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Abstract. One of the most efficient statistical tools for modeling the relationship between a dependent variable
and several independent variables is regression. In practice, observations relating to one or more variables, or the
relationship between variables, may be vague or non-specific. In such cases, classic regression methods will not
have enough capability to model data, and one of the alternative methods is regression in a fuzzy environment.
The fuzzy logistic regression model provides a framework in the fuzzy environment to investigate the relationship
between a binary response variable and a set of covariates. The purpose of this paper is to attempt to develop a
fuzzy model that is based on the idea of the possibility of success. These possibilities are characterized by several
linguistic phrases, including low, medium, and high, among others. Next, we use a set of precise explanatory
variable observations to model the logarithm transformation of ”possibilistic odds.” We assume that the model’s
parameters are triangular fuzzy numbers. We use the least squares method in fuzzy linear regression to estimate
the parameters of the provided model. We compute three types of goodness-of-fit criteria to evaluate the model.
Ultimately, we model suspected cases of Systemic Lupus Erythematosus (SLE) disease based on significant risk
factors to identify the model’s application. We do this due to the widespread use of logistic regression in clinical
studies and the prevalence of ambiguous observations in clinical diagnosis. Furthermore, to assess the prevalence
of diabetes in the community, we will collect a sample of plasma glucose levels, measured two hours after a meal,
from each participant in a clinical survey. The proposed model has the potential to rationally replace an ordinary
model in modeling the clinically ambiguous condition, according to the findings.

AMS Subject Classification 2020: 62J86; 62J07
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1 Introduction

Regression is one of the most efficient statistical tools for modeling the relationship between a dependent
variable and one or more independent variables. Regression analysis primarily aims to identify the func-
tional relationship between the dependent variable and the independent variable, enabling control over the
dependent variable’s values or future prediction. The standard model for statistical linear regression is as
follows:

Vi = w0 + w1ui1 + · · ·+ wnuin + ϵi, i = 1, · · · , p (1)

where Vi is the dependent variable for the i−th observation and uij is the value of the j−th independent
variable in the i−th sample observation and wj are the coefficients of the independent variables in the
regression function or model parameters. These parameters are based on a sample of observations and The
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basis of statistical methods is estimated. In practice, observations of variables or their relationships can be
vague or non-precise. In such cases, classical regression methods will not have enough capability to model
the data. In such cases, one of the alternative methods of classical regression is fuzzy regression, or, in other
words, regression in a fuzzy environment.
While linear regression models have dominated most existing studies in this field, sometimes the relationships
between variables are too complex to model and analyse using a linear relationship. In the category of non-
linear models, some models are inherently linear. In other words, appropriate transformations can linearise
the relationship between model variables. One of these models is the logistic regression. We use this to
model the relationship between a binary dependent variable and one or more independent variables. When
defining the dependent variable’s classes, we code the desired condition with the number one and the opposite
class with the number zero. This model has many applications in various scientific fields, including health
and medical studies. For instance, it models disease status (sick or healthy) and patient survival (death or
survival).
Many scientific studies use imprecise observations, but the logistic regression model, like other statistical
models, uses precise observations to fit the model. It is impossible to verify model assumptions with imprecise
observations or small sample sizes. Any violation of these assumptions makes using the logistic model
unreasonable. The previous discussion introduced us to the concept of modeling in a fuzzy environment.
Because fuzzy modeling has more flexibility, it works well, especially when the sample size is small or the
observations and relationships between variables are imprecise and approximate.
In 1965, Zadeh first introduced fuzzy sets [21]. Subsequently, Tanaka and his colleagues [1] engaged in
a debate on the subject of fuzzy regression. Tanaka assumed that the data consisted of triangular fuzzy
integers and proceeded to estimate the regression coefficients by minimising a fuzzy index. Tanaka based his
work on mathematical programming methodologies. In the same year, Yager [19], with a different approach,
predicted the value of the dependent variable, the simplest form of fuzzy regression, in her contract with fuzzy
observations. Jajoga [9] calculated the linear regression coefficients using a generalised version of the least
squares method, while until then most of the fuzzy regression models were analysed using the mathematical
programming method. Celmins [3] proposed a method for fitting a multivariate fuzzy model by minimising a
least squares objective function and presented a least squares method for fuzzy regression models. Diamond
[5] introduced a distance measure on the set of fuzzy numbers and used it to define the least squares criterion.
In general, there are three main methods for analysing fuzzy linear regression models:

• Fuzzy least squares methods,

• Mathematical programming methods,

• Numerical methods (simulation or iteration).

