

        F7, F9 

 

The effects of respecting vehicle heterogeneity 

In the base case, a heterogeneous vehicle fleet is 

employed, and it is assumed that in facilities, 

there are small, medium, and large vehicles with 

different vehicle capacities, costs, and fuel 

consumption rates. This subsection provides an 

analysis to compare the base case results with the 

results obtained under the assumption that all 

vehicles are medium-sized. Tables 5 and 6, 

respectively, present the KPI values and 

distribution plans under homogeneous and 

heterogeneous vehicles. 

      As can be observed from the results, the use 

of only medium-sized vehicles rather than a 

heterogeneous fleet for delivery operations 

increases the number of vehicles required for both 

objectives (see Table 6). This change causes 

delivery plan updates and an increase in the total 

cost and travel times. When the heterogeneous 

vehicle fleet is used under cost minimization, the 

model employs large, high-capacity vehicles in 

long routes in order to reduce travels to and from 

cross-dock points, and thus fixed opening, fixed 

vehicle, and fuel costs. The use of large vehicles 

provides an advantage also in the case of time 

minimization through saving time by visiting 

points close to each other in a single visit, while 

small vehicles can save fuel on short routes. 

Therefore, in both cases, the use of the 

heterogeneous vehicle fleet has the potential to 

provide advantages to the decision maker. 

 

 

Table 5: Summary results for homogeneous and heterogeneous vehicles 
  Total cost minimization  Total travel time minimization 

KPIs Heterogeneous Homogeneousa  Heterogeneous Homogeneousb 

Total fixed opening cost (€) 588.1 957.2 1001.2 1386.0 

Total vehicle cost (€) 189.9 275.3 284.3 385.4 

Total fuel cost (€) 68.6 57.4 72.9 59.6 

Total cost (€) 846.7 1290.0 1358.4 1831.0 

Total travel time (second) 6954.1 7230.8 5317.5 5508.8 

Opened cross-docks F5, F6, F9 F1, F2, F5, F6, F1, F4, F5, F1, F2, F4, F5, 

  F7 F6, F9 F6, F7, F9 

 

Table 6: Distribution plans under homogeneous and heterogeneous vehicles 

aThe optimal solution’s computation time is approximately 17 minutes. 
bThe feasible solution that is obtained with a 2.81% optimality gap after 12 hours of computation time. 
cThe feasible solution that is obtained with a 3.2% optimality gap after 12 hours of computation time. 
dThe optimal solution’s computation time is approximately 2 minutes. 
eThe feasible solution that is obtained with a 15.29% optimality gap after 12 hours of computation time. 

aThe optimal solution’s computation time is approximately 20 minutes. 
bThe optimal solution’s computation time is approximately 2 minutes. 
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Decomposing location and routing decisions 

The proposed model allows to make 

interdependent location and routing decisions 

simultaneously. In order to reveal the benefits of 

such simultaneous decision making, this section 

provides a comparison to a sequential decision-

making approach, where location decisions are 

given first, then these decisions are fixed and 

routing decisions are given accordingly. In order 

to decide on the cross-dock locations, a direct 

distribution is assumed between cross-docks and 

demand points (i.e., departs from the cross-dock 

point, visits one customer, and returns back to the 

cross-dock point) 

 
Table 7: The summary results for the simultaneous and sequential approaches under the cost minimization 

KPIs Simultaneous approacha Sequential approachb 

Total fixed opening cost (€) 588.1 788.4 

Total vehicle cost (€) 189.9 229.2 

Total fuel cost (€) 68.6 68.7 

Total cost (€) 846.7 1086.4 

Total travel time (seconds) 6954.1 7747.9 

Opened cross-docks F5, F6, F9 F4, F6, F7, F9 

 

 

