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Abstract: In the present paper, the problem of light reflection from a birefringent medium and thin 
film is considered. First, the analytical equations governing the propagation of a plane and harmonic 
electromagnetic wave in an infinite, birefringent, linear, non-dispersive, non-absorbing, and non-
magnetic medium is derived from Maxwell equations. Then, using phase matching condition and 
boundary conditions, the governing equations of reflection and transmission from a birefringent 

medium is obtained. Next, the reflection of s and p polarizations in incidence of s-polarized, p-
polarized, and circularly polarized light on a plane surface is calculated using a massive computer 
code developed by the authors. Calculations show that the polarizations are mixed and converted 
to each other. On the other hand, dependence of reflection on azimuthal incidence angle is revealed. 
Then, the problem of interfering reflection from a birefringent thin film is regarded. The computer 
code calculates reflection of light from the film by considering the successive reflections and 
transmissions from the upper and lower surfaces of the film through two-reflection approach. 
Calculations show that, in reflection of white light from the film, a kind of banding is developed 

which is absent in isotropic films. Observation of reflection increase by increasing birefringent 
properties is another finding of the paper.  
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1. INTRODUCTION 

Refractive index in biaxially anisotropic media is dependent on light 

propagation direction. Such media which are existent both naturally (e.g. crystals) 

and synthetically (e.g. photonic crystals, sculptured thin films, magnetized 

plasmas, electro-optical, magneto-optical, elasto-optical, acousto-optical and 

other materials) are of great importance in optics [1]. They are used in many 

optical components such as modulators, switches, tunable filters, phase plates, 

and more recently in high-capacity optical memories, omnidirectional reflectors, 

antireflection coatings, enhanced polarization converters, anisotropic diffraction 
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gratings, and many other applications [2-7]. 

The problem of light propagation in birefringent media and its reflection and 

transmission in interfaces has a long history in optics [8-10]. Due to their growing 

variety and complicated physics, the theoretical, numerical, and experimental 

study of such media optics is still in the focus of both geometric [11-13] and wave 

[14-17] optics community. The feasibility of well-known phenomena such as 

total internal reflection and Brewster angle in biaxial media and their comparison 

with isotropic cases has attracted great attention [18-21]. The appearance of 

strange optical phenomena in the biaxial media like negative and amphoteric 

refraction has also amused researchers [22-24]. Even, light interaction with 

inhomogeneous or finite-sized biaxial media which leads to scattering and 

diffraction has not been neglected in the literature [25-28]. 

The problem of successive reflections and transmissions at biaxial interfaces 

and resulting interference pattern is also very important. Especially, much time 

has been expended to study the light interference associated with a biaxial 

monolayer or multilayer [29-31]. Analytical investigation of the interference 

patterns by infinite-beam approaches which include an infinite number of 

reflected and transmitted beams is greatly simplified by incorporating 4×4 or 2×2 

matrix methods [29,32,33]. Simple approximation of the 4×4 matrix method for 

ultra-thin films is presented in [34-36]. However, such infinite-beam approaches 

are appropriate only when the incident light has infinite longitudinal coherence 

(e.g. laser light) to keep its phase relation after each reflection and transmission. 

In other words, it is the coherence length of the incident light that determines the 

necessary number of reflections and transmissions contributing in the 

interference. Hence, using more reflections and transmissions not only does not 

increase the accuracy but also can lead to inaccurate results. In situations where 

the applied light has a short coherence length (e.g. natural light) the inclusion of 

only two beams, i.e. one reflected from the upper interface and the other reflected 

from the lower one of the film, suffices to give correct interference pattern. Such 

a double-reflection approach can correctly explains many natural interference 

patterns such as colorful soap bubbles, the colors of butterfly wings, the rainbow 

color of oil stain on the water, and etc. However, despite many studies regarding 

biaxial thin film interference by infinite-beam approach, one can hardly find 

research works in references by double-reflection approach [7,37]. 

