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Abstract  

Although many problems in the literature involve complex mathematical relationships, many still 

rely on simplified and unrealistic assumptions. Simulation is one of the most powerful tools for 

dealing with such problems, as it avoids the restrictive assumptions often required in stochastic 

systems. Simulation optimization techniques are generally classified into two broad categories: 

model-based and metamodel-based methods. In the first category, simulation and optimization 

components interact directly, thereby increasing simulation time and cost. To address this issue, a 

third component—called a metamodel—is introduced in the second category to estimate the system's 

relationship between input and output variables. Optimizing semi-expensive simulation problems 

often requires many simulation runs in model-based methods. However, the cost of validating 

metamodels also rises rapidly during iterations. A two-phase method has been proposed in the 

literature to reduce computation time. In the first phase, similar to a model-based algorithm, the 

simulation output is used directly in the optimization process. In the second phase, a validated 

metamodel replaces the simulation model. In this paper, an artificial neural network (ANN) is 

employed as the metamodel, and its performance is compared with that of the original algorithm, 

which employs a Kriging metamodel, on five well-known test functions and an (s, S) inventory 

model. 
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1. Introduction 
 

Since its inception over five decades ago, simulation has been 

a powerful tool for assessing potential risks and guiding 

managers and practitioners in decision-making under 

uncertainty. The simulation approach can more accurately 

anticipate risks and make more robust decisions in the face 

of uncertainty, ambiguity, and variability. Moreover, the 

simulation optimization approach identifies the optimal 

values of the input variables without explicitly evaluating 

every possible combination. The simulation-optimization 

approach has a wide range of applications across various 

problems. For instance, applications of the simulation-

optimization approach include liver transplant management, 

maritime logistics optimization, semiconductor production 

planning, and parasitology calibration, as noted by Xu et al. 

(2015).  

There are two primary methods to optimize a simulation 

model: (1) model-based and (2) metamodel-based. In the first 

method, the simulation and optimization phases are 

performed iteratively until a stopping criterion is met. In the 

latter, however, a surrogate model is used to mimic the 

simulation behavior when a high computational burden, 

which takes about 36-60 hours per replication, occurs, as in 

the Ford Motor Company crash simulation (Wang & Shan, 

2007). Assuming an average of 50 iterations is required to 

optimize a two-variable problem, the total computational 

time would range from 75 days to 11 months, which is 

unacceptable in practice. Nevertheless, predicting an 

approximate metamodel (surrogate model) that replaces the 

simulation model would incur negligible cost relative to the 

original

 

simulation cost

 

(Wang et al., 2019). The widely used 

surrogate models in the literature include Kriging, Artificial 

Neural Networks (ANNs), Support Vector Regression 

(SVR), multivariate adaptive regression splines (MARS), 

and Radial Basis Function (RBF) models.

 

Establishing a surrogate model often goes through three steps 

as follows

 

(Nguyen et al.,

 

2014):

 



 

Sampling input vectors and calculating corresponding 

model responses constitute a database for training a 

surrogate model.

 



 

Constructing the surrogate model based on the database 

by selecting an appropriate method, e.g.,

 

Kriging, SVR, 

ANN, or RBF.

 



 

Validating the model before it is

 

used as a "surrogate"

 

for

 

the original model.

 

Both

 

model-

 

and metamodel-based methods have benefits 

and drawbacks, as

 

summarized in Table

 

1. Although 

metamodel-based algorithms have some

 

disadvantages, 

when a single simulation-model replication

 

takes

 

more than 

five minutes, one must use a metamodel-based algorithm. 

This is because, on average, a large number (typically 2000-

4000) of replications are required in model-based simulations 

to evaluate simulation points and incorporate them into

 

optimization. However, the number of simulation 

replications is minimized in a metamodel-based simulation. 

However, when a single simulation model run takes less than 

five minutes, metamodel approaches are inefficient because 

their validation processes require excessive time due to 

fitting errors. In these cases, the use of the model-based 

approach is recommended. 

 

Table 1 

 Pros and Cons of Simulation Optimization Approaches 

Method Advantages Disadvantages 

Model-Based  Accurate and numerically efficient for 

inexpensive simulation problems 

 Needs to assess a large number of simulation points 

 Gives no insight into the objective function 

Metamodel 

Based 
 Relieve the computational expense by 

replacing the simulation with an approximation 

model. 