 

in order to eliminate routing decisions. For this 

purpose, eight vehicles are assumed to exist at 

each cross-dock point, and constraints (20) and 

(21) were added to the model. 
𝑋𝑖𝑗𝑛𝑚 = 𝑋𝑖𝑗𝑛𝑚∀𝑖 ∈ 𝑉𝐹 , 𝑗 ∈ 𝑉𝐶 , 𝑛 = 𝑖, 𝑚 ∈ 𝐾𝑛 , (𝑖, 𝑗) ∈

𝐴, (𝑗, 𝑖) ∈ 𝐴                                                                 (20) 

∑ ∑ 𝑋𝑖𝑗𝑖1  ∗  𝑏𝑛1

𝑗∈𝑉𝐶:(𝑖,𝑗)∈𝐴𝑖∈𝑉𝐹

≥ ∑ 𝑑 𝑖𝑠∀𝑠 ∈  𝑆.

𝑖∈𝑉𝐶

                             (21)  

Constraints (20) ensure that direct distribution 

occurs between cross-docks and demand points. 

Constraint (21) allows to have sufficient amount 

of vehicle capacity to satisfy demand at each 

scenario under direct distribution. 

The sequential approach suggests to open F4, F6, 

F7, and F9. Then, these cross-dock points are 

fixed and the model is re-run by removing the 

constraints (20) and (21) for taking the routing 

decisions. As a result, a different delivery plan for 

the vehicles is obtained, compared to that of the 

base case. Table 7 presents the summary results 

for the comparison. 

The results show that the use of the sequential 

approach results in a total cost increase of 28%, 

which reveals the benefit of optimizing location 

and routing decisions simultaneously. The 

Total cost Heterogeneous Route 1 F5 DP11 DP3 DP12 DP7 F5     

minimization  Route 2 F6 DP10 DP15 DP8 DP2 DP19 DP16 DP18 DP20 F6 

  Route 3 F9 DP17 DP5 DP9 DP4 DP14 DP6 DP13 DP1 F9 

 Homogeneous Route 1 F1 DP19 F1        

  Route 2 F2 DP17 DP5 DP9 DP4 DP13 DP1 F2   

  Route 3 F5 DP11 DP10 DP15 DP7 F5     

  Route 4 F6 DP8 DP2 DP16 DP18 DP20 F6    

  Route 5 F7 DP6 DP14 DP3 DP12 F7     

Total travel Heterogeneous Route 1 F1 DP19 F1        

time  Route 2 F4 DP13 F4        

minimization  Route 3 F5 DP10 DP12 DP3 DP11 F5     

  Route 5 F6 DP20 DP18 DP16 DP2 DP8 DP7 DP15 F6  

  Route 6 F9 DP1 DP6 DP14 DP4 DP9 DP5 DP17 F9  

 Homogeneous Route 1 F1 DP19 DP2 DP16 F1      

  Route 2 F2 DP9 DP5 DP4 DP1 F2     

  Route 3 F4 DP13 F4        

  Route 5 F5 DP11 DP10 F5       

  Route 6 F6 DP20 DP18 DP8 DP7 DP15 F6    

  Route 7 F7 DP12 DP3 DP14 DP6 F7     

  Route 8 F9 DP17 F9        

aThe optimal solution’s computation time is approximately 17 minutes. 
bThe optimal solution computation time is approximately 10 minutes. 
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comparison is further extended with a larger-sized 

instance. The new instance comprises 15 cross-

docks and 36 demand points. The distance data 

are obtained from the Pollution-Routing Problem 

Instance Library (Pollution-Routing Problem, 

2022) using UK50_01 instance. Similar to the 

base case, the speed parameter is uniformly 

random between 50 and 90 km/h, and travel time 

is calculated using the distance and speed 

parameters. The road closure probability for each 

arc is uniformly random between 0.04 and 0.06. 

The rest of the parameters are the same as the base 

case.  

The analysis on the larger-sized instance shows 

that similar outcomes were achieved, compared to 

the base case. The analysis also reveals the benefit 

of using the BOMILP model, compared to the 

sequential approach, particularly under the cost 

minimization objective. 

