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Abstract: The two-dimensional structure of graphene, consisting of an isotropic 

hexagonal lattice of carbon atoms, shows fascinating electronic properties, such 
as a gapless energy band and Dirac fermion behavior of electrons at fermi surface. 

Anisotropy can be induced in this structure by electrochemical pressure. In this 

article, by using tight-binding method, we review anisotropy effects in the 
electronic nanostructure of graphene in one direction. For this purpose, we just 

consider π states, which express electronic characteristics, and compare 

electronic band of π states with that of isotropic honeycomb lattice in graphene. 
As a result, by applying pressure or stretching in one direction, the gap will be 

created in the electronic band at the fermion surface, which can be useful for 

semiconducting nano devices. The isotropic graphene has a band structure with 

no energy gap. By applying electrochemical pressure in one direction, the 
translational symmetry can be broken, therefore an energy gap appears between 

the two bands. 

Keywords: graphene, electronic nanostructure, electrochemical pressure, tight-
binding method, energy gap band.  

 

Introduction 

Graphene is a two-dimensional structure of the Carbon atoms, in which atoms 

form a honeycomb lattice, according to Fig 1 [1]. Wallas introduced graphene, 

for the first time in 1977, great efforts was afforded to build such a two-

dimensional material [2, 3]. Finally Geim and Novoselov made graphene in 2004; 

they won the Nobel Prize in physics in 2010, for construction of the two-

dimensional graphene [4]. There are six electrons of carbon atoms occupy 

1S2,2S2,2P2  orbitals in graphene structure. Since the energy difference between 
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levels 2S and 2P is smaller than the binding energy, the wave function, of the four 

electrons are easily hybridized. The orbitals form covalent bonds with 

neighboring atoms, which are called 𝜎 bonds. These bonds are responsible for the 

mechanical properties of graphene and they are usually be ignored in theories that 

explains electronic properties of graphene. Due to the electronic symmetry, 2Pz 

orbital doesn’t overlap with 2S,2Px orbitals or 2py , 2pz orbitals that are 

perpendicular to the graphene page, link with neighboring atoms to form π-bond, 

and electrons in this case move between neighboring atoms. Therefore we use π 

states to study electronic properties of graphene. π orbitals in π-bonds and  π*-

anti bonds participation in the energy spectrum. π-bonds form valence band and 

π* -anti bonds form conduction band [3, 5]. 

 

Energy band structure is an important property of different materials. For 

electronic bands calculation of honeycomb lattice, we use tight-binding model, 

which is an suitable for calculating the band structure of both periodic and non-

periodic systems by using superposition of wave functions for each isolated 

atoms placed in an atomic sites [6]. This method create a good description of 

occupied states in all kind of crystals, (metals, semiconductors, and 

nonconductor) [7]. Though the tight-binding approach is a one-electron model, it 

also provides a basis for more advanced calculations like the calculation of 

surface states and application to various kinds of many-body problem and 

quasiparticle calculations. [8, 9]. 

Graphene is a material with no gap between conduction and valence bands [3]. 

One could create anisotropy by applying stress to it’s lattice. This anisotropy is 

generally created by application of single-axis pressure or stretch, in honeycomb 

lattice which increases or decreases the separation distance between neighboring 

atoms and changes the electronic wave function overlap [10]. In this research we 

use the same mechanism to create anisotropy in the system. 

 
This article is arranged according to following order: In section 2 and 3, the 

tight binding Hamiltonian is introduced and the method is explained to obtain the 

energy bands. In section 4, spectral function is obtained by calculating the green’s 

function. Finally, we give concluding points in section 5. 
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Fig.  1 Graphene honeycomb lattice (left), first Brillouin zone (right) 

   

1. TIGHT-BINDING CALCULATION 

 
The tight-binding Hamiltonian for graphene honeycomb lattice, reads as: 

𝐻 = 𝐻0 + ∑ 𝑡𝑒𝑖𝒌.𝒕𝒎
𝑡𝑚

                    (1) 

In the above equation, H0 is the non-interaction Hamiltonian, t is the hopping 

amplitude between two adjacent lattice sites, k is the wave vector and tm points to 

the nearest neighbor site.  The second term in Eq (1) the sum is taken over the 

nearest neighboring sites. In the momentum space, the solution of the tight-

binding method is:  

𝐹(𝑘) = ∑ 𝑡𝑒𝑖𝒌.𝒕𝒎 = 𝑡 (𝑒−𝑖𝑘𝑥.𝑎 + 2𝑐𝑜𝑠 (
√3

2
𝑘𝑦𝑎) 𝑒𝑖

1

2
𝑘𝑥𝑎)𝑡𝑚

                         (2)                                   

To calculate the band structure, we have to solve the following eigenvalues 

problem: 

|[𝐻] − 𝐸(𝑘)[𝑆]| = 0                                                                                      (3)     

In which Hamiltonian matrix is: 

𝐻 = [
𝐻𝐴𝐴 𝐻𝐴𝐵

𝐻𝐵𝐴 𝐻𝐵𝐵
]                           (4) 

Each matrix element is determined using the relations below: 

𝐻𝐴𝐴 = ⟨𝜙𝐴2𝑝𝑧
|𝐻|𝜙𝐴2𝑝𝑧

⟩ = 𝜀2𝑝                                                                       (5.1)   