 Existence of fitness error 

 Validation time 

 Gets trapped in the fitting and validating steps 
 

Sometimes, a single simulation model replication takes more 

than two but fewer than 5 minutes on average. Due to their 

disadvantages, neither the model-based nor the meta-model-

based simulation methods are appropriate. For this type of 

simulation, Moghaddam & Mahlooji (2017) presented a 

Semi-Metamodel-Based (SMB) algorithm that employs a 

metamodel, distinct from standard meta-model-based 

algorithms. They showed that their algorithm avoids the 

disadvantages of the model-based approach and mitigates 

some of the problems of meta-model-based algorithms. In the 

first phase, the algorithm operates as a model-based method, 

directly using the simulation output in the optimization 

phase. The optimization component proceeds in this phase, 

and metamodel construction is underway in parallel. As the 

number of simulation points in the experimental design 

increases at each step, the time required for metamodel 

validation decreases. The second phase of the algorithm 

employs the metamodel obtained in the first phase to evaluate 

solutions during the optimization stage, which begins once 

the metamodel is validated. Furthermore, they presented an 

optimization algorithm based on particle swarm optimization 

(PSO) that employs strategies to enhance its intensification 

and diversification. 

The primary approach to constructing a surrogate model from 

available simulation points is Gaussian process regression 

(Kriging). This estimation method aims to obtain a 

minimum-variance estimate of any unsampled simulation 

point by smoothing out extreme values in the available 

simulation points. As such, the objective of the current paper 

is to compare the performances of the Kriging and an ANN 

approach used as surrogate models in the SMB algorithm 

(Moghaddam & Mahlooji, 2017). To this end, simulation 

points obtained from an (s, S) inventory control model and 

from five popular test functions are investigated. 

The structure of the rest of the paper is as follows. The 

literature review is given in detail in Section 2. The employed 
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ANN metamodel is described in Section 3. Section 4 contains 

the characteristics of the SMB algorithm. The (s, S) inventory
 

and the test functions
 
are

 
introduced in Section 5 to assess the 

performance of the ANN metamodel in the SMB algorithm 

and to compare its results with those
 
obtained by the Kriging-

based
 

metamodel. Finally, Section 6 concludes with 

recommendations
 
for future research.

 

2. Literature Review
 

In this section, we first survey model-
 
and metamodel-based 

algorithms used to solve simulation optimization problems. 

Then, the fundamental
 

differences between Kriging and 

ANN metamodels
 
in simulation-optimization techniques are

 

discussed. As mentioned above,
 

several model-based 

approaches
 

have been proposed
 

in the simulation-

optimization literature.
 

Wang (2005)
 

developed an 

optimization approach using a hybrid method of genetic 

algorithm
 
(GA) and neural network. They

 
employed a neural 

network to predict the objective function value, then used a 

GA for its practical, robust evolutionary search to determine 

the optimal
 
values of the input parameters. Shi & Ólafsson 

(2000)
 
proposed the Nested Partition method as a global 

sampling technique that
 
continuously

 
adapts

 
by partitioning 

the feasible solution region, thereby reducing computational 

load by selecting the most promising areas.
 
Similarly, Ahmed 

& Alkhamis (2009)
 
integrated simulation and optimization to 

design a decision-support
 
tool for a governmental hospital in 

Kuwait;
 
they evaluated

 
the impact of various staffing levels 

on service efficiency to determine the optimal number of 

doctors.
 

Tsai & Fu (2014)
 

employed two GA-based 

algorithms for a discrete simulation-optimization problem 

with a single stochastic constraint; they adopted different 

sampling rules and search mechanisms and thus provided 

different
 
statistical guarantees.

 

 

Table 2
 

 
Works on the comparative study of metamodeling methods

Publication
 

year
 

 
surrogate model

 

 
Type of performance metric

 K
rig

in
g 

A
N

N 

R
B

F 

R
eg

ressio
n 

M
A

R
S 

S
V

R 

o
th

er
 

Willmes et al.
 

(2003)
  

√
 

√
       

Problem dimension, accuracy
 

Yuan & Guangchen
 

(2009)
  

√
 

√
       

Four proposed performance measures
 

Zhao and Xue
 

)2010(
 

 

√
 

√
  

√
     accuracy, confidence, robustness, efficiency, 

and robustness
 

Backlund et al.
 

(2012)
  

√
  

√
   

√
   

Problem dimension
 

Vicario et al.
 

(2016)
  

√
 

√
       

Accuracy(at a satisfactory cost)
 

Beşikçi et al.
 

(2016)
   

√
  

√
     

RMSE (root mean square error)
 

Díaz-Manríquez et al.
 

(2017)
  

√
  

√
   

√
 

√
  

The budget for computational time
 

Østergård et al.
 

(2018)
 

 
    

√
 

√
 

√
  accuracy, efficiency, ease-of-use, robustness, 

and interpretability
 

Amouzegar et al.
 

(2018)
 

 

√
 

√
 

√
  

√
 

√
   A proposed ranking metric, accuracy, and 

computational efficiency
 

Cheng et al.
 

