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Abstract: In this article a review on the definition of the X- ray transform and some of 

its applications in Nano crystallography is presented. We shall show that the X- ray 

transform is a special case of the Radon transform on homogeneous spaces when the 

topological group 𝑬(𝒏) - the Euclidean group - acts on ℝ𝟐 transitively. First some 
properties of the Radon transform are investigated then the relationship to texture analysis 

is briefly illustrated. Finally, some of its applications in material structure detection at the 

Nano scale are studied.  

Keywords: X- ray transform, Nano crystallography, homogeneous spaces.  

1. INTRODUCTION 
 After for almost half of a century, Soviet and American authors [Shtein (1972); 

Vainshtein and Orlove (1972); Vest and Cormack (1973)] have pointed out 

Radon's paper in 1917 as the base for solving reconstruction from projections 

[4].  Then Fritz John revived the subject in important papers during the thirties 

and found significant applications to differential equations. Now, the appropriate 

unifying mathematical framework for a large class of reconstruction problems is 

the Radon transform on the Euclidean space. The X-ray transform as a special 

case of the Radon transform on homogeneous spaces appears in crystallography 

and in material sciences. More recent applications to X-Ray (electromagnetic 

waves with a wavelength of about 10 -10 meters) technology and tomography have 

widened interest in the subject. A well-known problem in material sciences is the 

 
* Corresponding author. Email: kamyabi@um.ac.ir 



30 * Journal of Optoelectronical Nanostructures  Spring 2017 / Vol. 2, No. 2 

determination of material properties. This method is also known as texture 

analysis. Texture analysis is the analysis of preferred crystallographic orientation 

in polycrystalline materials. The analysis of crystallographic preferred 

orientations by means of orientation density functions and pole density functions 

is a widely used method in texture analysis. Some more complete introductions 

into texture analysis and crystallography are presented by many authors [1, 2, 7]. 

  

2. RADON TRANSFORM  AND  X-RAY TRANSFORM 

We can have a look at the isometries of space that transform any body into 

itself. These are called the isometry group or symmetry group of the body. Most 
bodies in nature are irregular or asymmetrical. In this case, there is no isometry 

besides the identity, which transforms the body into itself. A group that only 

consists of the identity is called trivial. Bodies with a trivial isometry group are 

thus asymmetrical, and bodies with a non-trivial isometry group are called 
symmetrical. The larger the isometry group of a body, the more symmetrical its 

appearance. For example, the sphere as a symbol of a symmetrical body is 

transformed into itself through any isometry, and its symmetry group contains an 
uncountably infinite number of elements, i.e. as many as there are real numbers 

(e.g., every rotation around any angle and any axis and every reflection in any 

plane through the central point).  
The isometry group of a crystal is not trivial, but always countable, with the 

point group itself only. In any case, we have to note that the colloquial terms 

“symmetric” and “regular” are mathematically described by the concept of the 

group. In what follows, first we describe the action of isomery group and its 
relation to the definition of the Radon transform on homogeneous spaces, then it 

will be specialized to the X-ray transform. 

 

Definition 2. 1. Let 𝐺 be a locally compact group and 𝑆 a locally compact 

Hausdorff space. A left action of 𝐺 on 𝑆 is a continuous map (x, s) ↦ 𝑥𝑠 from 

𝐺 × 𝑆 to 𝑆 such that (𝑖) 𝑠 ↦ 𝑥𝑠 is homeomorphism of 𝑆 for each 𝑥 ∈ 𝐺, and 
(𝑖𝑖) 𝑥(𝑦𝑠) = (𝑥𝑦)𝑠 for all 𝑥, 𝑦 ∈ 𝐺 and 𝑠 ∈ 𝑆. A space 𝑆 equipped with an action 

of 𝐺 is called a 𝐺 −space. A 𝐺 −space is called transitive if for every 𝑠, 𝑡 ∈ 𝑆 

there exists 𝑥 ∈ 𝐺 such that 𝑥𝑠 = 𝑡. 
Pick 𝑠0 and let 𝐻 ∶= {𝑥 ∈ 𝐺 |𝑥𝑠0 = 𝑠0}, we know from [2] that if 𝐺 is 

𝜎 −compact then 𝑆 and 𝐺/𝐻 are homeomprphic. In this case the term 

homogeneous space is used to 𝑆.  

