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Abstract: 
In this paper, a tunable absorber structure based on a 

graphene hexagonal array in the terahertz range is 

investigated. The graphene hexagonal absorber is 

simulated by the finite element method. The effects of the 

geometry, graphene Fermi energy level and incident light 

angle, and light polarization on the absorptance of the 

structure are investigated. The results show that the 

absorptance spectrum of the proposed absorber is tuned 
from 6.1 THz to 9.1 THz when the Fermi energy 

increases from 0.4eV to 0.9eV. The absorptance peak 

shifts to lower and higher frequencies with increasing 

hexagonal side length and Fermi energy level, 

respectively. The absorption of the structure is over 90% 

in the incident light angle range from 0 to 80º for the TE 

polarization and in the range of 0-40º for the TM 

polarization. Also, results indicate that the absorption 

peaks shift to the lower energies with increasing the 

dielectric constant of the dielectric layer.  
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Tunable Terahertz Absorber Based on Hexagonal Graphene Disk Array 

1. INTRODUCTION  

Metamaterials are synthetic materials that have properties not found in natural 

materials [1, 2]. Recently due to their exotic electromagnetic properties such as 

negative refraction [3], asymmetric transmission [4], and cross-polarization 

conversion [5] metamaterials have been noticed. Metamaterials have different 

applications such as polarization converters [6], highly sensitive sensors [7], 

perfect lenses [21], and perfect absorbers [9]. The perfect absorbers are the most 

important among them which are used in sensing [10], imaging [11], and 

cloaking [12].  

On the other hand, two-dimensional materials such as graphene are suitable 

candidates in electrical devices due to their great optical and electronic 

properties, such as high electron mobility and tunable surface conductivity.  

Graphene can be used as a suitable absorber that is not limited to one frequency 

and can be adjusted in a wide frequency range [13, 14, 15, 16]. Recently, the 

ultra-thin graphene layer has been widely used in the infrared and terahertz 

(THz) frequency range [17, 18, 19, 20, 21, 22, 23, 24, 44, 26, 27, 28, 29, 30, 31, 

32, 33, 34, 35, 36, 37, 38, 39]. Su et al. designed an elliptical graphene disk 

array in the THz regions. They found that the absorption spectrum reveals two 

absorption peaks near 50% [40]. Xiao et al. studied a cross-shaped graphene 

array in the THz regime [41]. They calculated the absorption of this structure 

and achieve an absorption rate above 90%. 

In this work, we propose an absorber consisting of a hexagonal graphene disk 

array, a thick dielectric spacer, and a gold substrate layer. Effects of the 

geometry, Fermi level, TE, and Tm polarization on the absorptance of the 

absorber are investigated. The absorptance tunability is investigated in the 

frequency range 3-12 THz.     

2. THEORY 

As shown in Fig.1, the unit cell of the proposed absorber consists of three 

layers: a graphene disk with hexagonal side length a, a SiO2 dielectric layer, and 

a gold substrate layer. This structure is periodic in the x-y plane with p = 3.5 µm 

where p is the length of the unit cell. The perfectly matched layers are applied in 

the z-direction. The gold layer thickness and conductivity are Aud  = 0.5 µm and 

74.5 10 /Au s m   , respectively. The dielectric layer is assumed non-

dispersive with a permittivity of 3.9 and thickness 4Dd m . A graphene 

monolayer is electrically described by its surface conductivity σ(ω), where ω is 
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the angular frequency of the incident wave. Using the Kubo model, the graphene 

conductivity is 
int int( ) ( ) ( )g ra er       , where the intraband transition 

(
int ra ) and interband transition (

inter ) are [42, 43]: 
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where c  is the chemical potential related to electrostatic biasing or chemical 

doping. Bk is the Boltzmann constant, ħ is the reduced Planck constant, τ is the 

momentum relaxation time, and e is the charge of an electron,.  

In the THz range, the interband contribution is dominant compared to the 

intraband part, and thus the Kubo formula can be approximately described as a 

Drude model [44] 
2

2 1
( ) c
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e i
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   (3) 

 

In our simulations, T and τ are assumed to be 300K and 0.5ps, respectively. 

Also, the electric field and the magnetic field of the incident electromagnetic 

THz wave are polarized along the y-axis and x-axis, respectively (see Fig. 1), 

and the wave vector k is along the z-direction. The 3D finite element method 

(FEM) is used to solve Maxwell’s equations and obtain the absorptance of the 

structure. 