(2020)
  

√
  

√
   

√
 

√
  

The accuracy and efficiency
 

Meta-modeling has been applied to develop simulations for 

various purposes, including early design decisions, 

uncertainty and sensitivity analyses, design optimization, and 

model calibration (Nguyen et al., 2014). Metamodel-based 

techniques are among the most popular research areas in the 

field of simulation optimization, and numerous algorithms 

have been proposed. For instance, Jones et al. (1998) used the 

Kriging approach within an Efficient Global Optimization 

(EGO) algorithm to interpolate between function values and 

select future samples based on an expected improvement 

metric for simulations with deterministic outputs. In addition, 

ANNs have been employed in numerous algorithms proposed 

in the literature to optimize computationally expensive 

simulations. To name a few, Dengiz et al. (2009) optimized 

two manufacturing systems utilizing neural network 

metamodels. A tabu search (TS) metaheuristic was employed 

to train the ANNs and improve the performance of the meta-

modeling approach. Mohammad Nezhad & Mahlooji (2014) 

presented an ANN metamodel for expensive continuous 

simulation optimization (SO) with stochastic 

constraints. Capturing the nonlinear nature of the ANN, the 

SO problem was iteratively approximated via nonlinear 

programming problems, whose (near-) optimal solutions 

yielded estimates of the global optimum. Considering the 

uncertainty in the random parameters, Roy& Chakraborty 

(2020) proposed a sequential updating approach that 

improves the accuracy of the SVR metamodel. A 

comprehensive review of other metamodels for optimization 

strategies applied to computationally expensive black-box 

functions is available in Shan & Wang (2010).  

Willmes et al. (2003) compared the performance of 

feedforward neural networks and Kriging as fitness 

approximations for evolutionary optimization in both offline 

and online learning. Yuan & Guangchen (2009) applied four 

performance measures to evaluate different types of 

metamodel performance, such as providing good starting 
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points for gradient-based search and the accuracy of placing 

optima in the correct location. Furthermore, Vicario et al. 

(2016) compared the performance of the Kriging model with 

that of an ANN model to determine which model achieves 

higher accuracy in predicting results from a four-dimensional 

computational fluid dynamics system. Moreover, Beşikçi et 

al. (2016) compared the performance of an ANN metamodel 

with that of a multiple regression (MR) model, confirming 

the superiority of the former. Interested readers are referred 

to Østergård et al. (2018) for other comparison studies among 

linear regression with ordinary least squares (OLS), random 

forest (RF), SVR, MARS, Gaussian process regression 

(GPR), and neural network metamodel. The authors 

considered five performance indicators for eight test 

problems and 19 mathematical test functions in their work. 

Some researchers assessed the enhanced version of these 

surrogate models. Besides, Cheng et al. (2020) investigated 

several surrogate metamodels, including Kriging, SVR, RBF, 

and Low-Rank tensor Approximation (LRA), based on their 

applications in variance-based global sensitivity analyses. 

Table 2 lists published papers that have used metamodels to 

predict the models' responses. 

Neural networks and Kriging approximations are among the 

most attractive techniques in simulation-optimization meta-

modeling, but they have not been surveyed in the context of 

SMB algorithms. In the following sections, we investigate 

the accuracy and computational efficiency of these meta-

modeling techniques for SMB algorithms using two- and 

three-dimensional test functions. 

3. Neural Network Metamodel 

Neural networks (NNs) are powerful tools for approximating 

unknown nonlinear functions and have gained widespread 

applications in various fields. ANNs can approximate 

arbitrary smooth functions and can be trained using noisy 

response data. ANNs were developed to mimic neural 

processing and can be implemented on a digital computer 

using networks of numerical processors whose inputs and 

outputs are linked according to specific topologies (Barton & 

Meckesheimer, 2006). 

NNs used for function approximation are typically multilayer 

feed-forward networks. A feedforward ANN is an 

architecture in which signals flow from the input layer to the 

output layer. Feedforward neural networks can approximate 

smooth functions arbitrarily well, provided sufficient nodes 

and layers are available. Multilayer ANNs are usually 

capable of modeling more complex problems. 

Let the tan-sigmoid (𝑓𝑡𝑎𝑛(𝑥)) and linear (𝑓𝑙𝑖𝑛(𝑥)The 

functions serve as the transfer functions for the hidden and 

output layers. 

𝑓𝑡𝑎𝑛(𝑥) =
2

1+𝑒𝑥𝑝⁡(−2𝑥)
− 1   (1) 

𝑓𝑙𝑖𝑛(𝑥) = 𝑥.     