Let 𝐺 be a locally compact group, 𝐻 and 𝐾 be two closed subgroups of 𝐺, 𝐿 ∶
= 𝐻 ∩ 𝐾 and also let 𝑋 ∶= 𝐺/𝐾 and 𝑌 ∶= 𝐺/𝐻 denote two left coset spaces of 

G. Assume that 𝑑(𝑘𝐿) and 𝑑(ℎ𝐿) are two 𝐾 −invariant and 𝐻 −invariant Radon 
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measures on 𝐾/𝐿 and 𝐻/𝐿, respectively. The Radon transform 𝑅 ∶ 𝐶𝑐(𝐺/𝐾) ⟶
𝐶(𝐺/𝐻) was introduced by S. Helgason in 1966 defined by 

𝑅𝑓(𝑥𝐻) = ∫ 𝑓(𝑥ℎ𝐾)𝑑(ℎ𝐿)
𝐻/𝐿

   ;   (𝑓 ∈ 𝐶𝑐(𝐺/𝐾)).                (3.1. ) 

See [8]. In what follows, we shall show that the X-ray transform (2. 1.) is a 

special case of (3. 1.). 

Let 𝑋 denotes the plane of ℝ2 viewed as a subset of {(𝑥, 𝑦, 1) | 𝑥, 𝑦 ∈ ℝ}. The 

isometry group 𝐺 ∶= 𝑀(2) of matrices 

(𝛼, 𝛽, 𝛾, 𝜂; 𝑢1, 𝑢2 ) ∶= [
𝛼 𝛽 𝑢1
𝛾 𝜂 𝑢2
0 0 1

] ∈ 𝐺𝐿(𝑛,ℝ), 𝛼 > 0 

acts transitively on 𝑋 with the action 

(𝛼, 𝛽, 𝛾, 𝜂; 𝑢1 , 𝑢2) □(𝑎, 𝑏) = (𝛼𝑎 +  𝛽𝑏 + 𝑢1, 𝛾𝑎 +  𝜂𝑏 + 𝑢2 ) 
 

The isotropy group of 𝑥0 = (0, 0) is 

𝐾 ∶= {(𝛼, 𝛽, 𝛾, 𝜂;  0, 0 ) | [
𝛼 𝛽
𝛾 𝜂

] ∈𝑂(2)} = 𝑂(2) 

                  = {[
𝑐𝑜𝑠𝜙 𝑠𝑖𝑛 𝜙
−𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠𝜙

] , [
−𝑠𝑖𝑛𝜙 𝑐𝑜𝑠𝜙
𝑐𝑜𝑠𝜙 𝑠𝑖𝑛𝜙

] |𝜃 ∈ [0, 2𝜋)} 

Let 𝑌 ∶= {(𝑥, 𝑚𝑥 + ℎ) ∶ 𝑥 ∈ ℝ} be the space of all lines in the plane of ℝ2. If 

we denote the line 𝑦 = 𝑚𝑥 + ℎ by (𝑚, ℎ)  then the action of 𝐺 on 𝑋 induces a 

transitive action of 𝐺 on 𝑌 as following. 

(𝛼, 𝛽, 𝛾, 𝜂; 𝑢1 , 𝑢2 ) ⟡ (𝑎, 𝑏) = (
𝛾 +  𝜂𝑚

𝛼 +  𝛽𝑚
,−
𝛾 +  𝜂𝑚

𝛼 +  𝛽𝑚
(𝛽ℎ + 𝑢1) + 𝜂ℎ + 𝑢2) 

Because we have the following 

(𝛼, 𝛽, 𝛾, 𝜂; 𝑢1, 𝑢2 ) □(𝑎, 𝑏) = (𝛼𝑥 +  𝛽(𝑚𝑥 + ℎ) + 𝑢1, 𝛾𝑥 +  𝛽(𝑚𝑥 + ℎ) + 𝑢2). 

If we consider 𝑥′ ∶= 𝛼𝑥 +  𝛽(𝑚𝑥 + ℎ) + 𝑢1 then 𝑥 =
𝑥 ′−𝛽ℎ−𝑢1

𝛼+ 𝛽𝑚
 and 

𝛾𝑥 +  𝛽(𝑚𝑥 + ℎ) + 𝑢2 =
𝛾 +  𝜂𝑚

𝛼 +  𝛽𝑚
𝑥′ +

(𝛾 +  𝜂𝑚)(𝛽ℎ + 𝑢1)

