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Abstract: We study an entangled two-mode coherent state within the framework of 

2×2-dimensional Hilbert space. We investigate the problem of quantum teleportation of 

a superposition coherent state via an entangled coherent channel. By three different 

measures with the titles ``minimum assured fidelity (MASF)”, ``average teleportation 

fidelity” and ``optimal fidelity (f)” we study the quality of this kind of teleportation. 

Decoherence properties of the entangled coherent state due to channel losses are 

analysed. For a symmetric noise channel, the degradation of optimal fidelity and degree 

of entanglement are calculated. Also by two different measures with the titles 

``concurrence” and ``entanglement of formation” we study the amount of entanglement 
of a decohered quantum channel and discuss its details. We demonstrate that 

entanglement of the decohered entangled coherent state is reduced but not throughly 

lost. Finally we find that the optimal fidelity of the decohered entangled coherent state is 

more than the classical limit and the decohered entangled coherent state may be useful 

for quantum teleportation. 
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1. INTRODUCTION  

The motivation for this work has been to investigate the utility of an entangled 

coherent state as resource for performing the teleportation of an unknown 

coherent superposition state.                                                               
A state is named entangled if it is unfactorizable [1]. Entanglement is essential 

for many applications of quantum information processing [2-10]. Quantum 

teleportation is an important and vital quantum information processing task 
where an arbitrary unknown quantum state can be replicated at a distant location 

using previously shared entanglement and classical communication between the 

sender and the receiver. The sender and receiver are called Alice and Bob. A 
remarkable application of entangled states having many ramifications in 

information technology, quantum teleportation can also be combined with other 
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operations to construct advanced quantum circuits useful for information 
processing [6]. The original idea of teleportation introduced by Bennett et al. [2] 

is implemented through a channel involving a pair of particles in a Bell State 

shared by the sender and the receiver and at the end of the protocol an unknown 
input state is reconstructed with perfect fidelity at another location while 

destroying the original copy. Quantum teleportation, which uses entangled 

quantum states as quantum channels, plays a crucial role in optical quantum 

computation and communication [11,12].                                                             
In this paper we study quantum teleportation with the resource of entangled 

coherent states. Coherent states are eigenstates of the annihilation operator â , 

i.e., â    , /2

0 !

n

n

e n
n

 







   [13],  where   is a complex 

amplitude. Without losing generality,   is assumed to be real for simplicity 

throughout the paper. The entangled coherent state is defined as         

3

1

1
( ),

N
                                                                          (1) 

which were studied as quasi-Bell states [14], where 
2-4

1 = 2(1+ e )N  .              

The remaining part of the paper is organized as follows. In Sec. 2 , we study the 

teleportation of a coherent superposition state via the state 3 , where we 

provide expressions for the minimum assured fidelity (MASF), the average 

teleportation fidelity 
aveF  [15], and the optimal fidelity (f) [16] for the state 3 , 

and deterministic perfect teleportation is possible via the state  3 .  In Sec. 3, 

we analyse decoherence properties of the state due to channel losses. When the 

quantum system is open to the outside world, the initially prepared system 

decoheres and becomes mixed [16]. The degradation of optimal fidelity and 
degree of entanglement are calculated. For this purpose we profit  the 

concurrence [17-19] and the entanglement of formation [18]. Also we study the 

optimal fidelity [18] of the mixed entangled coherent state. Finally the paper is 
concluded in Sec. 4.  

2. QUANTUM  TELEPORTATION 

Let us formulate the teleportation protocol between two parties Alice and Bob, 
with the input coherent superposition state prepared by a third party Charlie. He 

sends the prepared coherent superposition state to Alice. In this transmission we 

assume that there is no distortion of the input coherent superposition state. Since 
the input coherent superposition state is given by the third party, Alice have no 

knowledge about the received coherent superposition state which she wants to 

teleport, and this arbitrary coherent superposition state is given by:  
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,
a a a

A B                                                                                      (2)  

where the amplitudes A and B are unknown. Let us assume that two distant 

partners Alice and Bob share the quantum channel 3 . The particles b and c 

are with Alice and Bob, respectively.                                                                  
By the Gram-Schmidt theorem, it is always possible to make orthonormal bases 

in N-dimensional vector space from any N linear independent vectors. Suppose 

orthonormal bases by superposing nonorthogonal and linear independent two 

coherent states   and   [16]:                                 