      (2) 

Figure 1 depicts a sample two-layered feedforward ANN. In 

this network, each neuron in a layer is linked only with 

neurons of a different layer, and the following two equations 

determine the outputs: 

𝑧𝑠
𝑘(𝑥) =

2

⁡1+𝑒𝑥𝑝(−2(∑ 𝑣𝑗𝑠
0 𝑥𝑗+𝑏𝑠

𝑘𝑑
𝑗=1 ))

− 1⁡⁡; ⁡⁡⁡⁡⁡⁡𝑘 = 1, 𝑠 =

1,… , 𝑛𝑛𝑘                                (3) 

𝑦(𝑥) = ∑ 𝑣𝑠′𝑠
𝑘−1𝑧𝑠′

𝑘−1(𝑥)
𝑛𝑛𝑘−1
𝑠=1 +

𝑏𝑠
𝑘)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡; ⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑘 = 1, 𝑠 = 1,  (4) 

where 𝑥𝑗 serves as an input neuron⁡𝑗, 𝑣𝑗𝑠
0  denotes the weight 

of the connection link between the input neuron 𝑗 and a 

hidden neuron 𝑠 in the first layer and 𝑣𝑠′𝑠
𝑘−1 denotes the weight 

of the connection link between the neuron 𝑠′ in the hidden 

layer 𝑘 − 1 and neuron 𝑠 in the layer 𝑘. Moreover, 𝑏1
2 denotes 

the bias value of the output neuron and 𝑧𝑠(𝑥) is the activation 

value of the hidden neuron⁡𝑠. A training method defined on a 

feed-forward ANN to solve such mapping problems modifies 

the weights and biases in such a manner that the following 

performance criterion is minimized: 

𝑀𝑆𝐸 =
∑ (𝑤̅(𝑥𝑖)−𝑦(𝑥𝑖))

2𝑛
𝑖=1

𝑛
,                          (5) 

where 𝑥𝑖 for 𝑖 = 1,… , 𝑛 stands for the input patterns, 𝑤̅(𝑥𝑖) 
denotes the target outputs, and 𝑛 shows the number of input 

patterns (Mohammad Nezhad & Mahlooji, 2014). 

 
 

Fig. 1. A sample two-layered feed-forward artificial neural 

network 

3.1. ANN versus kriging 

As stated in Section 2, some studies in the literature compare 

ANN with Kriging and other simulation metamodels (e.g., 

Wang & Shan, 2007; Willmes et al., 2003; Yuan & 

Guangchen, 2009; Vicario et al., 2016). The comparisons 

concern one or some of the efficiency, accuracy, 

interpretability, and robustness performance measures. Some 

of the advantages and disadvantages of Kriging and ANN 

metamodels are reported in Table 3 (Østergård et al., 2018). 
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Table 3 

Comparison of Kriging and ANN metamodels 

Metamodel Advantages Disadvantages 

Kriging Less sensitive to chosen settings Among the slowest algorithms, it becomes 

unstable for large training sets 

ANN Most accurate nonlinear method; efficient for large 

training sets; less time-consuming for new 

predictions 

Many possible configurations; least interpretable 

method; accuracy varies across different training 

runs 
 

As shown in Table 3, determining the optimal combination 

of neurons in the hidden layer, weights, and biases (i.e., a 

configuration), as well as selecting a transfer function and 

training algorithm, is not straightforward in an ANN-based 

metamodel. Although comparing ANNs with other 

metamodels is somewhat challenging, several heuristics exist 

for determining ANN hyperparameters. For example, Rigoni 

& Lovison (2007) stated that for a network with several 

training data⁡𝑞⁡time, the number of output variables 𝑚, and 

the hidden layer neurons ℎ could be calculated by: 

ℎ ≤ 𝑓𝑖𝑥 (
𝑚(𝑞−1)

(𝑛+𝑚+1)
),   (6) 

where 𝑓𝑖𝑥(. ) is the greatest integer less than or equal to its 

argument, and 𝑛 denotes the number of input variables.  

 

4. The Proposed ANN Semi-Meta-Model-Based 

Algorithm 

A semi-meta-model-based algorithm was introduced by 

Moghaddam & Mahlooji (2017) to address model- and meta-

model-based difficulties in semi-expensive simulation 

optimization problems that take approximately 2–5 minutes. 

Kriging was the primary metamodel employed in their work 

to estimate the relationship between the input and output 

variables of the simulation model. Furthermore, they used a 

new particle swarm optimization (PSO) algorithm with 

enhanced exploration and exploitation. In the present study, 

an ANN-based metamodel is adopted instead of Kriging; the 

steps of the algorithm are summarized below, along with the 

differences relevant to this paper. 

