
           
Islamic Azad University 

 

Journal of 

Optoelectronical Nanostructures 

 
 

Winter 2023 / Vol. 8, No. 1  
 

 

Citation: First Author’s Full Name, Second Author’s Full Name, Third Author's Full 
Name. The effect of Cinnamon supplementation on lipid profile in response to aerobic 

exercise. Journal of Optoelectronical Nanostructures. 2023; 8 (1): 13-31. 

DOI: 10.30495/JOPN.2023.31255.1274 

*Corresponding author: Morteza Rahimian 

Address: Faculty of Electrical, Biomedical and Mechatronics Engineering, Qazvin 

Branch, Islamic Azad University, Qazvin, Iran. Tell: 00982833665275   

Email: morteza.rahimian@qiau.ac.ir 

 

Research Paper 
 

Controlling Ambipolar Current in a Junctionless Tunneling 

FET Emphasizing on Depletion Region Extension 

 
Morteza Rahimian*

,1
 

1 Faculty of Electrical, Biomedical and Mechatronics Engineering, Qazvin Branch, 

Islamic Azad University, Qazvin, Iran  
 

Received: 23 Nov. 2022 

Revised:   28 Dec. 2022 

Accepted: 03 Feb. 2023 

Published: 15 Mar. 2023 

 

Abstract:  
For the first time, in this research, we introduce a 

junctionless tunneling FET (J-TFET) on a uniform p+ 

starting junctionless FET to realize appreciable immunity 

against inherent high ambipolar current (Iamb).  So, we 

utilize two isolated gates with appropriate workfunctions 

over the channel and drain regions to create P+IP+N+ 

charge distribution. This structure utilizes a space 
between the gate-drain electrodes (SGD), to provide a 

P+IP+N+ structure thanks to the effective electrons 

depletion on the drain side. Increasing the SGD, further 

effectively pulls up the bands near the interface between 

the channel-drain regions, widens the tunneling width for 

tunneling to occur, and thus in turn reduces the Iamb from 

5.37×10-7 A/µm to 1.14×10-14 A/µm. Thus, we point out 

that the proposed J-TFET can obtain on-current that 

satisfies the expectation of logic applications with high 

performance and Ioff that meets the specifications of low 

power characteristics, a phenomenon that is rarely 

accessible with conventional TFETs. 
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Controlling Ambipolar Current in a Junctionless Tunneling FET Emphasizing … 

1. INTRODUCTION  

     MOSFETs are continuing to scale down and thus their power consumption is 

becoming an important concern. Lowering the standby power (Ioff × VDD) is 

crucial, (Ioff   being the leakage current; and VDD the supply voltage) in low power 

applications [1-3]. Thus reducing Ioff and scaling down VDD are the momentous 

schemes employed in low power design of MOSETs, which means the steep 

subthreshold slope in the devices [4-8]. However, a limit of 60 mV/decade for 

the subthreshold swing (SS) is quite well known in MOSFETs [4-8]. This limit 

of subthreshold swing which stems from the thermal injection of current carriers 

over the source channel energy barrier is unfortunately no longer sufficient to 

ensure high on/off current ratio (Ion/Ioff) when low VDD is desired.  Due to this 

limitation, there is a renewed and growing interest in exploring a replacement 

for MOSFET, a device which can potentially provide higher Ion/Ioff for a given 

supply voltage. 

     In particular, there is a strong push towards devices which utilize band 

alignment along with the band to band tunneling (BTBT) mechanism. These 

devices have the opportunity to provide noticeable low Ioff and promise the 

potential of obtaining SS values below the 60 mV/dec theoretical limit seen in 

the MOSFETs. From this point of view, Tunneling Field Effect Transistor 

(TFET) has been the subject of intense investigations in recent years.  Since in 

this type of device, the current depends on the BTBT mechanism rather than 

thermal injection over the barrier [4-8].  

     However, TFET suffers from three major shortcomings. These are (1) an 

unacceptably low Ion [9-25]; (2) ambipolar current (Iamb), a unique conduction 

property seen for high negative gate voltage, which limits application of 

transistor in low-power circuit design [24-33]; (3) use of abrupt high doped 

junctions needed for efficient tunneling. Fabrication of such junctions of course 

requires complex high thermal budget processes and yet hard to obtain because 

of the doping diffusion [34-36]. It is then natural to exercise attempts to improve 

both TFET performance and its device manufacturability.  

