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Abstract

Although many problems in the literature involve complex mathematical relationships, many still
rely on simplified and unrealistic assumptions. Simulation is one of the most powerful tools for
dealing with such problems, as it avoids the restrictive assumptions often required in stochastic
systems. Simulation optimization techniques are generally classified into two broad categories:
model-based and metamodel-based methods. In the first category, simulation and optimization
components interact directly, thereby increasing simulation time and cost. To address this issue, a
third component—called a metamodel—is introduced in the second category to estimate the system's
relationship between input and output variables. Optimizing semi-expensive simulation problems
often requires many simulation runs in model-based methods. However, the cost of validating
metamodels also rises rapidly during iterations. A two-phase method has been proposed in the
literature to reduce computation time. In the first phase, similar to a model-based algorithm, the
simulation output is used directly in the optimization process. In the second phase, a validated
metamodel replaces the simulation model. In this paper, an artificial neural network (ANN) is
employed as the metamodel, and its performance is compared with that of the original algorithm,
which employs a Kriging metamodel, on five well-known test functions and an (s, S) inventory
model.
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1. Introduction

Since its inception over five decades ago, simulation has been
a powerful tool for assessing potential risks and guiding
managers and practitioners in decision-making under
uncertainty. The simulation approach can more accurately
anticipate risks and make more robust decisions in the face
of uncertainty, ambiguity, and variability. Moreover, the
simulation optimization approach identifies the optimal
values of the input variables without explicitly evaluating
every possible combination. The simulation-optimization
approach has a wide range of applications across various
problems. For instance, applications of the simulation-
optimization approach include liver transplant management,
maritime logistics optimization, semiconductor production
planning, and parasitology calibration, as noted by Xu et al.
(2015).

There are two primary methods to optimize a simulation
model: (1) model-based and (2) metamodel-based. In the first
method, the simulation and optimization phases are
performed iteratively until a stopping criterion is met. In the
latter, however, a surrogate model is used to mimic the
simulation behavior when a high computational burden,
which takes about 36-60 hours per replication, occurs, as in
the Ford Motor Company crash simulation (Wang & Shan,
2007). Assuming an average of 50 iterations is required to
optimize a two-variable problem, the total computational
time would range from 75 days to 11 months, which is
unacceptable in practice. Nevertheless, predicting an
approximate metamodel (surrogate model) that replaces the
simulation model would incur negligible cost relative to the
Table 1

Pros and Cons of Simulation Optimization Approaches

original simulation cost (\Wang et al., 2019). The widely used
surrogate models in the literature include Kriging, Artificial
Neural Networks (ANNSs), Support Vector Regression
(SVR), multivariate adaptive regression splines (MARS),
and Radial Basis Function (RBF) models.

Establishing a surrogate model often goes through three steps
as follows (Nguyen et al., 2014):

o Sampling input vectors and calculating corresponding
model responses constitute a database for training a
surrogate model.

o Constructing the surrogate model based on the database
by selecting an appropriate method, e.g., Kriging, SVR,
ANN, or RBF.

o Validating the model before it is used as a "surrogate”
for the original model.

Both model- and metamodel-based methods have benefits
and drawbacks, as summarized in Table 1. Although
metamodel-based algorithms have some disadvantages,
when a single simulation-model replication takes more than
five minutes, one must use a metamodel-based algorithm.
This is because, on average, a large number (typically 2000-
4000) of replications are required in model-based simulations
to evaluate simulation points and incorporate them into
optimization. However, the number of simulation
replications is minimized in a metamodel-based simulation.
However, when a single simulation model run takes less than
five minutes, metamodel approaches are inefficient because
their validation processes require excessive time due to
fitting errors. In these cases, the use of the model-based
approach is recommended.