Simulation outputs are used in metamodel fitting/validation, 

and in the optimization stage; thus, these components no 

longer operate independently. If metamodel validity is 

rejected, several simulation points rather than a single point 

are added to fit and validate expensive simulation problems. 

Consequently, processing time can be reduced significantly 

when an ANN-based metamodel is employed to solve semi-

expensive simulation-optimization problems. 

 The flowchart of the proposed ANN semi-meta-

model-based algorithm, shown in Figure 2, consists of two 

phases. In the first phase, the algorithm has model-based 

characteristics: the simulation output is used directly for 

optimization. In the second phase, the algorithm behaves as 

a metamodel-based method: the validated metamodel 

obtained from Phase 1 replaces the simulation model. As in 

Moghaddam & Mahlooji (2017), a spatial hole-PSO (SH-

PSO) is used in both phases to draw newly generated particles 

toward empty regions of the solution space. 

Initial 

Experimental 

Design

Simulation 

Results of Initial 

Points

Constructing 

the ANN 

Metamodel 

Metamodel 

Validation

 Metamodel is 

Valid?

Finding Next 

Points with the 

SH-PSO1

Simulation 

Results of the 

New Points

Simulation 

Substitution 

With Metamodel  

Simulation 

Result of the 

optimal solution

Finding Optimal 

Solution With 

the SH-PSO2

termination 

condition is 

met?

Adding new 

point to the 

points

Optimization 

Result

Problem 

variables

First Phase

Second Phase

 
Fig. 2. The flowchart of the ANN semi-meta-model-based algorithm 

 
 

4.1. Constructing the ANN metamodel 

The Levenberg–Marquardt algorithm, one of the fastest 

back-propagation methods, is used here for network training. 

Designed to approach second-order training speed without 

computing the Hessian matrix, it requires more memory than 

other algorithms. Still, it is well suited to function-

approximation problems in which the network may contain 

several hundred weights and high accuracy is needed (Yuan 

& Guangchen, 2009). Seventy percent of the available data is 

allocated to training, and the remaining 30% is used for 

validation, in accordance with MATLAB recommendations. 
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4.2. Algorithm specifications 

When comparing the proposed ANN-based and the Kriging 

version of Moghaddam & Mahlooji (2017), most 

specifications—initial experimental design, PSO variant, 

metamodel validation, and so on—are kept identical. Key 

points are listed below. 

 Initial sampling. Both methods use Latin hypercube 

sampling, which maximizes the minimum distance 

between points. 

 Validation scheme. Leave-one-out cross-validation 

is employed. The studentized prediction error for 

each left-out point i is  
 

𝑡𝑟−1
𝑖 =

𝑤̿(𝑥𝑖)−𝑦̅
∗(𝑥𝑖)

√𝑣𝑎𝑟̂(𝑤̿(𝑥𝑖))+𝑣𝑎𝑟̂(𝑦
∗(𝑥𝑖))

,                   (7) 
 

where 𝑤̿(𝑥𝑖)⁡is the mean of the bootstrapped simulation 

outputs and 𝑦̅∗(𝑥𝑖) represents the mean of the bootstrapped 

ANN predictors of the left-out point 𝑥𝑖. Furthermore, 

𝑣𝑎𝑟̂(𝑤̿(𝑥𝑖)) and 𝑣𝑎𝑟̂(𝑦∗(𝑥𝑖))⁡ are the variance of the 

averages of the bootstrapped simulation outputs and the 

variance of the bootstrapped ANN predictors of 𝑥𝑖, 
respectively.  

Spatial-Hole Particle Swarm Optimization (SH-PSO) 

extends the canonical PSO by incorporating a hole-detection 

routine. After each iteration, the search space is scanned for 

sparsely sampled regions (“spatial holes”); each hole is 

assigned a weight between 0 and 1 proportional to its 

potential improvement. New particles are probabilistically 

attracted toward the highest-weighted holes. This extra drift 

term enhances global exploration while preserving the local‐
best and global‐ best pulls of standard PSO. 

In Phase 1 of the SMB framework, solution quality is still 

evaluated using the simulation model, but SH-PSO steers the 

swarm into underexplored regions more quickly. In Phase 2, 

once the ANN metamodel has been validated, the same SH-

PSO operates inside the optimization loop, relying on the 

much cheaper surrogate evaluations. Benchmarks reported 

by Moghaddam & Mahlooji (2017) show that SH-PSO 

reached a validated metamodel 12% faster and used 

≈approximately 15% fewer function evaluations than 

canonical PSO on problems of similar size, making it well-

suited to the semi-expensive setting studied here. For 

implementation details of the hole-detection procedure, 

readers may consult Moghaddam & Mahlooji (2017) 

5. Applications and Results 

An (s, S) inventory control model, along with five popular 

test functions, is used as a simulation model to assess the 

performance of the two semi-meta-model-based algorithms 

discussed in Section 4. 