1
(cos sin ),

N

                                                                      (3)

 
1

( sin cos ),
N

                                                                       (4) 

where                                                                                                
2cos 2 ,N       2sin 2 exp( 2 ),                                                        (5) 

Now using (3) and (4), the state (2) may be represented as:  

,
a a a

A B   
                                                                                (6) 

with cos sinA A B     and sin cosB A B    . After sharing the quantum 

channel 3 , the initial state `` 
abc " then is:  

    

    

    

    

1

1

1

2

3

4

1
( ) ( )

1
( sin 2 sin 2

2

sin 2 sin 2

sin 2 sin 2

sin 2 sin 2 ),

abc a a b c b c

ab c c

ab c c

ab c c

ab c c

A B
N

B A B A B
N

B A B A B

B A B A B

B A B A B

      

   

   

   

   

 

 

 

 

 

     

      

      

      

      

                               (7)    

Where  1,2

1
=

2
B        ,  3,4

1
=

2
B        . Since the 

states a and b are with Alice, she performs a Bell state measurement on her 

states and then sends  the measurement result to Bob expending two classical 

bits. Bob accordingly chooses one of the unitary transformations   , , ,x y zi    

to perform on his part c of the quantum channel. Here, 
,s  are Pauli operators 

and   is the identity operator and the correspondence between the measurement 

outcomes and the unitary operations are 
1 ab

B  , 
2 zab

B  , 
3 xab

B  , 

4 yab
B i .              
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Fig. 1. Variation of the minimum assured fidelity (MASF), the average teleportation 

fidelity (
aveF ) and the optimal fidelity (f) with the amplitude   for teleportation of the 

state (2) via the channel 
3 . 

                                                                                      
Thereafter Bob transmits this state to the third party Charlie whose task would 

be to measure the efficiency of the teleportation protocol.                                

The average teleportation fidelity (
aveF ) and the minimum assured fidelity 

(MASF) can be used as measures of quality of teleportation. We may now 

compute MASF for teleportation of the state (2) via the channel 3 ,  by using 

the procedure adopted in [15] and obtain   
2 2(MASF) 1- - =1-exp(-4 ),                                                            (8)   

that the diagram of this equation has been shown in Fig. 1. From this figure one 

can see that for 0.95  ,  (MASF) =1, and hence for 0.95  ,  the state 3  

leads to the deterministic perfect teleportation of the state (2). Note that if 

0.95   then sin 2 ( ) 0,     
1 2,N  and Eq. (7) can be rewritten as: 

 

 

 

 

1

2

3

4

1
(

2

).

abc ab c c

ab c c

ab c c

ab c c

B A B

B A B

B B A

B B A

  

 

 

 

 

 

 

 

  

  

  

   

                                                        (9)   
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We may now compute the average teleportation fidelity aveF  for teleportation of 

the state (2) via the channel 3 ,  by using the procedure adopted in [15] and 

obtain                                               
2

2

2 2

3+ - 3+ exp(-4 )
= ,

3(1+ exp(-4 ))3(1+ - )
aveF

  

 
                                               (10)  that 

the diagram of this equation has been shown in Fig. 1.   From this figure one 

can see that for  0.95  , 1aveF  . The figure 1 shows the average teleportation 

fidelity aveF  is more than 2/3 for 0  .                                  

Now we may check the optimal fidelity of the teleportation scheme by using the 

criterion introduced by Horodecki et al. in [20]. The optimal fidelity of 
teleportation in any general scheme by means of trace-preserving local quantum 

operations and classical communication via a single channel may be obtained 

from the maximal singlet fraction of the channel. The relation is      

2 ( ) +1
( ) ,

3

F
f


                                                                                     (11)    

Where ( )f   is the optimal fidelity for the given quantum channel  , and ( )F   

is the maximal singlet fraction of the channel. ( )F   is defined as max     

where the maximum is taken over all the 2×2 maximally entangled states. Any 

2×2 channel becomes useless for quantum teleportation when the optimal 

fidelity ( )f   is less than the classical limit 2/3. Here, we may express the 

optimal fidelity for teleportation of the state (2) via the channel 3  as                                           

2
2

2 2

3+ - 3+ exp(-4 )
( ) = ,

3(1+ exp(-4 ))3(1+ - )
f

  


 
                                             (12)   

that the diagram of this equation has been shown in Fig. 1. From this figure one 

can see that the optimal fidelity is more than the classical limit 2/3 for 0  .  