The amplitude modulation and spectral shift of the resonance depend on the 

real and imaginary parts of the conductivity, respectively [45]. These real and 

imaginary parts can be adjusted by changing the Fermi level via the optical 

pump or the applied electric field. Therefore, the graphene conductivity and 
resulting absorptance spectrum can be tuned by the Fermi energy.  

 

 The absorptance is ( ) 1 ( ) ( )A T R     , where ( )T  and ( )R  represent 

transmittance and reflectance, respectively.  
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In our calculations, the thickness of the gold film 0.5Aud m is much larger 

than the skin depth [46]. So transmittance can be neglected and the absorptance 

equation becomes ( ) 1 ( )A R   .  

   

 
Fig. 1. Schematic diagram of the proposed absorber unit cell. 

 

3. RESULTS AND DISCUSSION  

 

In Fig. 2, the real (Re(σ)) and imaginary (Im(σ)) parts of the graphene 
conductivity are plotted as a function of the frequency for different values of the 

Fermi level. This figure shows that Re(σ) and Im(σ) decrease with the frequency 

and enhance with increasing the Fermi energy, especially at lower frequencies.  
 

The absorptance spectra of the structure for the x-polarized and y-polarized 

incident light is shown in Fig. 3. This figure indicates that the absorptance 
spectrum depends on the incident light polarization.  
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Fig. 2. (a) Real (b) imaginary parts of the graphene electrical conductivity. 

 

 
Fig. 3. The absorptance spectra under the x-polarized and y-polarized incident light for 

c  = 0.55 eV and a = 0.8µm. 

 

Fig. 4 shows the absorptance spectra for different types of dielectric materials, 

SiO2, quartz, polyimide, zircon, rubber, with permittivity of 3.9, 3.7, 3.5, 3.3, 

and 3.1, respectively. By changing the dielectric constant from 3.1 to 3.9, the 
absorptance peak shifts to a lower frequency. However, the maximum value of 
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the absorptance remains over 98%. It is also seen that the absorptance peak lies 
in the range of 6-9 THz.  

 

In Fig. 5, the absorptance is presented versus the frequency and hexagonal side 
length. In this figure, a narrow dark-red region (line-shape) is seen that denotes 

the high absorptance.  This figure also shows that the peak of the absorptance 

shifts to the lower frequencies by increasing side length.  

Fig. 6 presents the variations of absorptance as a function of both the frequency 
and Fermi energy. Here, the width of the straight-line shape region increases 

with the frequency and Fermi energy. Our calculations indicate that the 

maximum absorptance occurs at c = 0.55 eV.   

 
 

 

 

Fig. 4. Absorptance spectra of the absorber for different dielectric constants with c  = 

0.55 eV and a = 0.8µm. 
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Fig. 5. The absorptance versus the frequency and hexagonal side length for c  = 0.55 

eV. 

 

 
 

Fig. 6. Absorptance as a function of frequency and Fermi energy for a = 0.8µm. 
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Fig. 7.  Absorptance spectrum versus frequency and incident angle for the (a) normal 

incident light (b) TE polarized and (c) TM polarized wave with  c  = 0.55 eV 

and a = 0.8µm. 
 

In Fig.7, the influence of the polarization and incident angle of the light on the 

absorptance is presented. Fig. 7(a) shows that the absorptance is insensitive to 

the incident angle for the normal incident light. Fig. 7(b) reveals that the line 

shape region slightly changes for incident angle over 70º.   But for the TM mode 
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(Fig. 7(c)), the absorptance peak decreases significantly in higher incident 
angles and shifts to the lower frequencies.    

 

4. CONCLUSION 

In conclusion, we designed a Terahertz absorber consisting of graphene 

hexagons, a metal layer and a dielectric layer. Results show that an absorptance 

of about 99.1% in the range of 6-9 terahertz can be achieved by properly 
selecting the parameters such as Fermi energy and hexagonal side length. The 

absorptance is insensitive to the incident angle for the normal incident light. 

This structure can be used in communications, optics, electromagnetic 
compatibility, and measurement applications. In addition, our approach can be 

applied to the design, manufacture, and use of graphene-based devices with a 

similar pattern.  
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