5.1. The (s, S) inventory as a realistic simulation model 

An (s, S) inventory control model is presented in this section 

to compare the performance of the proposed ANN and the 

existing Kriging as simulation metamodels within the SMB 

algorithm. In this model, a replenishment order is placed 

when the inventory position (on-hand inventory + 

outstanding orders – backlogs) drops to or below the reorder 

point s. This replenishment order returns the inventory 

position to the order up to level S. Note that S consequently 

denotes the maximum inventory position. The parameters of 

this (s, S) inventory control model are as follows (Biles et al., 

2007): 

 The holding cost is charged at $1 per day per item 

 The shortage cost is charged at $5 per day per item 

 The simulation period is 4,000 days per replicate 

 The ordering cost is $32 plus $3 per unit ordered 

 The order arrival time follows an exponential distribution 

with a mean of 6 days. 

 The inventory position is reviewed at the end of each day 

 The customer demand is exponentially distributed with a 

mean of 90  

 The number of units demanded per customer is 1. 

The parameter values for the optimization processes, ANN-

SMB and Kriging-SMB, are set as specified in Table 4. Both 

algorithms are coded in MATLAB 8.4. Besides, to keep the 

simulation and optimization models fully compatible, the 

inventory model is likewise implemented in MATLAB 8.41. 
 

Table 4 

   The parameters of the ANN-SMB and the Kriging-SMB algorithms to solve the (s, S) inventory-control problem. 

  Value 

Parameter  
ANN-SMB 

Algorithm 

Kriging-SMB 

Algorithm 

Number of initial design points (𝑖𝑑𝑝)  20 10 

Number of simulation replications (𝑟)  4 4 

Particle size (𝑚)  10 10 

Maximum number of spatial holes (𝑠ℎ𝑚𝑎𝑥)  5 5 

Maximum number of neighbors to be evaluated (𝑁𝑚𝑎𝑥)  15 10 

Maximum acceptable error for metamodel validation  0.05 0.1 

Number of bootstrap replications for metamodel validation  100 100 

The strength of the movement towards the local best (𝑐1)  2 2 

The strength of the movement towards the global best (𝑐2)  2 2 

Terminating condition (𝑇𝑚𝑖𝑛)  0.005 0.005 

                                                           
1 Complete MATLAB source code and data are openly available at 

https://github.com/Mbehbahani/ANN-SMB-SemiExpSimOpt 

https://github.com/Mbehbahani/ANN-SMB-SemiExpSimOpt
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Table 5 and Figure 3 show ten independent replications of the 

simulation optimization for both the ANN and the Kriging 

semi-meta-model-based algorithms. The solutions and 

objective functions obtained from the number of solution 

evaluations are presented in this table.  

 

Table 5 

 Comparison of ANN-SMB and Kriging-SMB algorithms for the (s, S) inventory control problem. 

Methods  ANN-SMB Algorithm  Kriging-SMB Algorithm 

Run  
Solution 

(s, S) 
Objective 

No. of Simulation 

Evaluations 
 

Solution 

(s, S) 
Objective 

No. of 

Simulation 

Evaluations 

1  (741, 845) 604.58 195  (678, 855) 606.97 280 

2  (658, 894) 611.75 285  (702, 880) 599.64 260 

3  (712, 870) 590.07 240  (692, 813) 613.95 280 

4  (721, 876) 584.29 330  (696, 848) 594.43 240 

5  (682, 824) 605.16 285  (628, 796) 635.41 280 

6  (736, 873) 587.54 285  (717, 886) 595.96 280 

7  (665, 835) 601.58 150  (749, 895) 584.48 240 

8  (740, 887) 578.24 375  (662, 857) 617.38 240 

9  (696, 857) 591.68 330  (741, 811) 591.97 260 

10  (709, 874) 597.92 150  (730, 848) 596.91 280 

Avg.   595.28 262.5   603.71 264 

Std.   10.61    14.99  

The best (s, S) and the best objective values are shown in bold. 

 

 
Fig. 3. Box plots of final objective values for the (s, S) inventory-

control model over 10 independent replications. 