𝛼 +  𝛽𝑚
+ 𝜂ℎ + 𝑢2 

Now, the isotropy group of the 𝑋-axis (the point (0, 0)) is   

𝐻 ∶= {(𝛼, 𝛽, 𝛾, 𝜂; 𝑢1, 𝑢2 ): (
𝛾

𝛼
,−
𝛾

𝛼
𝑢1 + 𝑢2) = (0, 0)} 

  = {(𝛼, 𝛽, 0, 𝜂; 𝑢1, 0 ): (𝛼, 𝛽, 0, 𝜂) ∈ 𝑂(2), 𝑢1 ∈ ℝ} 
= {(±1, 0, 0, ±1; 𝑢1, 0 ): 𝑢1 ∈ ℝ}                             
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= ℤ2 ×𝑀(1)                                                                   

Thus the group 𝐿 ∶= 𝐾 ∩ 𝐻 ={±𝐼2×2} is the trivial group and 𝐻/𝐿 = 𝐻 = ℝ has 

a Haar measure 𝑑ℎ(1,0,0,1; 𝑢,0) =
𝑑𝑢

𝑢
 . 

Also, if 𝑔 = (𝛼, 𝛽, 𝛾, 𝜂; 𝑢1 , 𝑢2 ), ℎ = (1, 0, 0, 1;  𝑠, 0) and 𝐾 =

(𝛼 ′, 𝛽′, 𝛾′, 𝜂′;  0, 0 ) then 

𝑔𝐾 = (𝛼, 𝛽, 𝛾, 𝜂; 𝑢1, 𝑢2 ) ⟡ (0, 0) = (𝑢1 , 𝑢2)  

𝑔𝐻 = (𝛼, 𝛽, 𝛾, 𝜂; 𝑢1 , 𝑢2 )□(0, 0) = (
𝛾

𝛼
,−
𝛾

𝛼
𝑢1 + 𝑢2) 

𝑔ℎ𝐾 = (𝛼, 𝛽, 𝛾, 𝜂; 𝛼𝑠 + 𝑢1, 𝛾𝑠 + 𝑢2 )□(0, 0) = (𝛼𝑠 + 𝑢1 , 𝛾𝑠 + 𝑢2 ) 
𝑔𝑘𝐻 = (𝛼𝛼′ +  𝛽𝛾′ , 𝛼𝛽′ +  𝛽𝜂′, 𝛾𝛼′ +  𝜂𝛾′, 𝛾𝛽′ +  𝜂𝜂′;  𝑢1 + 𝑢2 ) ⟡ (0, 0)

= (
𝛾𝛼′ + 𝜂𝛾′

𝛼𝛼′ +  𝛽𝛾′
, −

𝛾𝛼′ + 𝜂𝛾′

𝛼𝛼′ +  𝛽𝛾′
𝑢1 + 𝑢2) 

So the Radon transform is 

𝑅𝑓(𝑔𝐻) = ∫ 𝑓(𝑔ℎ𝐾)𝑑ℎ.
𝐻

 

Then 

𝑅𝑓((
𝛾

𝛼
, −

𝛾

𝛼
𝑢1 + 𝑢2)) = ∫ 𝑓(𝛼𝑠 + 𝑢1, 𝛾𝑠 + 𝑢2 )𝑑𝑠.

+∞

−∞
 

Now, put 𝑢1 = 𝑝 𝑐𝑜𝑠𝜙 , 𝑢2 = 𝑠𝑖𝑛 𝜙 , 𝛾 = 𝑐𝑜𝑠𝜙 and𝛼 = 𝑠𝑖𝑛𝜙 then we have  

 𝑅𝑓(𝑝, 𝜙) = ∫ 𝑓(𝑝 𝑐𝑜𝑠𝜙 − 𝑠𝑠𝑖𝑛 𝜙 , 𝑝 𝑠𝑖𝑛 𝜙 + 𝑠 𝑐𝑜𝑠 𝜙 )𝑑𝑠.
+∞

−∞
 

 elpmaxE2.2E. Here we consider the transform over the unit circle. Let 

𝑓(𝑥, 𝑦) = {√1 − 𝑥
2 − 𝑦2         ;      𝑥2 + 𝑦2 < 1

0                                 ;          𝑂.𝑊.         
, 

The transform is given by 

𝑓(𝑝, 𝜙) =
𝜋(1 − 𝑝2)

12
 

where −1 ≤ 𝑝 ≤ +1. 