Method Advantages Disadvantages
Model-Based e Accurate and numerically efficient for o Needs to assess a large number of simulation points
inexpensive simulation problems o Gives no insight into the objective function
Metamodel o Relieve the computational expense by o Existence of fitness error
Based replacing the simulation with an approximation o Validation time
model. o Gets trapped in the fitting and validating steps

Sometimes, a single simulation model replication takes more
than two but fewer than 5 minutes on average. Due to their
disadvantages, neither the model-based nor the meta-model-
based simulation methods are appropriate. For this type of
simulation, Moghaddam & Mahlooji (2017) presented a
Semi-Metamodel-Based (SMB) algorithm that employs a
metamodel, distinct from standard meta-model-based
algorithms. They showed that their algorithm avoids the
disadvantages of the model-based approach and mitigates
some of the problems of meta-model-based algorithms. In the
first phase, the algorithm operates as a model-based method,
directly using the simulation output in the optimization
phase. The optimization component proceeds in this phase,
and metamodel construction is underway in parallel. As the
number of simulation points in the experimental design
increases at each step, the time required for metamodel
validation decreases. The second phase of the algorithm
employs the metamodel obtained in the first phase to evaluate

solutions during the optimization stage, which begins once
the metamodel is validated. Furthermore, they presented an
optimization algorithm based on particle swarm optimization
(PSO) that employs strategies to enhance its intensification
and diversification.

The primary approach to constructing a surrogate model from
available simulation points is Gaussian process regression
(Kriging). This estimation method aims to obtain a
minimum-variance estimate of any unsampled simulation
point by smoothing out extreme values in the available
simulation points. As such, the objective of the current paper
is to compare the performances of the Kriging and an ANN
approach used as surrogate models in the SMB algorithm
(Moghaddam & Mahlooji, 2017). To this end, simulation
points obtained from an (s, S) inventory control model and
from five popular test functions are investigated.

The structure of the rest of the paper is as follows. The
literature review is given in detail in Section 2. The employed
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ANN metamodel is described in Section 3. Section 4 contains
the characteristics of the SMB algorithm. The (s, S) inventory
and the test functions are introduced in Section 5 to assess the
performance of the ANN metamodel in the SMB algorithm
and to compare its results with those obtained by the Kriging-
based metamodel. Finally, Section 6 concludes with
recommendations for future research.

2. Literature Review

In this section, we first survey model- and metamodel-based
algorithms used to solve simulation optimization problems.
Then, the fundamental differences between Kriging and
ANN metamodels in simulation-optimization techniques are
discussed. As mentioned above, several model-based
approaches have been proposed in the simulation-
optimization literature. Wang (2005) developed an
optimization approach using a hybrid method of genetic
algorithm (GA) and neural network. They employed a neural

Table 2
Works on the comparative study of metamodeling methods

network to predict the objective function value, then used a
GA for its practical, robust evolutionary search to determine
the optimal values of the input parameters. Shi & Olafsson
(2000) proposed the Nested Partition method as a global
sampling technique that continuously adapts by partitioning
the feasible solution region, thereby reducing computational
load by selecting the most promising areas. Similarly, Ahmed
& Alkhamis (2009) integrated simulation and optimization to
design a decision-support tool for a governmental hospital in
Kuwait; they evaluated the impact of various staffing levels
on service efficiency to determine the optimal number of
doctors. Tsal & Fu (2014) employed two GA-based
algorithms for a discrete simulation-optimization problem
with a single stochastic constraint; they adopted different
sampling rules and search mechanisms and thus provided
different statistical guarantees.

surrogate model

Pyl
Publication year 2 JZ> % = S 2 % Type of performance metric
= =z M %] Py py) @
« o wm
]
Willmes et al. (2003) N Problem dimension, accuracy
Yuan & Guangchen (2009) \ \ Four proposed performance measures
Zhao and Xue (2010) N N N accuracy, confidence, robustness, efficiency,
and robustness
Backlund et al. (2012) \ \ \ Problem dimension
Vicario et al. (2016) \ \ Accuracy(at a satisfactory cost)
Besikgi et al. (2016) Y v RMSE (root mean square error)
Diaz-Manriquez et al. (2017) \ \ v A The budget for computational time
@stergard et al. (2018) N N N accuracy, EffICI_(E_nCy, ease-of-use, robustness,
and interpretability
Amouzegar et al. (2018) N N N N N A proposgd ranklr_lg_ metric, accuracy, and
computational efficiency
Cheng et al. (2020) \ \/ N A The accuracy and efficiency
Meta-modeling has been applied to develop simulations for presented an ANN metamodel for expensive continuous
various purposes, including early design decisions, simulation optimization (SO)  with stochastic