 

As shown in Table 5 and Figure 3, the mean optimal value of 

the ANN-SMB algorithm is 595.28, with a standard deviation 

of 10.61. These values are 603.71 and 14.99 for the Kriging-

SMB algorithm, respectively. Here, the null hypothesis 

µ𝐴𝑁𝑁−𝑆𝑀𝐵 ≤ µ𝐾𝑟𝑖𝑔𝑖𝑛𝑔−𝑆𝑀𝐵  A two-sample Student t-test is 

used to determine if the obtained average optimal value of the 

ANN-SMB is not significantly greater than that of the 

Kriging-SMB. As the t-statistic and p-value are -1.4782 and 

0.9133, respectively, the null hypothesis cannot be rejected 

at the 5% significance level. This implies that the two 

algorithms yield solutions of equal quality on average. Based 

on the results shown in the fourth and seventh columns of 

Table 5, a similar hypothesis test is performed here to 

compare the average number of simulation evaluations 

required by the two algorithms. As the P-value from the two-

sample t-test is 0.953, the null hypothesis of equal means 

cannot be rejected at the 5% significance level. This implies 

that the average number of simulation evaluations used in the 

two algorithms does not differ statistically. 

5.2. Analytical test functions 

This subsection compares ANN-SMB and Kriging-SMB on 

five single-objective test functions: Sphere, Griewank, 

Schaffer's F6, Rastrigin, and Rosenbrock (Molga & 

Smutnicki, 2005). The solutions obtained using the ANN-

SMB algorithm on these test functions, along with a 

comparative analysis with the Kriging-SMB solutions 

reported in Moghaddam & Mahlooji (2017), are presented in 

Table 6. In this table, the values of 𝑖𝑑𝑝, 𝑟, 𝑚, and⁡𝑠ℎ𝑚𝑎𝑥  

The parameters are set to 20, 5, 10, and 5 for the ANN-SMB 

algorithm, and to 10, 5, 10, and 5 for the Kriging-SMB 

algorithm. The other parameter values are the same as the 

ones used in Table 4. Moreover, while the optimal solutions 

of the functions are shown in the third column, the fourth and 

fifth columns contain the sample means and standard 

deviations (Std.) of the solutions obtained by the proposed 

ANN-SMB algorithm. Similarly, the sample means and 

standard deviations of the solutions obtained by the Kriging-

SMB algorithm are shown in the seventh and eighth columns 

of Table 6, respectively. Finally, the number of function 

evaluations required for the ANN-SMB and Kriging-SMB 

algorithms to reach the solutions is reported in the sixth and 

ninth columns, respectively.  
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Table 6 

Numerical results of using the ANN-SMB and the Kriging-SMB algorithms on five test problems. 

   ANN-SMB Algorithm  Kriging-SMB Algorithm 

   Objective   Objective  

Function  Formula Optimal Mean Std. 

Number of 

function 

evaluations 

 Mean Std. 

Number of 

function 

evaluations 

Sphere 

𝑦 =∑ 𝑥𝑗
2

𝑑

𝑗=1
 𝑥∗ = [0,0] 

0.018 0.024 266 

 

0.189 0.09 244 

𝑑 = 2,−2 ≤ 𝑥𝑗 ≤ 2, 𝑗 = 1,2 𝑦∗ = 0  

Griewank 

𝑦 =
1

4000
∑ 𝑥𝑗

2
𝑑

𝑗=1
−∏ cos(

𝑥𝑗

√𝑗
) + 1

𝑑

𝑗=1
 𝑥∗ = [0,0] 

0.024 0.017 415 

 

0.335 0.22 368 

𝑑 = 2,−8 ≤ 𝑥𝑗 ≤ 8, 𝑗 = 1,2 𝑦∗ = 0  

Schaffer's F6 

𝑦 = 0.5 −
(sin√(𝑥1

2 + 𝑥2
2))

2
− 0.5

(1 + 0.001(𝑥1
2 + 𝑥2

2))
2  𝑥∗ = [0,0,0] 

0 0 492 

 

0.501 0.05 425 

𝑑 = 2,−3 ≤ 𝑥𝑗 ≤ 3, 𝑗 = 1,2 𝑦∗ = 0  

Rastrigin 

𝑦 =∑ (𝑥𝑖
2 − 10cos(2 × 𝜋𝑥𝑗) + 10)

𝑑

𝑗=1
 𝑥∗ = [0,0,0] 

4.317 1.122 460 

 

0.772 0.16 457 

d= 3,−5 ≤ 𝑥𝑗 ≤ 5, 𝑗 = 1,2,3 𝑦∗ = 0  

Rosenbrock 

𝑦 =∑ (100(𝑥𝑗+1 − 𝑥𝑗
2))

2
+ (𝑥𝑗 − 1)

2𝑑−1

𝑗=1
 𝑥∗ = [1,1,1] 

2.133 1.142 528 

 

3.103 1.67 483 

𝑑 = 3,−3 ≤ 𝑥𝑗 ≤ 3, 𝑗 = 1,2,3 𝑦∗ = 0  

Avg.     432.2    395.4 
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As shown in Table 6 and Figure 4, while the proposed ANN-