Pourahmad et al. [14, 15] investigated fuzzy logistic regression from two perspectives: possibility and least
squares. Namdari et al. [13] conducted a study on using fuzzy logistic regression models to analyze data with
crisp input and fuzzy output. The study assessed the imprecision of the dependent variable using linguistic
terminology. Their study primarily focused on the development of the least absolute deviations approach for
modeling, followed by a comparison of the obtained findings to those derived from the least squares estimate
method. In their work, the authors of reference [8] proposed a method for calculating the integral distance of
cut sets. Additionally, they introduced a fuzzy adjustment term to reduce the likelihood of significant fuzzy
errors in the fuzzy output, mainly when representing the independent variables as crisp integers. The least
squares approach yields the parameters of the fuzzy logistic regression model. Mustafa et al. [12] proposed
a fuzzy probabilistic logistic model that utilizes trapezoidal membership functions. Salmani et al. [17] pro-
posed a fuzzy regression model that integrates fuzzy covariates to address the issue of erroneous binary-based
response variables. The researchers used a least-squares methodology to estimate the model’s parameters,



Fuzzy logistic regression analysis using the least squares method. Trans. Fuzzy Sets Syst. 2024; 3(2) 25

and then used a bootstrap technique to compute confidence intervals and test hypotheses about the model
parameters. Salmani et al. [16] suggested three ways to measure the goodness-of-fit in logistic regression
models: the Mean Squared Error (MSE), the Akaike Information Criterion (AIC), and Cp. The authors
created a forward model selection method for fuzzy logistic regression that takes into account fuzzy sets’
efficiency level and mean squared error.
Logistic regression analysis is one of the famous non-linear methods used to model the binary response vari-
able based on ordinary explanatory variables. This method is particularly appropriate for models involving
disease state (diseased or healthy), patient survival (alive or dead), and decision-making (yes or no). There-
fore, studies in the health sciences widely use it (for more details refer to Bagley et al. [2]). Classical logistic
regression encounters problems such as (1) Violation of distribution assumptions (Bernoulli probability dis-
tribution for the binary response variable, uncorrelated explanatory variables, independence, and identically
distributed error terms). (2) Low sample size. (3) Vagueness in the relationship between variables that do
not follow the random error patterns in logistic regression models; and (4) Non-precise observations. In fact,
non-precise or vague observations, which occur frequently in practice, may cause the other difficulties. Take
clinical research as an example; certain diseases lack biological examinations, and their diagnosis relies on
well-defined and widely accepted criteria. To distinguish patients with these diseases, cases with some of
those defined criteria (but not all of them) have a vague status. Lupus 1 and Behcet 2 are examples in this
field [10]. In the case of hypertension, it is not rational to use a blood pressure threshold of 3 as a precise
borderline to identify the patient. Furthermore, linguistic terms such as low, medium, and high describe
some variables, such as pain severity or disease severity.
The main contributions of this paper are the creation of a fuzzy multiple linear least squares logistic regression
model, the sharing of computational formulas for figuring out regression parameters, and the addition of a
similarity measure between LR-type fuzzy numbers to test how well the proposed model works. We structure
the remaining sections of this paper as follows: In Section 2, we provide some established findings about LR-
type fuzzy numbers. We talk in depth about the suggested distance measurements between LR-type fuzzy
numbers and show how to use computers to find regression parameters in Section 3. In Section 4, we show
how the suggested model performs with two numerical instances. In the last section, we briefly summarize
our results and provide directions for further research.

2 Preliminaries of Fuzzy Arithmetic

In 1965, Professor Zadeh proposed the concept of fuzzy sets and partial membership for sets whose boundaries
are not completely clear. He introduced the concept of a fuzzy set as a collection of objects that belong to
the set with a degree between 0 and 1, where degree 1 indicates complete membership and degree 0 indicates
complete non-membership in the set. The membership function, which assigns a number from the interval
[0, 1] to each object, served as the basis for this definition.

Definition 2.1. The fuzzy set Ã of R is called a fuzzy number if it applies in the following three conditions:

• Ã is normal, it means that there exists exactly one x ∈ R such that Ã(x) = 1.

• Ã is upper semicontinuous, that is, all α−cuts of that interval are closed.

• The support Ã is bounded.