     So far, several novel structure have been introduced to enhance the Ion [9-25], 

while only a modest efforts have been devoted to the improve on the Iamb and 

abrupt high doped junction requirements [24-33, 37-39].  
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     A novel structure called junctionless tunneling FET (J-TFET) has recently 

been introduced which has very simple structure and thus amenable to 

manufacturing [37-39]. It is in fact a tunnel FET without any sharp doping 

profiles. The J-TFET offers superior performance since it blends the advantages 

of both JN-FET [40-46] and TFET [4-8] structures. Although, the newly 

proposed J-TFET overcomes the challenges of low Ion, high SS values, and also 

abrupt high doped junctions, it still suffers from a detrimental problem i.e. high 

Iamb [37-38]. 

     In this study, we will introduce a technique to achieve a J-TFET with P+IN+ 

charge distribution. This structure acts similar to the conventional TFET (C-

TFET). For the first time, as the proposed J-TFET is fabricated on a junctionless 

P+ starting substrate (PJ-TFET), it needs no metallurgical junctions and thus it is 

free from random dopant fluctuations. Also for suppression of inherent 

ambipolar conductivity, the electrons of the drain side are extremely depleted to 

realize a P+IP+N+ charge distribution. This leads to tunneling width extension 

near the interface of channel-drain, negligible electrons tunneling from channel 

region into the drain end and thus suppression of Iamb as discussed below. 

 

2. DEVICE PARAMETERS AND SIMULATION MODELS 

     To investigate the electrical characteristics of the proposed PJ-TFET, we will 

evaluate it by a 2D device simulator employing Silvaco Atlas [47]. The cross-

sectional views of the junctionless FET (J-FET) and PJ-TFET are exhibited in 

Fig. 1(a) and Fig. 1(b), respectively. The PJ-TFET structure is a lateral p-type J-

FET, which uses two isolated gates called the Main-Gate (MG) and the N-Gate 

(NG), each with appropriate work-functions, to make the silicon thin film 

beneath the channel and drain regions intrinsic and n-type, respectively. Thus, 

the main idea here is to convert the (P+-P+-P+) source, channel and drain of the J-

FET with doping concentration of 1×1019 cm-3 into a (P+-I-N+) structure without 

any use of physical doping. While the MG is responsible for turning the device 

into the on state, the NG is kept at zero voltage in both the off and the on states. 

Employing the NG creates a space between the gate-drain electrodes (SGD), 

which manages the tunneling barrier width near the drain side as well as reduces 

the Iamb. The parameters utilized for the two structure in our study are listed in 

Table I.  
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    To consider lateral direction for the tunneling, we have used nonlocal BTBT 

model in the simulation [16-17, 29, 34]. The nonlocal BTBT model can describe 

carrier transport along the barrier with assuming entire tunneling path. Thermal 

generation-recombination is a major motivation for employing the Shockley-

Read-Hall (SRH) model. Also direct recombination (Auger) [41] and band gap 

narrowing (BGN) models are taken into account because of the high doping 

concentration in the junctionless device structure. The doping-dependent and 

field-dependent mobility degradations were considered by employing the Philips 

as well as Lombardi mobility models, respectively. Although, the quantum 

phenomena are applied by Hänsch et al. [48], this can be neglected because the 

thickness of silicon film is above 7 nm [49, 50].  

     Calibration of simulation models against results obtained from an 

experimental TFET under similar conditions is shown in Fig. 2 [5]. It is clear 

from the figure how well simulation results are in close agreement versus 

experimental data. This indicates that the models used in this study truly capture 

the BTBT mechanism. 
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Fig. 1. Schematic of the (a) J-FET, and the (b) PJ-TFET structures.  

 

3. RESULT AND DISCUSSION 

3.1. DEVICE PHYSICS OF THE PJ-TFET  

Fig. 3(a) exhibits band diagrams for the PJ-TFET structure in the off-states. It is 

observed that the probability of the electron tunneling is negligible since the 

barrier width near the source-channel interface is very large. Thus the carrier 

concentration under the MG is very small and the device behaves similar to a 

P+-I-N+ structure as illustrated in Fig. 3(b). Fig. 3(c) exhibits the band diagram 

in the on-state. Applying a positive gate voltage on the MG, turns the device on.  
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Table. I. Parameters used for the devices simulation 

Parameters PJ-TFET J-FET 

Main-Gate (MG) length (LMG) 30 nm 30 nm 

N-Gate (NG) length (LNG) 29 nm - 

Space between the MG and NG (SGD) 1 nm - 

Silicon film thickness (tsi) 10 nm 10 nm 

Gate oxide (SiO2) thickness (tox) 1 nm 1 nm 

MG’s workfunction  4.1 eV 4.1 eV 

NG’s workfunction  2.9 eV - 

 

 
Fig. 2. Calibration of the transfer characteristics (IDS-VGS) against experimental results.  
 