In the present paper, using propagating waves in biaxial media and applying 

boundary conditions at the interfaces, the interference pattern of a biaxial thin 

film is numerically calculated by double-reflection method. The results are 

compared with that of isotropic thin films. The paper is organized as follows: In 

the second and third sections a brief introduction concerning light propagation, 

reflection, and transmission in biaxial media and interfaces is presented. The 
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fourth section is devoted to numerical calculation of interference pattern 

associated with biaxial thin films by double-reflection approach. Summary and 

conclusion are drawn in the last section. 

2. LIGHT PROPAGATION IN A BIAXIAL MEDIUM 

In this section the propagation of a harmonic plane wave in an infinite, 

homogeneous, linear, and non-magnetic biaxial medium with no absorption and 

dispersion is considered based on the formulation presented in [38-40]. The 

dielectric tensor of a biaxial medium is a diagonal matrix in its principal 

coordinate system: 
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Where nx, ny, and nz are principal refractive indices along principal axes x, y, and 

z respectively and ε0 is vacuum permittivity. The electric field of a harmonic plane 

wave has the form: 
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in which 
0E


 is the vector amplitude and ω and K


 are frequency and wave vector, 

respectively, with relation: 
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N in (3) is the effective refractive index, c is light speed in free space, and 
Ke


 

is a unit vector in propagation direction. 
0E


 and N in (2) and (3) are unknowns 

and must be determined in terms of ω and 
Ke


. Defining D


 and H


 fields of the 

wave as: 
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and using curl equations of Maxwell yields: 
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Their combination leads to: 
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with the matrix form of: 
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Equating the determinant of the coefficient matrix with zero in order to find 

nontrivial amplitude 
0E


 results in: 
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This is a sixth degree equation in terms of N and has six solutions: ±N1, ±N2, 

and ±∞. The only physically meaningful solutions are +N1 and +N2. If these 

indices are found for all propagation directions and their loci are plotted, a three-

dimensional double-shell is formed in which one of the shells is within the other. 

The double-shell is known as iso-frequency double-shell. Inserting N1 and N2 in 

(7), one can obtain their respective eigen-polarization: 
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where A1 and A2 are arbitrary constants. So, two aforementioned unknowns 

(namely effective index, N, and amplitude, 
0E


) are obtained. This discussion 

shows that a harmonic plane wave can propagate in any direction of a biaxial 
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medium but cannot have any polarization except two eigen-polarizations of (9). 

Because of different refractive indices, these two eigen-polarizations cannot 

combine to form various elliptic polarizations as in isotropic media. These eigen-

polarizations are known as ordinary and extra-ordinary waves in uniaxial media. 

They have different nomenclature in biaxial media such as slow-wave and fast-

wave (depending of their phase velocity) or outer-shell and inner-shell waves 

(depending on their effective index position in the outer or inner shell of the 

double-shell iso-frequency). 

3. REFLECTION AND TRANSMISSION OF A PLANE HARMONIC WAVE AT A 

FLAT INTERFACE BETWEEN ISOTROPIC AND ANISOTROPIC MEDIA 

In this section the reflection and transmission of a harmonic plane wave 

incident from a semi-infinite isotropic medium on a flat surface of a semi-infinite 

biaxial medium with arbitrary orientation of principal axes is considered, Fig. 1. 

In addition to the principal frame, a laboratory frame is also needed, because 

initial information of incident wave is more easily given in lab frame rather than 

principal one. Lab axes xLab and yLab lie in the interface so that the zLab axis is 

directed into the biaxial medium. Using Euler rotation matrix which includes 

three successive rotations, first by α about zLab, second by β about new xLab, and 

third by γ about new zLab, the lab frame coincides with the principal frame. 

 

 
Fig. 1. Schematic of the reflection and transmission at the plane interface between 

isotropic and biaxial media with principal axes of x, y, and z. 