Using (10) and (12), we can easily verify that avef F  for the state 3 . Thus, 

the teleportation scheme realized using the state 3  as the quantum channel is 

optimal.                                                                       

3. DECOHERENCE PROPERTIES     

In this section, we will discuss decoherence properties of the state 3 . We can 

model such photon losses by interacting the signal with a vacuum mode 0
E

 in 
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a beam splitter with the properly chosen transmissivity parameter  .  The effect 

of decoherence can be represented as [18]:   

   1 2 1 2
0 1 ,

E E
                                                         (13) 

where  0
E

 refers to the environment mode and   is the noise parameter which 

means the fraction of photons that survive the noise. For simplicity we then 

assume that both modes are equally lossy. We will introduce two auxiliary 

environment modes E1 and E2, which coupled with mode 1 and 2 respectively 

and the initial state reads  
3 1,2 1 2

0 0
E E

  . After passing the noisy 

channel, we can get the final state as:

  
3 1,2 1 2 1 2 1 2

1

1 2 1 2

1
0 0 (

),

E E E E

E E

N
    

   

       

  

1 1

1 1

 (14) 

Tracing over all environment modes, we obtain the density operator:  

  

1,2
1 2

1

1 2

2

1 2

1 2

1

exp 4 1 (

) ,

N
    

   

     

   

 

     

     

   

(

)

                         (15) 

The orthonormal basis vectors are now  -dependent  

1
( ) (cos sin ),

N
   



                                                (16)

 
1

( ) ( sin cos ),
N

   



                                               (17) 

where                                                                                                
2cos ,2N       2sin exp( ),2 2                               (18) 

The density matrix 1,2  is representing in the orthonormal basis 

( ) ( ) }    , ( ) ( ) ,     ( ) ( ) ,     { ( ) ( )     as:  

1,2 ,

A B B C

B D D B

B D D B

C B B A



 
 
 
 
 
 

                                                                           (19)     

where                                                                
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2 1/21 (1 exp( 4 ))

sin ,
2

  
 

                                                        
2 1/21 (1 exp( 4 ))

cos ,
2

  
     

4 4 2 2

1

1
(sin cos 0.5 sin 2 exp( 4(1 ) )),A

N
          

2

1

sin 2
(1 exp( 4(1 ) )),

2
B

N
 


           

2 4 4 2

1

1
(0.5 sin 2 (sin cos )exp( 4(1 ) )),C

N
             

2
2

1

sin (2 )
(1 exp( 4(1 ) )).

2
D

N
 


                                                              (20) 

In the following, we analyse decoherence properties of the channel 3  due to 

channel losses. For this purpose we profit two measures with the title of the 

concurrence, and the entanglement of formation. Also we study the optimal 
fidelity of the mixed entangled coherent state. 

 

3. 1. CONCURRENCE 

The entanglement can be measured by the concurrence [17-19]. The 
concurrence is written as:                        

1 2 3 4max(0, ),C                                                                   (21) 

Where the parameters i  (i=1,2,3,4)  are the eigenvalues of the non-Hermitian 

matrix   , and                                                             

( ) ( ),y y y y                                                                            (22) 

Here  
 is the complex conjugate of  in the same basis (19). Performing the 

preceding calculations, one can get:                      

1,2 ,

A B B C

B D D B

B D D B

C B B A



  
 
  
  
 

  

            
1,2 1,2 ,

a b b c

b d d b

b d d b

c b b a

 

 
 
  
  
 
 

         (23) 

where                                                                                  
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Fig. 2. Variation of the concurrence and the entanglement of formation of  ρ1,2 with the 

amplitude   for 0.2,0.4,0.6,0.8,1  . Variation of the concurrence and the entanglement 

of formation of  ρ1,2  with the channel noise parameter   for 0.4,0.7,1,1.3,1.6  . 

 
2 2 2

2

2 2

2 ,

2 ,

2 2 ,

2 2D .

a A B C

b AB BC BD

c AC B

d B

  

   

 

  

                                                                                    (24)  

The eigenvalues of 
1,2 1,2   are 

1 2 3,4{ 2 , , 0}a c d a c        . The 

concurrence of  ρ1,2  is given by:  
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max(0, 2 ) 2 .C a c d a c a c d a c                                  (25) 

The relation between concurrence and the entanglement of formation of a pure 
state is expressed as [18]:                                                                   

( ) ( ( )),E C                                                                                        (26) 

where the function   is defined as                                     
21

( ) ( ),
2

C
C H

 


1
                                                                           (27) 

   2 2( ) log 1 log 1 .H x x x x x                                                           (28) 

The above formula still holds for mixed states of bipartite systems [19]. 