 
Table 8: The summary results for the clusteringbased solution approach 

Total cost minimizationa   

Larger 

problems 

 

The BOMILP model 

 

The clustering solution approach (€) 

UK100−01 No solution found 2666.2 

UK100−02 No solution found 2722.3 

UK100−03 No solution found 2970.0 

UK100−04 No solution found 2811.0 

UK100−05 No solution found 3533.0 

 

 

 

 
Performance of the clustering-based solution 

approach 

This section examines the effectiveness of the 

approach, with a specific focus on evaluating 

costs in larger instances. The expanded instances 

consist of 20 cross-docks and 80 demand points, 

utilizing distance data sourced from the Pollution-

Routing Problem Instance Library through the 

UK100_01-UK100_05 instance. The rest of the 

used parameters are the same as the base case. 

In the clustering process, the 100 points are 

divided into three distinct clusters based on their 

mutual distances. Subsequently, the problem is 

addressed and solved independently for each 

cluster, resulting in specific outcomes. Table 8 

provides a comprehensive summary of the results 

obtained through the clustering-based solution 

approach. 

      The results obtained underscore the 

effectiveness of the solution approach applied to 

the larger instances. Noteworthy is the better 

performance demonstrated by the solution 

approach, even in cases where the model fails to 

produce feasible solutions. This indicates that as 

the problem size increases, the solution approach 

proves to be more efficient and reliable, 

highlighting its effectiveness in addressing larger-

sized problems. 

 

MANAGERIAL INSIGHTS 

The analyses conducted using the proposed model 

for the LRP confronted in humanitarian logistics 

operations provide some valuable managerial 

insights to organizations operating in this critical 

field. The integration of location selection and 

routing decisions increases the complexity of the 

problem and the LRP is among the key decision 

problems that play a vital role in designing 

efficient humanitarian aid logistical activities. 

The proposed model for the addressed problem 

here takes the heterogeneous vehicle fleet, 

demand uncertainty, and road closures into 

account. The use of a comprehensive emission 

model proposed by Barth et al. (2005) allows us 

to estimate better fuel costs. 

In order to ensure the efficacy of the aid chain 

during disaster relief operations, cost reduction, 

one of the objectives of the model, is important, 

as resources are most likely to be limited and 

require careful control while planning operations. 

Abbreviation: BOMILP, bi-objective mixed integer linear programming. 
aBoth the optimization model and the clustering solution approach were executed for a duration 

of 12 hours 
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However, merely focusing on cost reduction is 

inadequate to fulfill the fundamental goal of 

humanitarian aid activities, which is to minimize 

losses and maximize assistance to affected 

communities. Therefore, the proposed model 

incorporates an additional important objective, 

which is the minimization of total travel time. 

Adopting the two objective functions, the model 

allows to facilitate an assessment of trade-offs 

between the prominent KPIs, cost (resource 

usage) and time, in humanitarian logistics. While 

constructing a pre-disaster plan, the knowledge of 

such trade-offs may help the decision-makers to 

understand the requirements and potential results 

of a disaster case and invest and prepare 

accordingly. More specifically, the model 

provides information on the potential service time 

required for aid distribution, the number of cross-

dock points to reserve, fleet size and structure to 

invest in, and how much extra resources are 

needed to decrease the service time. 

Recognizing the dynamic nature of disasters and 

their unpredictable impacts, the model 

incorporates demand uncertainty into its 

formulation. This practical consideration ensures 

that plans are adequately diversified to 

accommodate potential demand variations in 

various disaster scenarios, enabling a more 

resilient and adaptable logistical system. 