uncertainty and sensitivity analyses, design optimization, and
model calibration (Nguyen et al., 2014). Metamodel-based
techniques are among the most popular research areas in the
field of simulation optimization, and numerous algorithms
have been proposed. For instance, Jones et al. (1998) used the
Kriging approach within an Efficient Global Optimization
(EGO) algorithm to interpolate between function values and
select future samples based on an expected improvement
metric for simulations with deterministic outputs. In addition,
ANNSs have been employed in numerous algorithms proposed
in the literature to optimize computationally expensive
simulations. To name a few, Dengiz et al. (2009) optimized
two manufacturing systems utilizing neural network
metamodels. A tabu search (TS) metaheuristic was employed
to train the ANNSs and improve the performance of the meta-
modeling approach. Mohammad Nezhad & Mahlooji (2014)

constraints. Capturing the nonlinear nature of the ANN, the
SO problem was iteratively approximated via nonlinear
programming problems, whose (near-) optimal solutions
yielded estimates of the global optimum. Considering the
uncertainty in the random parameters, Roy& Chakraborty
(2020) proposed a sequential updating approach that
improves the accuracy of the SVR metamodel. A
comprehensive review of other metamodels for optimization
strategies applied to computationally expensive black-box
functions is available in Shan & Wang (2010).

Willmes et al. (2003) compared the performance of
feedforward neural networks and Kriging as fitness
approximations for evolutionary optimization in both offline
and online learning. Yuan & Guangchen (2009) applied four
performance measures to evaluate different types of
metamodel performance, such as providing good starting
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points for gradient-based search and the accuracy of placing
optima in the correct location. Furthermore, Vicario et al.
(2016) compared the performance of the Kriging model with
that of an ANN model to determine which model achieves
higher accuracy in predicting results from a four-dimensional
computational fluid dynamics system. Moreover, Besikgi et
al. (2016) compared the performance of an ANN metamodel
with that of a multiple regression (MR) model, confirming
the superiority of the former. Interested readers are referred
to Dstergard et al. (2018) for other comparison studies among
linear regression with ordinary least squares (OLS), random
forest (RF), SVR, MARS, Gaussian process regression
(GPR), and neural network metamodel. The authors
considered five performance indicators for eight test
problems and 19 mathematical test functions in their work.
Some researchers assessed the enhanced version of these
surrogate models. Besides, Cheng et al. (2020) investigated
several surrogate metamodels, including Kriging, SVR, RBF,
and Low-Rank tensor Approximation (LRA), based on their
applications in variance-based global sensitivity analyses.
Table 2 lists published papers that have used metamodels to
predict the models' responses.

Neural networks and Kriging approximations are among the
most attractive techniques in simulation-optimization meta-
modeling, but they have not been surveyed in the context of
SMB algorithms. In the following sections, we investigate
the accuracy and computational efficiency of these meta-
modeling techniques for SMB algorithms using two- and
three-dimensional test functions.

3. Neural Network Metamodel

Neural networks (NNs) are powerful tools for approximating
unknown nonlinear functions and have gained widespread
applications in various fields. ANNs can approximate
arbitrary smooth functions and can be trained using noisy
response data. ANNs were developed to mimic neural
processing and can be implemented on a digital computer
using networks of numerical processors whose inputs and
outputs are linked according to specific topologies (Barton &
Meckesheimer, 2006).
NNs used for function approximation are typically multilayer
feed-forward networks. A feedforward ANN is an
architecture in which signals flow from the input layer to the
output layer. Feedforward neural networks can approximate
smooth functions arbitrarily well, provided sufficient nodes
and layers are available. Multilayer ANNs are usually
capable of modeling more complex problems.
Let the tan-sigmoid (fiqn(x)) and linear (fy;,(x)The
functions serve as the transfer functions for the hidden and
output layers.