3. X-RAY TRANSFORM AS A LINE INTEGRAL 

X-ray imaging relies on the principle that an object will absorb or scatter X-rays 
of a particular energy in a manner dependent on its composition, quantified by 

the attenuation coefficient 𝜇. The attenuation coefficient 𝜇 of a substance is a 

function in ℝ3dependent on a variety of factors, but primarily reflective of the 
electron density of that substance. Therefore, denser substances and substances 

containing elements with many electrons will have higher attenuation 

coefficients. This helps explain why bone, which contains high percentages of 

calcium (20 electrons), potassium (19 electrons), phosphorous (15 electrons), and 
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magnesium (12 electrons), has a much higher attenuation coefficient than soft 

tissue, which is made up primarily of carbon (6 electrons), nitrogen (7 electrons), 
and oxygen (8 electrons) [2]. Air is considered to have an attenuation coefficient 

of zero for simplicity of calculation, so the attenuation coefficient disappears 

outside the body.  

When a beam of 𝑋-ray photons emits on texture of homogeneous material, the 

beam intensity decreases according to the equation  

𝐼 = 𝐼0𝑒
−𝜇𝑥 , 

where 𝐼 and 𝐼0 are input and output intensities. The attenuation coefficient 𝜇 

depends on density of the material 𝜌 and the nuclear composition characterized 

by the atomic number 𝑧. The distance passing a beam through the material is 

denoted by 𝑥. If it passes a 𝑥𝑖 's distance through different textures with different 

attenuation coefficient 𝜇𝑖 's then 

𝐼 = 𝐼0𝑒
−∑𝜇𝑖𝑥𝑖 . 

Thus  

𝑝 ∶= −𝑙𝑜𝑔(
𝐼

𝐼0
) = ∫ 𝜇(𝜌, 𝑧)𝑑𝑠

𝐿
, 

indicates inside quality of the texture thus it is called a single projection. The line 

integral depends on distance of path from the origin and the angle 𝜙 that it turns 

left or right. Moving the source and detector together yields a vector of values 

called profile and various values of 𝑝 and 𝜙 yeild sample matrix.  

 xoieinifeE3.1. Let 𝑓 be a function on some domain D ⊆ ℝ𝟐, and let 𝐿 be a line 

in the plane, the line integral  

𝑓 = 𝑅𝑓 = ∫ 𝑓(𝑥, 𝑦)𝑑𝑠
𝐿

 

is said the Radon transform of 𝑓. 

Consider Fig. 3.1, to get the line equation. We have 𝑠𝑖𝑛 (
𝜋

2
−𝜙) =

𝑥

𝑥0
 and 

𝑐𝑜𝑠 (
𝜋

2
−𝜙) =

𝑦

𝑦0
,  so 𝑥 𝑠𝑖𝑛𝜙 + 𝑦 𝑐𝑜𝑠𝜙 = 𝑝.  
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Figure 3.1. Emission-photon Model to Describe line integral 

 

Suppose now a new coordinate system is introduced with axes rotated by the 

angle 𝜙, then we have 

[
𝑝
𝑠
] = [

𝑐𝑜𝑠𝜙 𝑠𝑖𝑛 𝜙
−𝑠𝑖𝑛 𝜙 𝑐𝑜𝑠𝜙

] [
𝑥
𝑦] 

thus  

𝑓(𝑝, 𝜙) = ∫ 𝑓(𝑝 𝑐𝑜𝑠𝜙 − 𝑠 𝑠𝑖𝑛𝜙 , 𝑝 𝑠𝑖𝑛𝜙 + 𝑠 𝑐𝑜𝑠𝜙)𝑑𝑠
+∞

−∞
. 

The first theorem in Radons' 1917 paper asserts that the above integral is well-
defined. 

Furthermore, if we introduce unit vector 𝜉 ∶= (𝑐𝑜𝑠𝜙 , 𝑠𝑖𝑛𝜙) and 𝑋 ∶= (𝑥, 𝑦) 

then the line equation is 𝑝 = 𝜉 ⋅ 𝑋 and 

𝑓(𝑝, 𝜙) = ∫ ∫ 𝑓(𝑋)𝛿(𝑝 − 𝜉 ⋅ 𝑋)𝑑𝑥𝑑𝑦
+∞

−∞

+∞

−∞
,                 (2. 1. )  

where 𝛿 is the Dirac delta function.  