Definition 2.2. A fuzzy number Ã is called an LR fuzzy number if the membership function of Ã is as
follows:

A(x) =

{
L(m−x

sl
), x < m,

R(x−m
sr

), x ≥ m
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where sl, sr > 0 and L,R : [0,∞) → [0, 1] are continuous, decreasing and invertible functions on [0, 1] and
also L(0) = R(0) = 1 and L(1) = R(1) = 0. We call m, sl and sr the center, left width, and right width of the
fuzzy number Ã, respectively. For simplicity, we denote Ã by Ã = (m, sl, sr). If L = R and s = sl = sr, Ã is
called a symmetric fuzzy number and we denote it by Ã = (m, sl, sr). A fuzzy number with reference functions
L(x) = R(x) = max{0, 1− x} is called a triangular fuzzy number and we denote it by Ã = (m, sl, sr).

Definition 2.3. For two fuzzy numbers Ã = (m, sl, sr) and B̃ = (n, tl, tr), we will have:

• Ã+ B̃ = (m+ n, sl + tl, sr + tr).

•

λÃ =

{
(λm, λsl, λsr), λ > 0,

(λm, λsr, λsl), λ < 0.

Since one of the methods of solving regression models is to use the least squares estimator, and in this
method we need to calculate the distance between two fuzzy numbers, we must define the measure of the
distance between two fuzzy numbers. Researchers in this field have so far expressed different measures to
calculate the distance between two fuzzy numbers, which can be referred to [11] for further study. Here,
we improve the distance measure that Li et al. [11] stated so that the distance between two fuzzy numbers
can be calculated at different levels of decision-making. One of the benefits of this improved interval is that
we can have a model suitable for the same level of decision-making for the problem data by choosing the
appropriate parameter values. The distance measure that was defined by Li et al. [11] for two fuzzy numbers
Ã = (m, sl, sr) and B̃ = (n, tl, tr),is as follows:

D(Ã, B̃)2 = α0(m− n)2 + α1(sl − tl)
2 + α2(sr − tr)

2 + 2(m− n)(α3(sr − tr)− α4(sl − tl)), (2)

Its specific modes

α0 = 3, α1 = λ2, α2 = ρ2, α3 = ρ andα4 = λ

and

α0 = 1, α1 = λ2, α2 = ρ2, α3 = ρ1 andα4 = λ1,

that results in the measures of the distance defined by Yang and Ko [20] and Diamond and Korner [6],
respectively. where

λ =

∫ 1

0
L−1(q)dq, λ1 =

1

2

∫ 1

0
|L−1(q)|dq, λ2 =

1

2

∫ 1

0
|L−1(q)|2dq,

ρ =

∫ 1

0
R−1(q)dq, ρ1 =

1

2

∫ 1

0
|R−1(q)|dq, ρ2 =

∫ 1

0
|R−1(q)|2dq

The least squares method uses minimizing the sum of squared errors as a fit criterion. Fuzzy least squares
methods are also based on the lowest degree of difference between the observed values and the fitted values.
In the following, we use the least squares method to estimate the parameters of the logistic regression model.
In this method, we use the meter introduced in relation 2 to measure the error sentences and the distance
between the observed and fitted fuzzy numbers. This meter is an extended version of the previous meters
Yang and Ko [20] and Diamond and Krner [6] talked about here.
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3 Fuzzy Logistic Regression

Consider a regression model in which the dependent variable has a binary state, such as illness or health,
death or life, buying or not buying, going bankrupt or not going bankrupt, etc. Initially, medical applications
utilized this model primarily to predict the likelihood of a disease’s occurrence. Today, it finds widespread
use across all scientific fields. Logistic regression can be a suitable model for such situations.
The logistic regression model can be considered a generalized linear model that uses the logit function
as a link function, and its error follows a polynomial distribution. When the response variable follows a
binomial distribution, we use binary logistic regression as a statistical method. This approach models a
linear combination of explanatory variables using a function known as the ”logit”. The logit function is
defined as the natural logarithm of the ratio of the probability of success (π) to the probability of failure
(1−π). The following mathematical representation can express the association between the independent and
dependent variables in the context of logistic regression:

Vi = logit(πi) = Ln

(
πi

1− πi

)
= w0 + w1ui1 + · · ·+ wnuin, i = 1, · · · , p (3)

This study will primarily examine a scenario where the explanatory factors represent crisp values, but the
dependent variable is imprecise and quantified using language phrases. The definition of ”possibilistic odds,”
as provided by Pourahmad et al. [14], will be presented in the subsequent definition.