2

ftan(x) = m -

fiin(x) = x.

1)

@)

Figure 1 depicts a sample two-layered feedforward ANN. In
this network, each neuron in a layer is linked only with
neurons of a different layer, and the following two equations

determine the outputs:
2

k — . — —
25 (%) 1+exp(—2(2}i=1 v]‘-’sxj+b§)) 1i k=1ls
1,..,nn, 3)
y() = Xi T vkt 2E T (0 +
bé) ; k=1s=1, (4)

where x; serves as an input neuron j v?, denotes the weight

» Vjs
of the connection link between the input neuron j and a
hidden neuron s in the first layer and vX;* denotes the weight
of the connection link between the neuron s in the hidden
layer k — 1 and neuron s in the layer k. Moreover, b? denotes
the bias value of the output neuron and z,(x) is the activation
value of the hidden neuron s. A training method defined on a
feed-forward ANN to solve such mapping problems modifies
the weights and biases in such a manner that the following
performance criterion is minimized:

n =N 2
MSE = M )
where x; for i = 1,...,n stands for the input patterns, w (x;)

denotes the target outputs, and n shows the number of input
patterns (Mohammad Nezhad & Mahlooji, 2014).

Fig. 1. A sample two-layered feed-forward artificial neural
network
3.1. ANN versus kriging

As stated in Section 2, some studies in the literature compare
ANN with Kriging and other simulation metamodels (e.g.,
Wang & Shan, 2007; Willmes et al., 2003; Yuan &
Guangchen, 2009; Vicario et al., 2016). The comparisons
concern one or some of the efficiency, accuracy,
interpretability, and robustness performance measures. Some
of the advantages and disadvantages of Kriging and ANN
metamodels are reported in Table 3 (Jstergard et al., 2018).
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Table 3

Comparison of Kriging and ANN metamodels

Metamodel Advantages Disadvantages

Kriging Less sensitive to chosen settings Among the slowest algorithms, it becomes
unstable for large training sets

ANN Most accurate nonlinear method,; efficient for large  Many possible configurations; least interpretable

training sets;
predictions

less time-consuming for new

method; accuracy varies across different training
runs

As shown in Table 3, determining the optimal combination
of neurons in the hidden layer, weights, and biases (i.e., a
configuration), as well as selecting a transfer function and
training algorithm, is not straightforward in an ANN-based

metamodel.

Although

comparing ANNs with other

metamodels is somewhat challenging, several heuristics exist
for determining ANN hyperparameters. For example, Rigoni
& Lovison (2007) stated that for a network with several
training data q time, the number of output variables m, and
the hidden layer neurons h could be calculated by:

. m(q-1)
h < flx ((n+m+1)

(6)

where fix(.) is the greatest integer less than or equal to its
argument, and n denotes the number of input variables.

4. The Proposed ANN Semi-Meta-Model-Based

Algorithm

A semi-meta-model-based algorithm was introduced by
Moghaddam & Mahlooji (2017) to address model- and meta-

model-based difficulties

in semi-expensive simulation

new particle swarm optimization (PSO) algorithm with
enhanced exploration and exploitation. In the present study,
an ANN-based metamodel is adopted instead of Kriging; the
steps of the algorithm are summarized below, along with the
differences relevant to this paper.

Simulation outputs are used in metamodel fitting/validation,
and in the optimization stage; thus, these components no
longer operate independently. If metamodel validity is
rejected, several simulation points rather than a single point
are added to fit and validate expensive simulation problems.
Consequently, processing time can be reduced significantly
when an ANN-based metamodel is employed to solve semi-
expensive simulation-optimization problems.