 This definition used by Gel'fand, Greav and Vilenkin in 1966. Note that 𝑓 is 

defined on ℝ× 𝑆𝑛−1, where 𝑆𝑛−1 is the unit sphere. Because (𝑝, 𝜙) and 

(−𝑝,−𝜙) represent the same hyperplane in ℝ𝑛 (𝑝 = 𝜉 ⋅ 𝑋 if and only if −𝑝 =

−𝜉 ⋅ 𝑋) thus the Radon transform is not a one to one transform. 

 xoieinifeE E 3. 2. Let 𝑓 be a function on some domain D ⊆ ℝ𝒏, 𝑋 =

(𝑥1,  𝑥2,  𝑥3… , 𝑥𝑛) ∈ ℝ
𝑛, 𝑑𝑋 = 𝑑𝑥1𝑑𝑥2  …  𝑑𝑥𝑛, and more let 𝜉 be the normal 

vector for hyperplan 𝑝 = 𝜉 ⋅ 𝑋 in ℝ𝑛. The Radon transform of 𝑓 is defined as 

𝑓 = 𝑅𝑓 = ∫ 𝑓(𝑋)𝛿(𝑝 − 𝜉 ⋅ 𝑋)𝑑𝑋
ℝ𝑛

 

is said the Radon transform of 𝑓. 

In the following theorem we collect some properties of Radon transform. 
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Theorem 3.3. Let 𝑅 denotes the Radon transform and 𝑠, 𝛼, 𝛽 ∈ ℝ. Assume that 

𝑓, 𝑔 are continuous function on ℝ𝑛. Also consider 𝐴 as an invertible matrix then 

we have the following properties 

{
 
 

 
 𝑅(𝛼𝑓 + 𝛽𝑔) = 𝛼𝑅𝑓 + 𝛽𝑅𝑔

𝑅𝑓(𝑠𝑝, 𝑠𝜉) = |𝑠|𝑅𝑓(𝑝, 𝜉)    

𝑅(𝑓 ∗ 𝑔) = 𝑅𝑓 ∗ 𝑅𝑔             

𝑅𝑓 = (ℱ1
−1ℱ𝑛)𝑓                  

 

Where ℱ1 and ℱ𝑛denote the one dimensional and denotes the 𝑛-dimensional 

Fourier transforms on ℝ𝑛. 

4. X-RAY TRANSFORM AND CRYSTALLOGRAPHY  

Functional properties of various materials used in different areas such as life 

sciences, electronics, mechanics, mining engineering, food industry and etc. 
depend on their atomic and molecular structure. Knowledge of the internal 

structure and texture analysis of materials give us applicable technical properties. 

Unfortunately, the limitations in human power of vision blocked scientists’ sight 
to have enough information about the internal parts of tissues. A variety of tools 

and techniques aimed to solve this issue. Usage of the various methods such as 

magnetic resonance imaging (MRI), computerized tomography scan (CT-scan), 
X-ray diffraction in the crystalline materials analysis is very common. 

Crystallography can be referred as the study of the atomic positions via measuring 

the distribution of diffracted X-rays. The history of crystallography is as long as 

the discovery of the X-ray by Wilhelm C. Rontgen in 1895. The first experiment 
to identify the nature of the crystalline by using distribution of the diffracted 

radiations was conducted by Laue and showed that when radiation strikes with a 

crystal, they disperse in different directions and at various intensities. 
Stereographic projection technique has been found to measure and collect data of 

all intensities, it also help us to read out the angular relationships between 

different planes and directions in the crystal or unit cell in a lattice, this data set 
is called pole distribution density function (P. D. F).  

Some methods have been introduced to obtain the orientation distribution 

function (ODF) in a polycrystalline sample from pole figures, one can see more 

details in [2, 9, 12]. In this paper we suppose that a pole figure data set there exists 
and we want to use a family of harmonic function in order to derive the ODF 

function.  

Let start with some notations and definitions, consider 𝐾𝑠 and 𝐾𝑐 as Cartesian 
coordinate systems fixed on specimen and a crystal in it. These two coordinate 

systems can be coincided with the appropriate orientations, see Fig. []. According 
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to the scheme proposed by Bunge, a set of (𝜑1, 𝜑, 𝜑2) are need to be coincide 

two coordinate systems, these angles are called Euler angles. The crystallographic 

orientation (𝜑1, 𝜑, 𝜑2) of an individual crystal gives us an orthogonal 

transformation 𝑔 = 𝑔(𝜑1, 𝜑, 𝜑2) ∈ 𝑂(3) which brings 𝐾𝑠 into coincidence 

with 𝐾𝑐. 
 