𝐻𝐴𝐵 = ⟨𝜙𝐴2𝑝𝑧
|𝐻|𝜙𝐵2𝑝𝑧

⟩ = ∑ 𝐻𝑝𝑝𝜋𝑒𝑖𝒌.𝑹𝑨𝒊3
𝑖=1                                                  (5.2) 
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In this approximation S matrix is equal to the unit matrix. In particular 

eigenvalues are calculated by the following determinate equation: 

|
𝜀2𝑝 − 𝐸(𝑘) 𝐻𝑝𝑝𝜋𝐹(𝑘)

𝐻𝑝𝑝𝜋𝐹†(𝑘) 𝜀2𝑝 − 𝐸(𝑘)
| = 0                                                                       (6) 

where we put for Hppπ =-3.1 and εk=0 [11].  The band structure E (k) may be 

described by a simple one-orbital tight-binding model as:  

 𝐸(𝑘) = ±𝑡√𝐻𝑝𝑝𝜋
2 (1 + 4𝑐𝑜𝑠 (

√3

2
𝑘𝑦𝑎) 𝑐𝑜𝑠 (

3

2
𝑘𝑥𝑎) + 4𝑐𝑜𝑠2 (

√3

2
𝑘𝑦𝑎))      (7) 

Solving this eigenvalue problem yields the electronic band structure of 

graphene. Since all possible eigenstates are specified by the wave vector k within 

any one primitive cell of the periodic lattice in reciprocal space, the first Brillouin 

zone is the uniquely defined cell that is the most compact possible cell. We can 

obtain π and π* electronic bands for the graphene honeycomb lattice by plotting 

eigenvalues of energy in the first Brillouin zone, [12, 13]. 

 
Fig.  2 Electronic bands graphene honeycomb lattice without pressure in one direction 

with a=b. 

 

 

2. CALCULATION IN THE FIRST BRILLUIN ZONE    

By plotting eigenvalues of energy E in the first Brillouin zone, we can obtain 

electronic band structure of honeycomb lattice for the isotropic and anisotropic 

graphene. We can obtain gap between the two bands in every two states. In Fig. 

2 we shows π and π* electronic bands when the honeycomb lattice is not affected 

by pressure, or in other words, the lattice is isotropic with the condition a=b. In 

this figure the electronic bands are connected without any gap in point K.  
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The following M, Г and K points 

Г =
2𝜋

𝑎0
(0,0)            𝑀 =

2𝜋

𝑎0
(

1

3
, 0)              𝐾 =

2𝜋

𝑎0
(

1

3
,

1

3√3
) 

Are high symmetry points in the first Brillouin zone, shown in Fig. 1 (right), and 

𝑎0 constant lattice. We obtained eigenvalues of energy by replacing the 

coordinates of high symmetry points in equation (7). Applying electrochemical 

pressure in one direction of the honeycomb lattice creates anisotropy in the lattice. 

For an anisotropic lattice, with the condition 𝑏 = 1.05𝑎 and c changed constant 

lattice, the high-symmetry points are converted to the following coordinates:  

A) Г =
2𝜋

𝑐
(0,0)             𝑀 =

2𝜋

𝑐
(

1

3
, 0)             𝐾 =

2𝜋

𝑐
(

1

3
,

1

3√3
) 

 

Moreover energy gap between the π and π* electronic bands appears because of 

anisotropy, in point K (Fig. 3). In this calculations energy gap is obtained 

approximately 0.8ev. 

 
Fig.  3 Electronic bands graphene honeycomb lattice by the electrochemical pressure 

in one direction lattice with b=1.05a 

 

3. Spectral Function 

The spectral function provides information about the nature of the allowed 

electronic states, that can be considered as a generalized density of states 

regardless whether they are occupied or not. Spectral function gives the number 

of state (or density of state if you divide volume...etc.), peak in spectral function 

means there's a state or there're several degenerate states there. In single particle 
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system without interaction, the spectral function consists of only delta function 

sets at places where eigenstates exist. 

 

Fig.  4 Spectral function graphene honeycomb lattice without pressure in one direction 

with a=b and t=2.7 eV. 

 

To calculate spectral function, the first step is introducing the green’s function 

in lattice: 

 𝐺(𝑘, 𝜔) = (𝑧 − 𝐻)−1                                                                                        (8) 

Where 𝑧 = 𝜔 − 𝑖𝜂 and 𝜔 =
(2𝑛+1)𝜋

𝛽
  is the Matsubara frequencies for fermions. 

Therefore Spectral function can be written as: 

𝐴(𝑘, 𝜔) =
−1

𝜋
ℑ𝑇𝑟𝐺(𝑘, 𝜔)                                                                                 (9) 

Trace of the spectral function represents the density of states [14, 15]: 

𝜌(𝜔) = 𝑇𝑟[𝐴(𝑘, 𝜔)] = ∫ 𝑑𝑘𝐴(𝑘, 𝜔)                                                               (10) 

Fig. 4 shows spectral function for the graphene honeycomb lattice, which is not 

affected by pressure, or a=b; by applying electrochemical pressure in one 

direction, a band gap is created shown in Fig. 5.  
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Fig.  5 Spectra function graphene honeycomb lattice by the electrochemical pressure 

in one direction lattice with 𝑏 = 1.05 𝑎. 

  

4. CONCLUSION 

The isotropic graphene has a band structure with no energy gap. By applying 

electrochemical pressure in one direction, the translational symmetry can be 

broken, therefore an energy gap appears between the two bands. The created gap 

is due to the energy difference between the π and π* bands. By coherent stretching 

lattice in the x axis direction by size of 1.005, the band gap opens up. If pressure 

on the lattice is more than of 1.3 in direction x axis, the reciprocal lattice would 

not remain honeycomb shape and the electronic properties would be changed.     
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