 

A harmonic plane wave is incident on the surface by polar angle of θI,Lab and 

azimuthal angle of φI,Lab with electric field: 
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Where 
0,IE


 is incident amplitude which can have any elliptic polarization due 

to isotropy of the incidence medium, and 
Ik


 is its wave vector. The reflected and 

transmitted waves can be written in the form: 
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Where 
0,RE


and 

0,TE


 are amplitudes of the reflected and transmitted waves, and 

Rk


 and 
Tk


 are respective wave vectors. The phase matching condition in the 

interface implies that: 
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Applying this condition retrieves the common optics laws of isotropic media: 

1) the reflected and transmitted waves lie in the incidence plane, 2) the angle of 

reflection wave (both polar and azimuthal) is equal to that of incident wave, and 

3) the Snell’s law is true in the form: 

 

   LabTTLabI SinNSinn ,,                                                                           (13) 

 

where n is refractive index of incident medium, NT is effective refractive index 

of the biaxial medium in the transmission direction, and θT,Lab is the polar angle 

of the transmitted (or refracted) wave. NT and θT,Lab are both unknown in (13) and 

must be found. In order to find a second complementary equation, the unit vector 

of the transmitted wave is used: 
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This unit vector is transformed to principal frame by Euler matrix: 

 

     LabTLabTincT eEulere ,,Pr,
ˆ,,ˆ                                                             (15) 

 

Inserting this unit vector in (8) the complementary equation is found: 
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Simultaneous solution of (13) and (16) yields two transmission angles and one 

refractive index for each: 
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This equation shows that there are two transmitted waves that fulfill the Snell’s 

law simultaneously. So, an incident wave on the biaxial medium is refracted to 

two transmitted waves. Hence, the transmitted wave in (11) should be modified 

as: 
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Where 
0,1TE


and 

0,2TE


 are amplitudes of the two transmitted waves and 
1Tk


 and 

2Tk


 are respective wave vectors. 
0,1TE


and 

0,2TE


 are obtained using (9) as 
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So far, all of the unknowns including effective refractive index and amplitude 

of the transmitted light were found in terms of initial values such as incidence 

angle, refractive indices of media, and Euler matrix. However, 
0,RE


 , AT1, and AT2 

are still unknown. As the reflected wave is in the isotropic medium, its amplitude 

0,RE


 can be expanded in terms of p (parallel to incidence plane) and s 

(perpendicular to incidence plane) polarizations: 

 

sEpEE sRpRR
ˆˆ

,0,,0,0, 


                                                                                (20) 

 

With this definition, the unknown vector 
0,RE


 is decomposed into two unknown 
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scalars 
pRE ,0,
 and 

sRE ,0,
. So, if the four unknowns AT1, AT2, 

pRE ,0,
, and 

sRE ,0,
 are 

found somehow, then the reflection and transmission problem is completely 

solved. To find them, boundary conditions must be applied. Continuation of 

tangential components of E


 and H


 fields at interface yields four scalar equations 

for these four unknowns and uniquely gives the amplitudes of reflected and 

transmitted waves. Of course, application of boundary conditions is easier in lab 

frame than principal one, so, the transmission amplitude in (19) must be 

transformed to lab frame by inverse Euler matrix. A computer code has been 

developed by the authors in Mathematica software and calculates the reflection 

and transmission of any incidence light with arbitrary polarizations. 

As a numerical example assume: 
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A plane wave with p, s, and circular polarizations is incident on the biaxial 

medium in arbitrary polar and azimuthal angles. The reflection coefficient for s 

and p polarization was calculated by the computer code and plotted in left and 

right column of Fig. 2, respectively. The upper row of the figure is for incident s 

polarization, the middle row for p and the lower row for circular ones. The upper 

row shows that, in reflection of incident s polarization, both s and p polarizations 

are created. This is contradicting with isotropic media that only s polarization is 

created upon reflection of incident s polarized light. Another important thing is 

that again in contrast to isotropic media, the reflection is dependent on azimuthal 

angle in addition to polar angle of incidence. 
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Fig. 2. Reflection coefficient of s (left) and p (right) polarizations as functions of 

incidence polar, θI,Lab, and azimuthal, φI,Lab, angles. Upper row is for incident s 

polarization, and middle and lower rows for p and circular ones, respectively. 