  
Figure 4.1. Two coordinate systems can be coincided by Euler angles 

rotation 
 

It is noted that, owing to the symmetry of unit cell and the textures, the 

orientation space (or the Euler space), however, is restricted to a smaller region. 

This restriction is also valid for all texture components in the polycrystalline. The 

common way to describe the regularity of an atom lattice is to extend it 

periodically to the three–dimensional Euclidean space ℝ3 and to consider its 

symmetries. Symmetries are isometric mappings of the three–dimensional space 

that leave the extended atom lattice invariant. The set of all symmetries of the 

extended atom lattice forms a group, the so called space group 𝑆𝑠𝑝𝑎𝑐𝑒 ⊆ 𝑂(3)⊗

𝑇(3) of the crystal. Here 𝑂(3) and 𝑇(3) are the orthogonal group and the group 

of all translations in ℝ3. The orthogonal part 𝐻 = 𝑆𝑝𝑜𝑖𝑛𝑡 = 𝑆𝑠𝑝𝑎𝑐𝑒/𝑇(3) ⊆

 𝑂(3) of the space group is called point group or isotropy group of the crystal. A 
crystallographic point group is a set of symmetry operations, like rotations or 

reflections that leave a central point fixed while moving other directions and faces 

of the crystal to the positions of features of the same kind. For a periodic crystal. 

https://en.wikipedia.org/wiki/Symmetry
https://en.wikipedia.org/wiki/Crystal
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A direction specified by coordinates relative to a crystal coordinate system is 

called crystal direction. Following the general convention we denote crystal 

directions by ℎ ∈ 𝕊2. Two crystal directions ℎ1, ℎ2 ∈ 𝕊
2 are called 

crystallographically equivalent if there exists a symmetry 𝑔 ∈ 𝑆𝑠𝑝𝑎𝑐𝑒 of the 

crystal such that ℎ1 = 𝑔ℎ2. We denote by 

ℎ𝑆𝑠𝑝𝑎𝑐𝑒  =  { ℎ𝑞 | 𝑞 ∈ 𝑆𝑠𝑝𝑎𝑐𝑒}  

 the class of all crystal directions crystallographically equivalent to a given 

crystal direction ℎ ∈ 𝕊2 and by 𝕊2/𝑆𝑠𝑝𝑎𝑐𝑒 the set of all classes of 

crystallographically equivalent directions.  

A direction specified by its coordinate vector relative to the specimen 
coordinate system is called specimen direction and is usually denoted by the letter 

𝑟 ∈ 𝕊2.  

Crystal directions and specimen directions are connected via the coordinate 

transformation 𝑔 = 𝑔(𝜑1, 𝜑, 𝜑2) ∈ 𝑂(3) from the crystal coordinate system to 

the specimen coordinate system. With this notation a crystal direction ℎ ∈ 𝕊2 and 

a specimen direction 𝑟 ∈ 𝕊2 represent the same physical direction if and only if 

𝑟 = 𝑔ℎ. Let 𝑔1 , 𝑔2 ∈ 𝑂(3) be two coordinate Also, two transformations 𝑔1 and 

𝑔2 are crystallographically equivalent orientations if and only if there exists a 

symmetry 𝑞 ∈ 𝑆𝑝𝑜𝑖𝑛𝑡  such that 𝑔1 = 𝑔2𝑞. The class 

 𝑔𝑆𝑝𝑜𝑖𝑛𝑡 = {𝑔𝑞 | 𝑞 ∈ 𝑆𝑝𝑜𝑖𝑛𝑡} = 𝑂(3)/𝑆𝑝𝑜𝑖𝑛𝑡  

of all coordinate transformations that are crystallographically equivalent to a 

given coordinate transformation 𝑔 ∈ 𝑂(3) is called crystal orientation and the 

factor group 𝑂(3)/𝑆𝑝𝑜𝑖𝑛𝑡  of all crystal orientations is called orientation space. 