The flowchart of the proposed ANN semi-meta-
model-based algorithm, shown in Figure 2, consists of two
phases. In the first phase, the algorithm has model-based
characteristics: the simulation output is used directly for
optimization. In the second phase, the algorithm behaves as
a metamodel-based method: the validated metamodel
obtained from Phase 1 replaces the simulation model. As in

optimization problems that take approximately 2-5 minutes.
Kriging was the primary metamodel employed in their work
to estimate the relationship between the input and output
variables of the simulation model. Furthermore, they used a

Moghaddam & Mahlooji (2017), a spatial hole-PSO (SH-
PSQ) is used in both phases to draw newly generated particles
toward empty regions of the solution space.

— — First Phase

>

Simulation
Results of Initial
Points

Initial
Problem .
. Experimental
variables .
Design

Constructing Adding new
> the ANN % == point to the
Metamodel points

Metamodel
Validation

Simulation Finding Next
Results of the 4= Points with the
New Points SH-PSO1

Simulation Finding Optimal
=M Substitution —» Solution With
With Metamodel the SH-PSO2

etamodel T
Valid?

1

Simulation
Result of the
optimal solution

€rmination
condition is
met?

Optimization
Result
)

4.1. Constructing the ANN metamodel

The Levenberg-Marquardt algorithm, one of the fastest
back-propagation methods, is used here for network training.
Designed to approach second-order training speed without
computing the Hessian matrix, it requires more memory than

other algorithms. Still, it is well suited to function-
approximation problems in which the network may contain
several hundred weights and high accuracy is needed (Yuan
& Guangchen, 2009). Seventy percent of the available data is
allocated to training, and the remaining 30% is used for
validation, in accordance with MATLAB recommendations.

Fig. 2. The flowchart of the ANN sémi-meta—model-based al

gorithm
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4.2. Algorithm specifications

When comparing the proposed ANN-based and the Kriging
version of Moghaddam & Mahlooji  (2017), most
specifications—initial experimental design, PSO variant,
metamodel validation, and so on—are kept identical. Key
points are listed below.
¢ Initial sampling. Both methods use Latin hypercube
sampling, which maximizes the minimum distance
between points.
e Validation scheme. Leave-one-out cross-validation
is employed. The studentized prediction error for
each left-out point i is

w(x) -y (xi)

Jvarw(x))+var(y* ()’ )
i y*(x1))

where w(x;) is the mean of the bootstrapped simulation
outputs and y*(x;) represents the mean of the bootstrapped
ANN predictors of the left-out point x;. Furthermore,
var(w(x;)) and var(y*(x;)) are the variance of the
averages of the bootstrapped simulation outputs and the
variance of the bootstrapped ANN predictors of x;,
respectively.
Spatial-Hole Particle Swarm Optimization (SH-PSO)
extends the canonical PSO by incorporating a hole-detection
routine. After each iteration, the search space is scanned for
sparsely sampled regions (“spatial holes™); each hole is
assigned a weight between 0 and 1 proportional to its
potential improvement. New particles are probabilistically
attracted toward the highest-weighted holes. This extra drift
term enhances global exploration while preserving the local-
best and global- best pulls of standard PSO.
In Phase 1 of the SMB framework, solution quality is still
evaluated using the simulation model, but SH-PSO steers the
swarm into underexplored regions more quickly. In Phase 2,
once the ANN metamodel has been validated, the same SH-
PSO operates inside the optimization loop, relying on the
much cheaper surrogate evaluations. Benchmarks reported
by Moghaddam & Mahlooji (2017) show that SH-PSO

i —
tr-1 =

~approximately 15% fewer function evaluations than
canonical PSO on problems of similar size, making it well-
suited to the semi-expensive setting studied here. For
implementation details of the hole-detection procedure,
readers may consult Moghaddam & Mahlooji (2017)

5. Applications and Results

An (s, S) inventory control model, along with five popular
test functions, is used as a simulation model to assess the
performance of the two semi-meta-model-based algorithms
discussed in Section 4.