     Under such biasing conditions, the barrier near the source-channel interface 

narrows down. Thus there is a high probability of electrons tunneling from 

source into the channel, which the conductivity in this region becomes almost n-

type region as shown in Fig. 3(d). Note that due to proper choice of NG 

workfunction, the electron concentration in the drain region remains constant at 

about ND= 1×1019 cm-3. So the conductivity type has changed effectively from p+ 

into an n+. In all of these figures, the lateral direction is taken along the AA' 

cutline located at 0.1 nm under the SiO2/Si interface. Fig. 4 also depicts the 

contour plots of the hole and electron concentrations in the off- and the on-

states. It can be observe that for the PJ-TFET, either in the off-state or on-state 

conditions, the induced carrier concentrations are approximately comparable 

with that of the conventional TFET (C-TFET). 
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Fig. 3. (a) Band diagrams and (b) carrier concentrations of the PJ-TFET in the off-state. 

(c) Band diagrams and (d) carrier concentrations of the PJ-TFET in the On-state.  
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Fig. 4. Contour plots of the (a) electron and (b) hole concentrations in the off-state. (c) 

Electron and (d) hole concentrations in the on-state.  
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3.2. SUPPRESSION OF THE AMBIPOLAR CURRENT  

In the PJ-TFET, the Iamb is higher than the limit that can be tolerated for low 

power applications. In this section, we explain how the above structure can 

suppress the Iamb. The impact of the size of SGD on the PJ-TFET’s transfer 

characteristics is shown in Fig. 5(a). A significant reduction in Iamb is observed 

when the SGD is increased. Larger SGD is responsible for further depletion at the 

drain end. It also helps pulling up the band energy near the channel-drain 

interface which results in negligible electrons tunneling from channel into the 

drain. Also, Fig. 5(b) exhibits the Iamb extracted at VGS= -1.0 V, as a function of 

the SGD and VDS. Since, the SGD determines the width of the tunneling barrier 

width, Iamb is noticeably reduced as the SGD is increased.  
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Fig. 5. (a) The PJ-TFET’s transfer characteristics with spacing between the MG and NG 

as a parameter, (b) Iamb as a function of SGD and VDS at VGS= -1.0 V.  

 

     To see how SGD can affect the Iamb, refer to Fig. 6, where we have shown the 

band diagrams for the PJ-TFET in the lateral direction at VGS= -1.0 V with SGD 

taken as parameter. To reduce the Iamb, the tunneling barrier width at the 

channel-drain interface should be large enough [18-24]. This can be achieved by 

increasing the SGD. When SGD changes from 1 nm to 15 nm, the tunneling barrier 

width varies from 8 nm to 15 nm. Note that (due to employing of an auxiliary 

gate, NG, the drain voltage drops primarily on the gap between the MG and NG. 

This extends the off-state tunneling barrier into the drain region which in turn 

decreases the potential drop on this gap. 

     Fig. 7 demonstrates the electric field and BTBT rate for the PJ-TFET at   
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VGS= -1.0 V with SGD taken as a parameter. It is clear that increasing SGD, will 

reduce the maximum value of the electric field in the device and changes the 

position where electric field maximizes. The gap between the MG and NG is 

responsible for the penetration of the electric field into the drain, generating 

relatively small tunneling barrier width as shown in Fig. 6. Thus, for larger SGD, 

the probability of electrons tunneling is negligible, leading to a small Iamb. 
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Fig. 6. The PJ-TFET’s (a) band diagram and (b) potential along lateral direction for 

different values of the SGD.  
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Fig. 7. (a) Electric field and (b) BTBT rate for different values of the SGD across lateral 

direction in the PJ-TFET.  
 

     Note that there are no electrically induced free carriers within the gap 

denoted by SGD. This space is equivalent to the depletion region of electrons. 

Fig. 8 depicts the carrier concentrations across the PJ-TFET for different values 
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of SGD. Larger SGD results in further depletion of electrons, which widens the 

tunneling width and hence significantly reduces the Iamb.  