Let 𝑔𝑆𝑝𝑜𝑖𝑛𝑡 ∈ 𝑂(3)/𝑔𝑆𝑝𝑜𝑖𝑛𝑡  be a crystal orientation, ℎ𝑆𝑝𝑜𝑖𝑛𝑡 ∈ 𝕊
2/𝑆𝑠𝑝𝑎𝑐𝑒 a class 

of crystallographically equivalent crystal directions and ℎ ∈ 𝕊2 a specimen 

direction. Then 𝑟 represents a direction identical to one of the directions 

represented by the class ℎ𝑆𝑠𝑝𝑎𝑐𝑒 if and only if 

ℎ𝑆𝑝𝑜𝑖𝑛𝑡 = (𝑔𝑆𝑝𝑜𝑖𝑛𝑡)
−1
𝑟 

Consider a one–type, polycrystalline specimen, i.e. a compound of identical 

crystals all possessing the same point group 𝑆𝑝𝑜𝑖𝑛𝑡 ⊆ 𝑂(3). Next we assume that 

each crystal has a well-defined crystal orientation 𝑔𝑆𝑝𝑜𝑖𝑛𝑡 ∈ 𝑂(3)/𝑔𝑆𝑝𝑜𝑖𝑛𝑡  
relative to the specimen thus neglecting e.g. internal crystal defects. Then, if one 

denotes 𝑑𝑉 the volume elements of the sample which possess the orientation g 

within the element of orientation 𝑑𝑔, and denotes the 𝑉 the total sample volume, 

then, an orientation distribution function 𝑓(𝑔), is defined by 𝑓(𝑔) =
𝑑𝑉/𝑉

𝑑𝑔
 where 

𝑑𝑔 = 1/(8𝜋2) 𝑠𝑖𝑛𝜙𝑑𝜑1𝑑𝜙𝑑𝜑2.  

. More abstractly we define  
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Definition 4.1. Let 𝑂(3)/𝑆𝑝𝑜𝑖𝑛𝑡  be a point group and let 𝑓:𝑂(3)/𝑆𝑝𝑜𝑖𝑛𝑡 ⟶

ℝ+ a non–negative, integrable function on 𝑂(3)/𝑆𝑝𝑜𝑖𝑛𝑡  normalized to1 
1

16𝜋2
∫ 𝑓(𝑔𝑆𝑝𝑜𝑖𝑛𝑡)𝑑𝑔 = 1𝑂(3)

. 

Then 𝑓 is called orientation density function (ODF). 
 

Beside the distribution of crystal orientations within a specimen one can also 

ask for the distribution of crystal directions that are in line with a certain specimen 

direction modulo crystal symmetry. To be more precise let us fix a specimen 

direction 𝑟 ∈ 𝕊2. Then any distribution of crystal orientations 𝑔𝑆𝑝𝑜𝑖𝑛𝑡 ∈

𝑂(3)/𝑔𝑆𝑝𝑜𝑖𝑛𝑡  constitutes by virtue of the mapping 𝑔𝑆𝑝𝑜𝑖𝑛𝑡 ⟼ (𝑔𝑆𝑝𝑜𝑖𝑛𝑡)
−1
𝑟 a 

distribution on the classes of crystallographically equivalent crystal directions  

𝕊2/𝑆𝑠𝑝𝑜𝑖𝑛𝑡 .  
 

Lemma 4.2. (fundamental equation of texture analysis). Let 𝑆𝑝𝑜𝑖𝑛𝑡 ⊆ 𝑂(3) be 

some point group and let 𝑓 ∈ 𝐿1(𝑂(3)/𝑆𝑝𝑜𝑖𝑛𝑡) be the ODF of a probability 

measure 𝜇 on 𝑂(3)/𝑆𝑝𝑜𝑖𝑛𝑡 . Then the mapping  

𝜋: 𝑂(3)/𝑆𝑝𝑜𝑖𝑛𝑡 ⟶ 𝕊2/𝑆𝑝𝑜𝑖𝑛𝑡 ,    𝑔𝑆𝑝𝑜𝑖𝑛𝑡 ⟼ (𝑔𝑆𝑝𝑜𝑖𝑛𝑡)
−1
𝑟  

is measurable for any 𝑟 ∈ 𝕊2 and the induced measure 𝜇 ∘ 𝜋−1 on 𝕊2/𝑆𝑝𝑜𝑖𝑛𝑡  has 

the probability density function 

 𝑥𝑓(. , 𝑟) ∈ 𝐿1(𝑂(3)/𝑆𝑝𝑜𝑖𝑛𝑡), 

where the operator 𝑥 is defined as following 

𝑥: 𝐶(𝑂(3)) ⟶ 𝐶(𝕊2 × 𝕊2) 

𝑥𝑓(ℎ, 𝑟) =
1

2
(ℛ𝑓(ℎ, 𝑟, 𝐼𝑑) + ℛ𝑓(ℎ, 𝑟, −𝐼𝑑)) 

. 

And ℛ denotes the Radon transform on 𝑂(3).  