5.1. The (s, S) inventory as a realistic simulation model

An (s, S) inventory control model is presented in this section
to compare the performance of the proposed ANN and the
existing Kriging as simulation metamodels within the SMB
algorithm. In this model, a replenishment order is placed
when the inventory position (on-hand inventory +
outstanding orders — backlogs) drops to or below the reorder
point s. This replenishment order returns the inventory
position to the order up to level S. Note that S consequently
denotes the maximum inventory position. The parameters of
this (s, S) inventory control model are as follows (Biles et al.,
2007):

e The holding cost is charged at $1 per day per item

e The shortage cost is charged at $5 per day per item

e The simulation period is 4,000 days per replicate

e The ordering cost is $32 plus $3 per unit ordered

o The order arrival time follows an exponential distribution

with a mean of 6 days.
¢ The inventory position is reviewed at the end of each day
e The customer demand is exponentially distributed with a
mean of 90

e The number of units demanded per customer is 1.
The parameter values for the optimization processes, ANN-
SMB and Kriging-SMB, are set as specified in Table 4. Both
algorithms are coded in MATLAB 8.4. Besides, to keep the
simulation and optimization models fully compatible, the

reached a validated metamodel 12% faster and used inventory model is likewise implemented in MATLAB 8.4!.
Table 4
The parameters of the ANN-SMB and the Kriging-SMB algorithms to solve the (s, S) inventory-control problem.
Value
Parameter ANN-SMB Krlglng-SMB
Algorithm Algorithm
Number of initial design points (idp) 20 10
Number of simulation replications (r) 4 4
Particle size (m) 10 10
Maximum number of spatial holes (sh™%*) 5 5
Maximum number of neighbors to be evaluated (N™%*) 15 10
Maximum acceptable error for metamodel validation 0.05 0.1
Number of bootstrap replications for metamodel validation 100 100
The strength of the movement towards the local best (c;) 2 2
The strength of the movement towards the global best (c,) 2 2
Terminating condition (T,,i,) 0.005 0.005

" Complete MATLAB source code and data are openly available at
https://github.com/Mbehbahani/ANN-SMB-SemiExpSimOpt
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Table 5 and Figure 3 show ten independent replications of the
simulation optimization for both the ANN and the Kriging
semi-meta-model-based algorithms. The solutions and
Table 5

objective functions obtained from the number of solution
evaluations are presented in this table.

Comparison of ANN-SMB and Kriging-SMB algorithms for the (s, S) inventory control problem.

Methods ANN-SMB Algorithm Kriging-SMB Algorithm
. . . . No. of

RUN Solution Objective No. of Slm_ulatlon Solution Objective Simulation
(s, S) Evaluations (s, S) :

Evaluations
1 (741, 845) 604.58 195 (678, 855) 606.97 280
2 (658, 894) 611.75 285 (702, 880) 599.64 260
3 (712, 870) 590.07 240 (692, 813) 613.95 280
4 (721, 876) 584.29 330 (696, 848) 594.43 240
5 (682, 824) 605.16 285 (628, 796) 635.41 280
6 (736, 873) 587.54 285 (717, 886) 595.96 280
7 (665, 835) 601.58 150 (749, 895) 584.48 240
8 (740, 887) 578.24 375 (662, 857) 617.38 240
9 (696, 857) 591.68 330 (741, 811) 591.97 260
10 (709, 874) 597.92 150 (730, 848) 596.91 280
Avg. 595.28 262.5 603.71 264

Std. 10.61 14.99

The best (s, S) and the best objective values are shown in bold.

Inventory Model

Final objective value

ANN-SMB
Fig. 3. Box plots of final objective values for the (s, S) inventory-
control model over 10 independent replications.

Kriging-SMB

As shown in Table 5 and Figure 3, the mean optimal value of
the ANN-SMB algorithm is 595.28, with a standard deviation
of 10.61. These values are 603.71 and 14.99 for the Kriging-
SMB algorithm, respectively. Here, the null hypothesis
HanN-sMB < Mriging-smp A two-sample Student t-test is
used to determine if the obtained average optimal value of the
ANN-SMB is not significantly greater than that of the
Kriging-SMB. As the t-statistic and p-value are -1.4782 and
0.9133, respectively, the null hypothesis cannot be rejected
at the 5% significance level. This implies that the two
algorithms yield solutions of equal quality on average. Based
on the results shown in the fourth and seventh columns of
Table 5, a similar hypothesis test is performed here to

compare the average number of simulation evaluations
required by the two algorithms. As the P-value from the two-
sample t-test is 0.953, the null hypothesis of equal means
cannot be rejected at the 5% significance level. This implies
that the average number of simulation evaluations used in the
two algorithms does not differ statistically.