Definition 3.1. Let µi represent the probability of seeing feature 1 or success, denoted as Vi = 1, for the ith
example in a sample of size n. The eventuality of achieving success for the selected feature is determined by a
linguistic word, µi ∈ {· · · , low, average, high, · · · }. We can use expert-defined fuzzy numbers to accurately
represent each term of a linguistic variable. It is important to provide precise definitions for these words in a
manner that ensures the collective range of their respective supports encompasses the whole of the interval
(0, 1). The ratio µi

1−µi
is regarded as the possibilistic odds of the ith scenario, indicating the eventuality of

success in relation to the eventuality of failure.

For instance, triangular fuzzy numbers, which are designed to represent the eventuality of success as
µ = (V erylow, Low,Medium,High, V eryhigh), are provided in equation (4) and visually shown in Figure 1.

V ery low = (0.01, 0.02, 0.18), Low = (0.1, 0.25, 0.40), Medium = (0.35, 0.50, 0.65),

High = (0.6, 0.75, 0.90), V ery High = (0.8, 0.98, 0.90) (4)

3.1 Introducing the Model

The logistic regression model is a generalized linear model that uses the logit function as the dependent
variable and a binomial distribution for the error sentences. The following diagram illustrates this model:

vi = w0 + w1ui1 + · · ·+ wkuik + ϵi, i = 1, · · · , n (5)

Remark 3.2. According to the second part of Definition 2.3, there are differences when the coefficients
of fuzzy numbers are positive or negative. Therefore, according to this definition and applying changes,
calculations for negative coefficients can also be considered, but in this article, calculations based on positive
coefficients are considered.
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Figure 1: The membership functions of triangular fuzzy numbers represent the eventuality of success as
µ = (V erylow, Low,Medium,High, V eryhigh)

For the fuzzy model, consider the set of observations Ui = (ui1, ui2, ..., uik), where Ui is the non-fuzzy
observation vector of covariates for the ith case. We indicate the observation of the corresponding answer
with vi, which is a number between 0 and 1, and it shows the possibility of having a desirable characteristic for
the ith case. Consequently, we present the fuzzy logistic regression model with fuzzy coefficients as follows:

ṽi = w̃0 + w̃1ui1 + · · ·+ w̃kuik + ϵi, i = 1, · · · , n (6)

w̃j , j = 0, 1, ..., k are the parameters of the model, which are assumed to be triangular in fuzzy number

w̃j = (wj , lj , rj)T calculations for simplicity. ṽi = ln
µi

1− µi
is the probability logarithmic transformation

estimator, so based on the properties of addition and subtraction of triangular fuzzy numbers, Ṽi will also be
a triangular fuzzy number in the form of Ṽi = (fic(u), fil(u), fir(u)), which:

fic(u) = w0 + w1ui1 + · · ·+ wkuik, (7)

fil(u) = l0 + l1ui1 + · · ·+ lkuik,

fir(u) = r0 + r1ui1 + · · ·+ rkuik,

Therefore, the fuzzy estimated output membership function is obtained as follows:

Ṽi(vi) =


1− fic(u)− vi

fil(u)
, fic(u)− fil(u) ≤ vi ≤ fic(u)

1− vi − fic(u)

fir(u)
, fic(u) ≤ vi ≤ fic(u) + fir(u)

(8)

As mentioned, Ṽi is the natural logarithm of the probability of having the desired property for the observed
ith case. According to the expansion principle, if Ñ is a fuzzy number with the membership function Ñ(x)
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and f(x) = exp(x), then f(Ñ) = exp(Ñ) is a fuzzy number with the following membership function:

exp(Ñ(x)) =

{
Ñ(ln(x)), x > 0

0, o.w.
(9)

Therefore, after estimating the coefficients of the model, the probability membership function of exp(Ṽi(x)), x >
0 can be defined as follows:

exp(Ṽi(u)) = Ṽi(ln(u)) =


1− fic(u)− ln(u)

fil(u)
, fic(u)− fil(u) ≤ ln(u) ≤ fic(u)

1− ln(u)− fic(u)

fir(u)
, fic(u) ≤ ln(u) ≤ fic(u) + fir(u)

(10)

Therefore, for a new fuzzy observed case, its probability is predicted as a fuzzy number using the odds model.