Therefore the entanglement of formation of ρ1,2 is just 
2 1/2

1,2( ) ( ) ((1 (1 ( 2 ) ) ) / 2)E C H a c d a c         . In Fig. 2, the 

diagrams of the concurrence and the entanglement of formation of ρ1,2  have 

been shown. From this figure one can see that in the limit of 0  , the 

concurrence approaches 0. For =1  (the pure entangled coherent state) and 

0.95  , the concurrence approaches 1. Approximately for 0.2 1.1  , the 

concurrence of ρ1,2 is larger than the other amplitudes (except for =1 ). It is 

seen in Fig.2 that the mixed state ρ1,2  is  entangled regardless of the channel 

noise parameter. The entangled coherent states with large coherent amplitudes 
decohere faster than those with small amplitudes. This is in agreement with the 

fact that macroscopic quantum effects are not easily seen because it is more 

fragile [16]. The concurrence and the entanglement of formation have 
completely similar results for entanglement of the decohered entangled coherent 

state as shown in Fig. 2. 

 

3. 2. OPTIMAL FIDELITY 

Now we may check the optimal fidelity of the teleportation scheme by using the 

criterion introduced in [18]. According to this criterion, 
1,2( )F   is written as:  

1,2 1 1,2 1( ) max ( ) ( ) ,F B B


                                                             (29) 

where 
1( )B   is of the similar form of 1B  so reads:  

2

1,2 2 2 2

2 2 2 2 2

(1 exp( 4(1 ) ))
( ) max

2(1 exp( 4 ))(1 exp( 4 ))

(exp( ( ) ) exp( ( ) ) 2exp( 3 )) .

F


 


 

     

  
 

   

       

          (30) 

The problem is to find the maximal value of 
1,2( )F  . We investigate the 

derivative of 
1,2( )F   and find that 

1,2( ) 0
d

F
d




   when:                  
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Fig. 3. Variation of the optimal fidelity of  ρ1,2  with the amplitude   for different 

parameters 0.2,0.4,0.6,0.8,1  . Variation of the otptimal fidelity of  ρ1,2 with the channel 

noise parameter   for 0.4,0.7,1,1.3,1.6  . 

, 
                                                                                                         (31)  

Now using (11), (30) and (31), the optimal fidelity of the channel is equal to 
2

1,2 2

(1 exp( 4(1 ) ))
( ) ( 1) / 3,

(1 exp( 4 ))
f

 




  
 

 
                                                      (32)  
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The diagrams of this equation have been shown in Fig. 3. This figure has similar 
results to Fig. 2. The figure 3 shows the optimal fidelity  ρ1,2 is more than the 

classical limit 2/3 and we can see that the mixed channel may be useful for 

quantum teleportation. 

4. CONCLUSION 

To summarize, in this paper we have studied the teleportation of an unknown 

coherent superposition state via an entangled coherent channel. We have 
computed minimum assured fidelity, average fidelity, and optimal fidelity of the 

entangled coherent channel. For 0.95  , this channel leads to the 

deterministic perfect teleportation.   

We have investigated decoherence properties of the entangled coherent state. 

For a symmetric noise channel, we have studied the concurrence and the 
entanglement of formation where these criteria have completely similar results. 

The mixed entangled coherent state is entangled regardless of the channel noise 

parameter. In the limit of 0  , the concurrence approaches 0. For =1  and 

0.95  , the concurrence approaches 1. Approximately for 0.2 1.1  , the 

concurrence of ρ1,2 is larger than the other amplitudes. The entangled coherent 
state with large coherent amplitudes decohere faster than those with small 

amplitudes. This is in agreement with the fact that macroscopic quantum effects 

are not easily seen because it is more fragile. Also we have studied the optimal 
fidelity of the mixed entangled coherent state. The optimal fidelity of the 

decohered entangled coherent state is more than the classical limit 2/3 and the 

mixed channel may be useful for quantum teleportation for 0.95  . 
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