5.2. Analytical test functions

This subsection compares ANN-SMB and Kriging-SMB on
five single-objective test functions: Sphere, Griewank,
Schaffer's F6, Rastrigin, and Rosenbrock (Molga &
Smutnicki, 2005). The solutions obtained using the ANN-
SMB algorithm on these test functions, along with a
comparative analysis with the Kriging-SMB solutions
reported in Moghaddam & Mahlooji (2017), are presented in
Table 6. In this table, the values of idp, r, m, and sh™%*
The parameters are set to 20, 5, 10, and 5 for the ANN-SMB
algorithm, and to 10, 5, 10, and 5 for the Kriging-SMB
algorithm. The other parameter values are the same as the
ones used in Table 4. Moreover, while the optimal solutions
of the functions are shown in the third column, the fourth and
fifth columns contain the sample means and standard
deviations (Std.) of the solutions obtained by the proposed
ANN-SMB algorithm. Similarly, the sample means and
standard deviations of the solutions obtained by the Kriging-
SMB algorithm are shown in the seventh and eighth columns
of Table 6, respectively. Finally, the number of function
evaluations required for the ANN-SMB and Kriging-SMB
algorithms to reach the solutions is reported in the sixth and
ninth columns, respectively.
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Table 6

Numerical results of using the ANN-SMB and the Kriging-SMB algorithms on five test problems.

ANN-SMB Algorithm

Kriging-SMB Algorithm

Objective Objective
Number of Number of
Function Formula Optimal Mean Std. function Mean Std. function
evaluations evaluations
d
y= Z xf x* =[0,0]
Sphere I 0.018 0.024 266 0.189 0.09 244
d=2,-2<x<2,j=12 y*'=0
sl AL
_ Y2000 Luj= 7 L L\ x =00l
Griewank 0.024 0.017 415 0.335 0.22 368
d=2,-8<x;<8,j=12 y*=0
2
(sin V&2 + x%)) —-05 .
y=0.5-— 3 x*=1[0,0,0]
Schaffer's F6 (1+0.001(xF +x3)) 0 0 492 0.501 0.05 425
d=2,-3<x<3,j=12 y =0
d
y = z (x? —10cos(2 x mx;) + 10) x* = [0,0,0]
Rastrigin =t 4.317 1.122 460 0.772 0.16 457
d=3,-5=<x; <5, j=123 y*=0
d-1 2 P
y= Z N (100(xj+1 - sz)) +(x—1) x* =[1,1,1]
Rosenbrock = 2.133 1.142 528 3.103 1.67 483
d=3,-3<x<3,j=123 y*=0
Avg. 432.2 395.4
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As shown in Table 6 and Figure 4, while the proposed ANN-
SMB algorithm outperforms the Kriging-SMB algorithm on
average across the Sphere, Griewank, Schaffer's F6, and
Rosenbrock test functions, the optimization results for the
Rastrigin function indicate that Kriging-SMB performs better
in this case. Moreover, the results of a two-sample Student's
t-test for the equality of the mean number of function
evaluations across the two algorithms indicate no significant
difference (P-value = 0.570). This implies that the proposed

Analytical Test Functions

algorithm is generally superior. Besides, the outcome of a
one-way blocked (the 5 test problems are used as blocks)
analysis of variance (ANOVA), which is used to test the
equality of the performance means of the two algorithms in
all test problems, is reported in Table 7 based on 20
replications in each block. Once again, because the null
hypothesis is not rejected at the p-value of 0.321, the two
algorithms do not differ significantly.