3.2 Estimation of Parameters

We consider the regression model to be a logistic model with fuzzy output, regression coefficients, and a
non-fuzzy input vector (independent variables). To estimate the coefficients, we use the least squares error
method, which uses the distance measure introduced in Equation 2. To achieve this goal, we will estimate
the parameters by minimizing the following relationship:

S(w̃) =

n∑
i=1

ϵ2i =

n∑
i=1

D2(ṽi, Ṽ (ui)) (11)

which is defined as following:

n∑
i=1

α0

vi − w0 −
k∑

j=1

wjuji

2

+ α1

vli − l0 −
k∑

j=1

ljuji

2

+ α2

vri − r0 −
k∑

j=1

rjuji

2
+

n∑
i=1

2

vi − w0 −
k∑

j=1

wjuji

α3

vri − r0 −
k∑

j=1

rjuji

− α4

vli − l0 −
k∑

j=1

ljuji


In order to minimize S(w̃), the partial derivatives of S with respect to the primal variables wj , rj , lj , j =
1, 2, ..., k have to vanish for optimality. To compress the above relationships, we use the matrix symbol as
follows.

S(w̃) =

n∑
i=1

ϵ2i = ϵ′ϵ

=
(
α0(V −XW )′(V −XW ) + α1(L−XS)′(L−XS) + α2(R−XP )′(R−XP )

)
+

(
2(V −XW )′

(
α3(R−XP )− α4(L−XS)′

))
where in

V =



V1

V2

.

.

.
Vn

 R =



r1
r2
.
.
.
rn

 L =



l1
l2
.
.
.
ln

 X =



1 x11 x12 · · · x1k
1 x21 x22 · · · x2k
. . . · · · .
. . . · · · .
. . . · · · .
1 xn1 xn2 · · · xnk
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W =



w0

w1

.

.

.
wk

 S =



wl0

wl1

.

.

.
wlk

 P =



wr0

wr1

.

.

.
wrk


where W and S, P are the central values and the left and right bounds for the unknown parameters. The
X-matrix is a matrix of observations, and the first column is one. We have also observed the V , L, and R
vectors, which represent central values, left width, and right width, respectively, for possible odds values.
The following is the estimate of the least squares of the unknown parameters obtained by deriving the above
expression:

P̂ = (X ′X)−1X ′ (d(α2 − α1α3)R+ ((α1α0 − α2
4)− dα3)Y

)
/b (12)

Ŵ = (X ′X)−1X ′
(
(α2R− α3Y )− α2P̂

)
/− α3

Ŝ = (X ′X)−1X ′
(
(α1L+ α4Y )− α4Ŵ

)
/α1

where d = (α1α0 − α2)/α3 and b = α2d− α3α1.

3.3 Goodness of Fit Criteria

To evaluate the model, there are many criteria for the goodness of fit. In this article, we will use the following
two criteria to evaluate the model:

S =
1

n

n∑
i=1

∫
min{v̂i(t), ˜̂vi(t)}dt∫
max{v̂i(t), ˜̂vi(t)}dt

, E1 =
1

n

n∑
i=1

∫
|v̂i(t), ˜̂vi(t)|dt, E2 =

1

n

n∑
i=1

∫
|v̂i(t), ˜̂vi(t)|dt∫

v̂i(t)dt
. (13)

Many authors (e.g., [4, 7, 18]) commonly use these criteria for model evaluation. That S is the similarity
criterion and the closer it is to one, the better. For the two criteria E1 and E2, the smaller value indicates a
better model.

4 Numerical Example

This part uses two real-life examples from the field of medicine and clinical issues to show how well the
suggested method works for estimating parameters, testing hypotheses, and figuring out confidence intervals
in fuzzy logistic regression models.