4. REFLECTION INTERFERENCE FROM A BIREFRINGENT THIN FILM 

A flat biaxial thin film of thickness h placed between two isotropic media is 

considered. A plane wave with given polarization is incident on the film at polar 
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angle θI,Lab and azimuthal angle φI,Lab. A part of the wave is reflected from the 

upper surface and the other part is transmitted to film in the form of two refracted 

waves. These two waves reach the lower surface of the film. There, a part of them 

is reflected back to the biaxial medium and the other part is transmitted to the 

lower medium. Phase matching condition in the lower surface implies that each 

of the two waves is converted to two reflected and one transmitted waves. The 

four reflected waves move toward the upper surface and generate four transmitted 

waves to upper medium and eight reflected waves to biaxial medium, Fig. 3. This 

procedure continues until an infinite number of reflected and transmitted waves 

in upper, biaxial, and lower media are produced. As mentioned in references [for 

example 29 and 32] the superposition of these infinite waves results in a single 

up-going wave in the upper medium, a single down-going wave in the lower 

medium, and four (two up-going and two down-going) waves in the biaxial film. 

This is, indeed, an infinite-reflection approach. On the other hand, the method 

that includes only one reflection from the upper surface and one reflection from 

the lower surface and calculates the superposition of the five waves sent to the 

upper medium is called double-reflection approach. This approach, as mentioned 

in the introduction, is true only when the incident light has not sufficient 

coherence length to involve higher order reflections in the calculations. An 

important point evident in Fig is that each incident wave on internal surface of 

the film produces two reflected waves with different angles. This is the other 

optical properties of the biaxial media. 

 

 
Fig. 3. Schematic of a biaxial thin film placed between two isotropic media with x, y, and 

z as its principal axes. Each incident wave is converted to two reflected waves with 

different angles upon internal reflections.  

 

The developed computer code can numerically calculate interference patterns 

of biaxial thin films with arbitrary number of reflections. In the double-reflection 

mode, the code finds the amplitudes of the five waves sent to the upper medium 

by applying boundary conditions in points a, b, c, d, e, f, and g denoted in Fig and 

sums over them to form the interference pattern. As an example, the interference 

pattern of a biaxial thin film with thickness h=1µm placed in vacuum is 
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considered. The Euler angles are assumed as: 
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A circularly polarized white light in the wavelength range of 

nmnm 800400    is incident on the biaxial film under constant incident 

angles. The interference patterns of θI,Lab = π/3 and φI,Lab = π/3 for films with 

increasing birefringence (but with equal values of average refractive index of 

nave=1.8) are plotted in Fig. 4 from left to right. 

 

 
Fig. 4. Reflection coefficient of p polarization for circularly polarized white light 

incident with φI,Lab=π/3 and θI,Lab=π/3 angles. The birefringence is increased from ‘a’ to 

‘d’ with a fixed average index of nave=1.8. 

 

The second example is for the same film as previous example but with different 

incident angles of θI,Lab = π/3 and φI,Lab = π/6. The interference pattern is plotted 

in Fig. 5. 

Inspection of these figures reveals important things. The first is that, by 

increasing the birefringence value a kind of banding (or interference pattern) is 

observed in reflection. On the other hand some bands of wavelength have higher 

reflection and some smaller one. The second finding is that, with a fixed value of 

average index, increasing birefringence value leads to higher level of reflection 

(see the increasing level of reflection from ‘a’ to ‘d’ in both figures).  
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Fig. 5. Reflection coefficient of p polarization for circularly polarized white light incident 

with φI,Lab=π/6 and θI,Lab=π/3 angles. The birefringence is increased from ‘a’ to ‘d’ with a 

fixed average index of nave=1.8. 

5. SUMMARY AND CONCLUSION 

In this paper, the interference pattern of a biaxial thin film with arbitrary 

orientation of principal axes is calculated numerically by a home-made computer 

code. Calculations show that upon reflection from birefringent films, 

polarizations are mixed which each other and it is related on azimuthal incident 

angle in addition to polar one. It was also observed that a kind of modulation (or 

banding) appears in the interference pattern produced by white light illumination. 

The number of bands is increased by increasing birefringence. On the other hand, 

increasing birefringence leads to increased reflection. The reported banding of 

reflection coefficient due to birefringence is a new finding that is not reported in 

the literature and the authors are indeed the first ones who are observing it. One 

of the applications of such a discovery is determination of birefringence 

properties of crystals and also study of electro-optical effects such as ‘Kerr’ and 

‘Pockels’ ones which is considered as future works.  
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