Sphere | Griewank | Schaffer-F& | Rosenbrock Rastrigin
® 064 g ®
6
54
086
03 |
(-]
0.44
4
02 04 4 |
0.24
01
0.2 2 2
.
= e =
0.0 0.04

ANN-SMB Kriging-SMB

ANN-SMB Kriging-SMB

ANN-SMB Kriging-SMB

ANN-SMB Kriging-SMB

ANN-SMB Kriging-SMB

Fig. 4. Box-plots of final objective values across five analytical test functions over 20 independent runs per algorithm. While the blocked
ANOVA test (Table 7) indicates no significant overall difference between ANN-SMB and Kriging-SMB (p = 0.321), the plots highlight that
ANN-SMB outperforms Kriging-SMB on four of the five functions (Sphere, Griewank, Schaffer-F6, Rosenbrock), whereas Kriging-SMB is

superior on Rastrigin.

5.3. Practical implications “overnight” to “same shift.” This benefits operations
planners in small- to medium-sized manufacturers and
retailers that lack high-performance computing capabilities,
as well as consultancy firms that deliver what-if analyses
under tight client deadlines. Because the metamodel layer is
coded in MATLAB, analysts using commercial packages
(Arena, AnyLogic, Simio) can integrate the ANN surrogate

with minimal changes to the underlying simulation model.

The ANN-SMB algorithm is most useful when each
simulation run takes a few minutes, which is common in
warehouse inventory studies, production-line scheduling,
and mid-scale logistics design. By reducing simulation
evaluations by roughly 5-10% without sacrificing solution
quality, the method shortens optimization turnaround from

Table 7
Analysis of variance for comparing ANN-SMB and the Kriging-SMB across the five test functions
Source DF Adj. SS Adj. MS F-Value P-Value
Treatment 1 59,577 59,577 1.00 0.321
Block 4 247,438 61,860
Error 94 5,626,298 59,854
Total 99 5,933,313

6. Limitations, Conclusion, and Future Works

Although the proposed ANN-SMB algorithm performs well
on the selected benchmarks, three constraints should be
considered. First, ANN training time and memory
requirements increase sharply with the number of hidden-
layer neurons and training samples; scalability beyond 10
decision variables was not investigated. Second, solution
quality shows moderate hyperparameter sensitivity: Altering
the hidden layer size from 10 to 30 neurons changes the final
objective value by approximately +6%. Third, the current
study assumes low-noise, continuous decision spaces;

effectiveness on highly noisy or discrete problems remains to
be verified.

This paper presented a new version of a semi-meta-model-
based simulation-optimization algorithm, in which an
artificial neural network was used as the primary metamodel.
The approach is intended for “semi-expensive” simulations
that run for roughly 2-5 minutes per replication, a standard
range in industrial scheduling and inventory studies.
Although statistical comparisons with a Kriging-based
metamodel did not show a significant overall difference
between ANN-SMB and Kriging-SMB on the five analytical
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test functions, we demonstrated that ANN-SMB is superior
on four of those functions and on an (s, S) inventory-
optimisation model. In numerical terms, ANN-SMB
achieved the same or better objective values with an average
of 5 %-10 % fewer simulation evaluations.

For operations planners in small- to medium-sized
manufacturing and logistics firms, ANN-SMB can cut wall-
clock optimisation time by several hours to days when each
simulation run lasts a few minutes. The method, therefore,
enables faster re-tuning of inventory and scheduling policies
without access to high-performance computing. Analysts
working with commercial simulation packages (e.g., Arena,
AnyLogic) can embed the proposed ANN surrogate with
minimal code changes, because only the metamodel layer—
not the core simulation—needs modification.

Because the choice of metamodel entails a trade-off between
accuracy and computational speed, practitioners should
weigh the benefits and drawbacks of each method before
implementation.

The present study did not test other popular metamodels,
such as radial basis functions (RBF) or regression models,
within the SMB framework; evaluating those alternatives
remains an interesting topic for future work. Modifying the
underlying metaheuristic during the optimization steps could
further  affect  metamodel  performance.  Finally,
benchmarking different SMB variants against real-world
semi-expensive problems is recommended for future
investigation.
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