Moreover, given the frequency of natural 

disasters and their potential to disrupt 

transportation systems, the model considers road 

closures as a significant factor in humanitarian 

logistics. Drawing insights from past events, such 

as the earthquake and tsunami in Japan in 2011, 

or the disruptive Turkish-Syrian earthquakes in 

2023, where regional transportation systems were 

severely affected (Minato and Morimoto, 2012; 

Yavari et al., 2020; UNICEF, 2023), the research 

addresses the need to be prepared for road 

closures. Unlike the assumptions of all roads 

being open in the event of a disaster, the 

consideration of road closure situations brings the 

model closer to real-world applicability and 

ensures its relevance in practical disaster relief 

operations. Moreover, by employing the proposed 

model, the decision-makers can derive diversified 

pre-disaster plans by altering the desired risk level 

(the probability target that no arcs in the route are 

going to be closed/disrupted). Such an ability 

allows to prepare necessary resources, 

equipments, and personnel for each plan prior to 

any disaster. 

Given the rapid development of technology and 

the emergence of alternative applications in 

distribution systems, there is considerable 

potential to expand the LRP literature in 

humanitarian logistics. This study serves as an 

essential contribution to future research that 

incorporates new technologies to increase the 

effectiveness and efficiency of assisted 

operations. In addition, to demonstrate the 

applicability of the model in different contexts 

and disaster situations, this study includes a case 

study focused on Tehran province. This case 

study shows how this model can be effectively 

adapted and used in different regions to address 

different disaster scenarios. 

The suggested heuristic holds the potential to 

empower decision-makers to address larger 

problems encountered in practical scenarios. 

Numerical analysis shows that the model cannot 

provide feasible solutions within acceptable 

solution times. Employing the clustering solution 

approach could offer a viable strategy for 

generating feasible delivery plans for the 

humanitarian logistics problem. 

 

CONCLUSION 

This study proposes a probabilistic BOMILP 

model for an LRP that can be confronted in 

predisaster humanitarian logistics operations 

planning. The model respects total cost (i.e., the 

fixed opening cost of cross-docks, vehicle fixed 

cost, and fuel cost) and total travel time 

minimization objectives. The purpose of 

minimizing the travel time is crucial in ensuring 

that aid is sent to disaster victims as soon as 

possible to reduce the loss of life and provide for 

other urgent needs of the victims. The cost 

minimization objective is employed to ensure the 

economic sustainability of the resulting location 

and delivery plans. Efficient use of resources at 

the time of disaster is significant to meet the needs 

of a higher number of disaster victims and to 

sustain humanitarian operations for a longer time. 
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The proposed model goes beyond cost reduction 

and considers critical factors such as demand 

uncertainty and road closures, aligning it more 

closely with real-life disaster relief operations. 

According to the research, this proposed decision 

planning method is novel in terms of structures 

that are considered simultaneously. 

Numerical analyses show the added value and 

applicability of the proposed model under several 

problem settings. An examplar Pareto analysis is 

also provided to demonstrate how to estimate the 

additional resources needed to reduce aid 

distribution durations. The analysis for different 

desired aggregate road non-closure probabilities 

shows that reducing risk results in an increase in 

total cost and travel time. The analyses also reveal 

the potential advantages of having a 

heterogeneous vehicle fleet over a homogeneous 

one. Furthermore, numerical analyses are 

conducted to assess the performance of the 

heuristic to demonstrate that the proposed 

algorithm can generate promising solutions for 

instances of reasonable size. 

 

It has been proven that the proposed model has the 

potential to support managers in preparing for an 

incident. By incorporating multiple objective 

functions and presenting a case study, this study 

offers valuable insights and lays the groundwork 

for future research to leverage new technologies 

and enhance the resilience of humanitarian aid 

supply chains. In future studies, new technologies 

such as drone and robot deliveries that make it 

feasible to reach unattainable regions can be 

addressed in new decision models. Also, other 

parameters that may potentially be uncertain in 

similar cases such as speed or unit costs can be 

respected. Routing decisions in the first echelon 

of the supply chain (among depots and cross-

docks) can be tackled as well. As a final 

suggestion, operationallevel LRPs may be 

confronted in the post-disaster response phase of 

disaster management while executing the tactical 

pre-disaster plans can be addressed. Such 

problems may involve dynamic decisions of 

reallocating vehicles between cross-dock points, 

reuse or redirecting vehicles, or demand changes. 
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