Example 4.1. The data includes information about 15 people suspected of having lupus who are aged 18
to 40 years. Lupus is a chronic disease where the body’s immune system, for unknown reasons, produces
antibodies While the body defends itself against bacteria and viruses, it also targets its healthy organs.
These attacks cause symptoms such as pain and muscle cramps. Several body organs, such as the skin,
joints, kidneys, heart, and nervous system, are involved in this type of disease at the same time [13]. This
disease takes several months or even several years to show its symptoms. Therefore, there is no specific
test to identify it. Doctors must gather the required information from various sources, such as a person’s
medical history, laboratory test results, and some external symptoms. This disease is diagnosed based on its
symptoms. Early detection accelerates treatment and prevents disease progression. Generally, lupus disease
is defined as a set of 11 symptoms, and a person with at least four symptoms is considered a patient. Here,
we categorize the degree of illness in the patient group based on the quantity of symptoms.
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This study aims to model the status of people suspected of having lupus based on several important risk
factors. The fitted model estimates each person’s potential risk of contracting the disease. Past research
has identified risk factors such as exposure to sunlight, family history, and various laboratory tests like ANA
and DNA-Anti. In addition, in ESR, we use these special blood tests to diagnose lupus. We can summarise
the introduction of these tests by stating that the nucleus of living cells consists of a significant quantity of
chemicals known as RNA and DNA. The term ANA, or anti-nuclear antibody, literally translates to ”anti-
nuclear substance of the cell.” These substances can damage and destroy cells and tissues. DNA-Anti also
means special anti-DNA immune cells. For these two tests, the unit of measurement is defined by the number
of these substances per millilitre of blood (ml/u). Their normal value is also considered to be less than 25
ml/u. In addition, ESR is a sign of inflammation. It is uncertain whether ESR increases in lupus patients,
and it may be higher in women and elderly individuals. About 95 to 98% of lupus patients have a high value
in the ANA test, and the amount of DNA - Anti in the blood of lupus patients increases. However, the high
results of these tests alone do not indicate the presence of disease [15]. In order to model the relationship

Table 1: Doubtful cases of lupus and its risk factors

No. Family History Sun exposure ANA test Anti DNA test ESR Possibility of disease

1 1 1 112 105 1 High
2 0 1 80 23 0 Medium
3 0 1 115 15 0 High
4 0 1 105 107 1 High
5 0 0 89 150 1 Medium
6 1 1 160 110 1 Very High
7 0 1 100 23 0 Medium
8 0 0 100 85 1 High
9 0 1 48 83 0 Low
10 1 0 15 19 1 Very Low
11 0 0 50 91 0 Low
12 0 1 59 200 1 Medium
13 0 1 83 20 1 Low
14 0 0 15 200 0 Low
15 1 0 85 15 1 Medium

between the possibility of lupus and the risk factors mentioned in Table 1, the following model is used:

ỹi = ln
π̃i

1− π̃i
= w̃0 + w̃1ui1 + w̃2ui2 + w̃3ui3 + w̃4ui4 + w̃5ui5, i = 1, 2, ..., 15. (14)

We estimate the model’s parameters using the least squares method with the meter introduced in the previous
section. Ultimately, we calculate the parameter estimation as follows: (with α = (α0, α1, α2, α3, α4) =
(3, 0.25, 0.25, 0.5, 0.5))

ˆ̃yi =(−4.0885,−3.3528,−0.5554)T + (−0.7017,−0.3554, 0.4145)T ESR

+ (0.01033, 0.0042,−0.0045)T AntiDNA test+ (0.0451, 0.0168,−0.0123)T ANAtest

+ (−0.1405,−0.0853,−0.0235)T Sun..+ (0.2975,−0.4653,−0.8175)T Fam.

The outputs of the fitted log-odds model estimate each suspect’s probability of developing lupus. We can
calculate the possibility of infection for each suspected person using the principle of expansion of possible
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odds. For example, for the 6th person studied with the variables Family History = 1, Sun exposure =
1, ANA test = 160AntiDNA test = 23ESR = 0 based on the estimated model, we calculate the logarithm
of potential odds as follows:

ˆ̃yi =(−4.0885,−3.3528,−0.5554)T + (0.01033, 0.0042,−0.0045)T 23 + (0.0451, 0.0168,−0.0123)T 160

+ (−0.1405,−0.0853,−0.0235)T + (0.2975,−0.4653,−0.8175)T

So we will have, ˆ̃V6(3.72,−1.11,−3.45)T . This implies that the model has calculated the likelihood of lupus
disease in the sixth individual as follows:

(0.98, 0.25, 0.03)T

This is extremely close to the table’s actual value. We can also use this model to predict the likelihood of
disease in a new case. For example, if a person suspected of lupus presents with the following information,
we can use the model to predict the likelihood of disease: She (he) has a family history of u5 = 1; she (he)
has not been exposed to sunlight u4 = 0; the results of the ANA, Anti-DNA, and ESR tests for this person
were u3 = 110, u2 = 87, u1 = 0, respectively. Given the characteristics as mentioned above, we estimate the

likelihood of a disease and calculate the logarithm of its potential odds as follows: ˆ̃Vnew(2.07,−1.61,−3.12)T
and (0.89, 0.17, 0.04)T .
The fitted values for the possibility of disease, as well as the logarithm of odds, were calculated and recorded
in Table 2 using the estimated model. The values of the goodness of fit indices introduced in Equation 13

Table 2: Prediction of the logarithm values of the odds possibility and the possibility of contracting lotus
disease for the data in Table 1.