Definition 4. 3 . Let 𝑓 ∈ 𝐿1(𝑂(3)/𝑆𝑝𝑜𝑖𝑛𝑡) be an ODF. Then the function 

𝑥𝑓 ∈ 𝐿1(𝕊2/𝑆𝑠𝑝𝑜𝑖𝑛𝑡 × 𝕊
2) 

is called pole density function (PDF) corresponding to 𝑓. For any ℎ, 𝑟 ∈ 𝕊2 the 

trace functions 𝑥𝑓(𝑆𝑠𝑝𝑜𝑖𝑛𝑡ℎ, . ) ∈ 𝐿
1(𝕊2), 𝑥𝑓(. , 𝑟) ∈ 𝐿1(𝕊2/𝑆𝑠𝑝𝑜𝑖𝑛𝑡) are called 

pole figure and inverse pole figure, respectively. The PDF defined by an ODF 

𝑓 ∈ 𝐿1(𝑂(3)/𝑆𝑝𝑜𝑖𝑛𝑡) is commonly denoted by the letter 𝑝 = 𝑥𝑓. This 
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relationship between an ODF and its PDF is known as the fundamental equation 

of texture analysis and is due to Bunge (1965), Roe (1965) and others. 

Remark 4. 4. Although the ODF and the PDF are defined on the factor 

spaces 𝑥𝑓 ∈ 𝐿1(𝕊2/𝑆𝑠𝑝𝑜𝑖𝑛𝑡 × 𝕊
2) 𝑂(3)/𝑆𝑠𝑝𝑜𝑖𝑛𝑡  and 𝕊2/𝑆𝑠𝑝𝑜𝑖𝑛𝑡 × 𝕊

2, 

respectively, we will treat them sometimes as functions defined on 𝑂(3) and 𝕊2 ×

𝕊2 possessing for any 𝑔 ∈ 𝑂(3), ℎ, 𝑟 ∈ 𝕊2 and  𝑞 ∈ 𝑆𝑠𝑝𝑜𝑖𝑛𝑡  the symmetry 

properties 𝑓(𝑔) = 𝑓(𝑔𝑞) and 𝑃(ℎ, 𝑟) = 𝑃(𝑞ℎ, 𝑟), respectively. While the ODF 

of an specimen is not directly accessible, the PDF 𝑃(ℎ, 𝑟) of a specimen can be 

determined for specific crystal and specimen direction ℎ, 𝑟 ∈ 𝕊2 by diffraction 

techniques.  

If one denotes 𝑑𝑉 the volume elements of the sample which possess the 

orientation g within the element of orientation 𝑑𝑔, and denotes the 𝑉 the total 

sample volume, then, an orientation distribution function 𝑓(𝑔), is defined by 

𝑓(𝑔) =
𝑑𝑉/𝑉

𝑑𝑔
 where 𝑑𝑔 = 1/(8𝜋2) 𝑠𝑖𝑛𝜙𝑑𝜑1𝑑𝜙𝑑𝜑2. The function 𝑓(𝑔), which 

depends on the orientation 𝑔, can be developed in a series of generalized spherical 
harmonics 

𝑓(𝜑1, 𝜑, 𝜑2) =∑ ∑ ∑ 𝑤𝑙𝑚𝑛𝑧𝑙𝑚𝑛(𝜑)

+𝑙

𝑚=−𝑙

+𝑙

𝑛=−𝑙

∞

𝑙=0

𝑒−𝑖(𝑚𝜑1+𝑛𝜑2). 

Where 𝑤𝑙𝑚𝑛 are the coefficients of the series of generalized spherical harmonics. 

𝑧𝑙𝑚𝑛(𝜑) are the certain generalizations of the associated Jacob function. 

Mathematical methods have been developed that allow an ODF to be calculated 
from numerical data obtained from several experimental pole figures. 

The problem of estimation of the true ODF from PDF is known as the PDF–to–

ODF inversion problem. In the next work we will introduce an efficient family 
of harmonic function to solve the PDF–to–ODF inversion problem. 

 Serial femtosecond X-ray crystallography has created new opportunities in the 

field of structural analysis of protein. Contrary to conventional protein 

crystallography, recent experiments are performed 1) on multiple crystals with 
random sizes and orientations delivered via a liquid jet, rather than on a single 

mounted rotating crystal, and 2) with the crystals immersed in a large-diameter 

beam, rather than the beam being confined to the interior of the input facet. In the 
future research we will propose an algorithm to estimation of the true ODF from 

PDF in the Nano crystallography framework. 
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