     Also, Fig. 9 shows the contour plots of the electron concentrations for 

different values of SGD at VGS= -1.0 V. As it is clear, the larger SGD facilitates 

depletion of electrons. Employing the NG realizes a novel design parameter, 

SGD, to alleviate the Iamb. Therefore, this approach overcomes the main challenge 

of the Iamb just by two electrodes on the channel and drain regions without any 

added structural sections which leads to a low thermal budget process.   
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Fig. 8. (a) Electron and (b) hole concentrations along the lateral direction of the PJ-

TFET when SGD increases from 1 nm to 15 nm.  
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3.3. DESIGN GUIDE LINES FOR THE PJ-TFET  

     Fig. 10(a) shows the PJ-TFET’s transfer characteristics (IDS-VGS) for different 

values of VDS.  Observe that both the Ion and Ioff increase when VDS is increased. 

Also, Fig. 10(b) compares the transfer characteristics, when metals with 

different workfunctions are employed for the NG. As implied by Fig. 10(b), 

choosing a higher workfunction of the NG, leads to pulling up the conduction as 

well as the valence band energies towards higher energies [16-17, 34]. In this 

fashion a considerably small band overlap between the channel and the drain 

region is achieved, which in turn reduces the tunneling efficiency and also Iamb. 

     Fig. 11 depicts the PJ-TFET’s transfer characteristics for different thickness 

and different doping densities of the silicon film. Note also that Ioff is reduced 

when silicon film thicknesses is reduced [4-8]. Also, as shown in Fig. 11(b), Ion 

increase with increase in the doping density of the silicon film [24]. Note that, 

when doping density is decreased, the Ioff is reduced without inflicting any 

noticeable change on the Ion. Employing lower doping density leads to further 

depletion of electrons near the drain side which is equivalent to extend the 

tunneling barrier width. 

     To study the impact of gate oxide thicknesses and dielectric constants, the 

transfer characteristics for the PJ-TFET are depicted in Fig. 12. From this 

figures, it is clear that a thinner gate oxide helps exerting a higher control on the 

channel potential [14, 19]. 
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Fig. 10. The transfer characteristics when (a) VDS varies from 0.4 V to 1.0 V, (b) 

workfunction of the NG varies while workfunction of the MG is kept constant at 4.1 eV.  
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Fig. 11. The PJ-TFET’s transfer characteristics with (a) silicon film thickness and (b) 

doping concentration of the silicon film chosen as parameter.  
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Fig. 12. The PJ-TFET’s transfer characteristics with (a) thickness for the SiO2 gate insulator and 

(b) gate oxide’s dielectric constant as parameter.  

 

     Thus a thinner gate oxide leads to a larger Ion, while a thicker gate oxide 

provides a lower Ioff. Also, a high Ion can be achieved by a proper value of the 

gate dielectric [14, 19]. Here, different gate dielectrics are evaluated with SiO2. 

As shown in Fig. 12 (b), in order to enhance the Ion, gate oxide’s dielectric 

constant needs to be high. Therefore, lower thickness of the dielectric provides a 

solution for the low on-state current associated with the TFETs. 

 

3.4. MODEL VALIDATION 

     In this part we will evaluate the proposed model in [51] for the PJ-TFET 
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structure by comparing it with the 2D TCAD simulation results. In [51], first we 

calculate the electric field and potential distribution by solving the 2-D 

Poisson’s equation using Young’s parabolic potential approximation. Next, an 

analytical drain current model is extracted by employing Kane’s model which 

integrates the BTBT rate all over the tunneling region. We evaluate the efficacy 

of this model by varying some important parameters. Fig. 13 demonstrates the 

PJ-TFET’s transfer characteristics (IDS-VGS) with SGD as a parameter. As can be 

seen from the figure, the analytical model is tracking with good accuracy and 

closely approximates the simulation results.  

 

 
Fig. 13. The PJ-TFET’s transfer characteristics (IDS-VGS) with SGD as a parameter for the 

proposed model (open symbols) and its comparison with simulation results (solid 

symbols). 

4. CONCLUSION 

In this paper, a new approach for realizing a J-TFET was proposed and a 

comprehensive investigation was carried out by using 2D device simulation. The 

proposed device structure provides a P+IN+ charge distribution and acts like a 

conventional TFETs. This approach utilizes an additional gate, here called N-

Gate located apart from the Main-Gate, all on the P+ starting junctionless FET. 

To further diminish the Iamb, we also proposed, a new structure which provides a 

P+IP+N+ charge distribution obtained by the effective depletion of the electrons 

in the drain side. This leads to pulling the bands diagram up near the drain 
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region, causing insufficient band bending for tunneling to occur, and extending 

the tunneling barrier width at this region. Hence the Iamb reduces.  
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