No. Possibility of disease The predicted of the logarithm odds disease The predicted of possibility of lupus

1 High (1.50,−1.94,−2.83)T (0.82, 0.12, 0.05)T
2 Medium (−0.38,−2.00,−1.67)T (0.40, 0.12, 0.16)T
3 High (1.11,−1.44,−− 2.06)T (0.75, 0.20, 0.11)T
4 High (0.91,−1.58,−1.94)T (0.71, 0.17, 0.12)T
5 Medium (0.77,−1.59,−1.91)T (0.68, 0.17, 0.13)T
6 Very High (3.72,−1.11,−3.45)T (0.98, 0.25, 0.03)T
7 Medium (0.52,−1.66,−1.91)T (0.63, 0.16, 0.13)T
8 High (0.60,−1.67,−1.75)T (0.64, 0.16, 0.15)T
9 Low (−1.21,−2.29,−1.54)T (0.23, 0.09, 0.18)T
10 Very Low (−3.62,−3.84,−1.23)T (0.026, 0.02, 0.23)T
11 Low (−0.89,−2.13,−1.58)T (0.29, 0.10, 0.17)T
12 Medium (−0.20,−1.97,−1.79)T (0.45, 0.12, 0.14)T
13 Low (−0.98,−2.32,−1.27)T (0.27, 0.09, 0.22)T
14 Low (−1.34,−2.27,−1.64)T (0.21, 0.09, 0.16)T
15 Medium (−0.50,−2.68,−2.07)T (0.38, 0.06, 0.11)T

are equal to:

S = 0.8156 E1 = 0.0194 E2 = 0.1725.

These criteria have been calculated by using the estimated values and actual values for the response variable
and placing them in Equation 13.
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Example 4.2. We will use a sample of each community member’s two-hour postprandial plasma glucose
levels from a clinical survey to assess their diabetes condition. We discovered that 15 instances fell within the
range of 140200 (mg/dl), using a cut-off point of 200 (mg/dl). To guess how likely it was that these people
had diabetes, we added extra information like their gender (female), age (in years), BMI (body mass index,
which is weight in kilograms divided by height in meters squared), family history (including father, mother,
sister, and brother), and two-hour plasma glucose levels (measured in milligrams per decilitre), all of which
have been linked to a higher risk of diabetes (see Table 4). We asked an expert to assign a probability of
illness to each instance. Two-hour postprandial plasma glucose (THPPG)

Table 3: The values of associated risk variables and fuzzy binary observations in SLE disease

No. Sex THPPG (mg/dl) Age(year) Family history BMI(kg/m2) π

1 1 145 40 0 24 (0.1, 0.74)T
2 1 147 42 0 25 (0.15, 0.74)T
3 0 150 45 1 21 (0.35, 0.82)T
4 0 155 37 1 23 (0.42, 0.83)T
5 0 157 59 1 25 (0.49, 0.83)T
6 1 160 44 0 20 (0.50, 0.72)T
7 1 160 38 1 26 (0.60, 0.90)T
8 1 165 52 0 33 (0.60, 0.77)T
9 0 182 50 0 31 (0.70, 0.64)T
10 1 187 55 1 33 (0.85, 0.91)T
11 0 190 53 1 35 (0.90, 0.86)T
12 0 192 62 1 30 (0.97, 0.85)T
13 0 195 57 0 32 (0.95, 0.65)T
14 1 195 50 0 34 (0.95, 0.77)T
15 1 196 60 1 35 (0.99, 0.92)T

ˆ̃Vi = (−16.566, 0.018)T + (0.476, 0.581)T × 0 + 0.102 × 150 + 0.031 × 45

+ (0.680, 1.13)T × 1 + (−0.0727, 0.019)T × 21

This means that ˆ̃V3 = (0.32, 0, 82)T , and the logarithm of possibilistic odds for case 3 is about (−0.77, 1.54)T
This model is capable of estimating the possibility odds of diabetes in a case that is suspected of having the
condition. Please be aware that the estimated probability odds for each case are provided in a fuzzy format.
For example, suppose we want to predict the possible disease odds for the case number 3 in Table 4. We
have:

ˆ̃Vi = (−16.566, 0.018)T + (0.476, 0.581)T Sex+ 0.102THPPG+ 0.031Age

+ (0.680, 1.13)TFamily history + (−0.0727, 0.019)T BMI

The predicted values for the possibility of disease, as well as the logarithm of odds, were calculated and
recorded in Table 2 using this estimated model. To assess the model, we use the three criteria suggested in
Section 3.3, namely, S, E1, and E2.