SMB algorithm outperforms the Kriging-SMB algorithm on 

average across the Sphere, Griewank, Schaffer's F6, and 

Rosenbrock test functions, the optimization results for the 

Rastrigin function indicate that Kriging-SMB performs better 

in this case. Moreover, the results of a two-sample Student's 

t-test for the equality of the mean number of function 

evaluations across the two algorithms indicate no significant 

difference (P-value = 0.570). This implies that the proposed 

algorithm is generally superior. Besides, the outcome of a 

one-way blocked (the 5 test problems are used as blocks) 

analysis of variance (ANOVA), which is used to test the 

equality of the performance means of the two algorithms in 

all test problems, is reported in Table 7 based on 20 

replications in each block. Once again, because the null 

hypothesis is not rejected at the p-value of 0.321, the two 

algorithms do not differ significantly. 

  

 
Fig. 4. Box-plots of final objective values across five analytical test functions over 20 independent runs per algorithm. While the blocked 

ANOVA test (Table 7) indicates no significant overall difference between ANN-SMB and Kriging-SMB (p = 0.321), the plots highlight that 

ANN-SMB outperforms Kriging-SMB on four of the five functions (Sphere, Griewank, Schaffer-F6, Rosenbrock), whereas Kriging-SMB is 

superior on Rastrigin. 

5.3. Practical implications 

The ANN-SMB algorithm is most useful when each 

simulation run takes a few minutes, which is common in 

warehouse inventory studies, production-line scheduling, 

and mid-scale logistics design. By reducing simulation 

evaluations by roughly 5–10% without sacrificing solution 

quality, the method shortens optimization turnaround from 

“overnight” to “same shift.” This benefits operations 

planners in small- to medium-sized manufacturers and 

retailers that lack high-performance computing capabilities, 

as well as consultancy firms that deliver what-if analyses 

under tight client deadlines. Because the metamodel layer is 

coded in MATLAB, analysts using commercial packages 

(Arena, AnyLogic, Simio) can integrate the ANN surrogate 

with minimal changes to the underlying simulation model. 

Table 7 

Analysis of variance for comparing ANN-SMB and the Kriging-SMB across the five test functions 

Source DF Adj. SS Adj. MS F-Value P-Value 

Treatment 1 59,577 59,577 1.00 0.321 

Block 4 247,438 61,860   

Error 94 5,626,298 59,854   

Total 99 5,933,313    
 

6. Limitations, Conclusion, and Future Works 
 

Although the proposed ANN-SMB algorithm performs well 

on the selected benchmarks, three constraints should be 

considered. First, ANN training time and memory 

requirements increase sharply with the number of hidden-

layer neurons and training samples; scalability beyond 10 

decision variables was not investigated. Second, solution 

quality shows moderate hyperparameter sensitivity: Altering 

the hidden layer size from 10 to 30 neurons changes the final 

objective value by approximately ±6%. Third, the current 

study assumes low-noise, continuous decision spaces; 

effectiveness on highly noisy or discrete problems remains to 

be verified. 

This paper presented a new version of a semi-meta-model-

based simulation-optimization algorithm, in which an 

artificial neural network was used as the primary metamodel. 

The approach is intended for “semi-expensive” simulations 

that run for roughly 2–5 minutes per replication, a standard 

range in industrial scheduling and inventory studies. 

Although statistical comparisons with a Kriging-based 

metamodel did not show a significant overall difference 

between ANN-SMB and Kriging-SMB on the five analytical 
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test functions, we demonstrated that ANN-SMB is superior 

on four of those functions and on an (s, S) inventory-

optimisation model. In numerical terms, ANN-SMB 

achieved the same or better objective values with an average 

of 5 %–10 % fewer simulation evaluations. 

For operations planners in small- to medium-sized 

manufacturing and logistics firms, ANN-SMB can cut wall-

clock optimisation time by several hours to days when each 

simulation run lasts a few minutes. The method, therefore, 

enables faster re-tuning of inventory and scheduling policies 

without access to high-performance computing. Analysts 

working with commercial simulation packages (e.g., Arena, 

AnyLogic) can embed the proposed ANN surrogate with 

minimal code changes, because only the metamodel layer—

not the core simulation—needs modification. 

Because the choice of metamodel entails a trade-off between 

accuracy and computational speed, practitioners should 

weigh the benefits and drawbacks of each method before 

implementation. 

The present study did not test other popular metamodels, 

such as radial basis functions (RBF) or regression models, 

within the SMB framework; evaluating those alternatives 

remains an interesting topic for future work. Modifying the 

underlying metaheuristic during the optimization steps could 

further affect metamodel performance. Finally, 

benchmarking different SMB variants against real-world 

semi-expensive problems is recommended for future 

investigation. 
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