S = 0.9991 E1 = 0.0011 E2 = 0.00087
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Table 4: The values of associated risk variables and fuzzy binary observations in SLE disease are significant.

No. π The predicted of the logarithm odds disease The predicted of possibility of disease

1 (0.1, 0.74)T (−1.85, 1.05)T (0.13, 0.74)T
2 (0.15, 0.74)T (−1.66, 1.07)T (0.16, 0.74)T
3 (0.35, 0.82)T (−0.77, 1.54)T (0.32, 0.82)T
4 (0.42, 0.83)T (−0.65, 1.58)T (0.340.83)T
5 (0.49, 0.83)T (0.08, 1.62)T (0.52, 0.83)T
6 (0.50, 0.72)T (0.09, 0.97)T (0.52, 0.72)T
7 (0.60, 0.90)T (0.14, 2.22)T (0.54, 0.90)T
8 (0.60, 0.77)T (−0.10, 1.22)T (0.47, 0.77)T
9 (0.70, 0.64)T (1.23, 0.60)T (0.77, 0.64)T
10 (0.85, 0.91)T (2.90, 2.35)T (0.95, 0.91)T
11 (0.90, 0.86)T (2.53, 1.81)T (0.93, 0.86)T
12 (0.97, 0.85)T (3.37, 1.71)T (0.97, 0.85)T
13 (0.95, 0.65)T (2.70, 0.62)T (0.94, 0.65)T
14 (0.95, 0.77)T (2.81, 1.24)T (0.94, 0.77)T
15 (0.99, 0.92)T (3.83, 2.39)T (0.98, 0.92)T

5 Conclusion

Typically, the actual conditions of the data do not fully align with the assumed distributional properties
of theoretical statistical models. This encourages academics to use fuzzy models as a means of simulating
data within a more adaptable framework that closely resembles the actual circumstances of the observations.
Researchers have extensively researched these models and implemented them in various fields. Undoubtedly,
fuzzy models are more intricate than conventional ones regarding computation and interpretation. However,
the assumptions of standard statistical models limit their utility. When the data does not meet the model
assumptions, applying standard procedures is not logical because it introduces bias in the findings. Note
that you cannot substitute conventional and fuzzy models for one another because of their distinct uses.
Typically, it is not possible to use both of these models on the same dataset concurrently, therefore making
it impossible to compare their respective outcomes.
When observations are not accurate, we advise using fuzzy modeling methods. Clinical investigations fre-
quently reveal these characteristics. Occasionally, clinical measurement devices may exhibit mistakes. Fur-
thermore, this research includes some ethical issues. Often, the precise magnitude of variables remains
unmeasurable in such instances, leading to the reporting of observations based on approximations. The di-
agnosis of illness, which determines a condition based on established criteria, presents another ambiguous
scenario in clinical investigations. We classify an individual as a patient if they exhibit all the signs of an
illness. On the other hand, we classify an individual as healthy if they show no symptoms. What is the
outcome when an individual experiences only a subset of these symptoms? The physician is unsure whether
to start treatment. Furthermore, clinical laboratory tests do not provide a clear-cut threshold to distinguish
between patients and healthy individuals. It implies that all people near the cut-off point have ambiguous
status. To identify the primary risk factors that contribute to the disease’s progression of the disease, it is
not logical to rely on vague observations in the typical modeling analysis. Disregarding or neglecting these
observations in the analysis is not rational. For this situation, fuzzy models appear to be suitable methods.
Fuzzy logistic regression provides a framework in a fuzzy environment for investigating the relationship be-
tween a binary response variable and a set of covariates. To date, researchers have presented two general
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methods to estimate the parameters in fuzzy logistic regression models: the least squares error method and
the probability method, both of which use the definition of probability to estimate the parameters. The term
”possible odds” refers to the ratio between the possibility of having the desired feature and not having it.
This paper presents a method for estimating the parameters of the fuzzy logistic regression model using the
least squares method.
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