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Abstract: PT-Symmetry is one of the interesting topics in quantum mechanics and 

optics. One of the demonstration of PT-Symmetric effects in optics is appeared in the 

nonlinear directional coupler (NLDC). In the paper we numerically investigate the 

stability of temporal bright solitons propagate in a PT-Symmetric NLDC by considering 

gain in bar and loss in cross. By using the analytical solutions of perturbed eigenfunctions 

and corresponding eigenvalues the stability of temporal bright solitons is studied 

numerically. Three perturbed eigenfunctions corresponding to the two eigenvalues are 

examined for stability. The results show that the two degenerate eigenfunctions are 

unstable while other one is stable which have important result that the eigenfunctions are 

equilibrium function but not stable for all cases. Stability is tested by using energy of 

perturbed soliton that propagate thought the length of NLDC. In addition, the behavior of 

solitons under instable perturbation in a PT-Symmetric NLDC can be used to design 

integrated optics at Nano scales, for ultrafast all optical communication systems and logic 

gates. 
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1. INTRODUCTION  

 

Pulse transmission in the nonlinear optical waveguides and fibers is governed by 
the nonlinear Schrodinger (NLS) equations. NLSs are integrable equations that 

support soliton solutions [1]. Solitons are solitary waves with notable stability 
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properties. Solitons arise in many areas of physics, optical solitons have many 

applications in optical fibers communications, all-optical switching systems, 
lasers and use to transmit digital signals over long distances [2-5]. Since they 

were first observed and described by Russell [6], many experiments and 

remarkable mathematical theories have been developed to describe and study of 
their properties [7,8]. Although the NLSs are integrable but when the higher order 

term such as third order dispersion (TOD), self-steepening, Raman gain are 

brought into consideration, make them to be not integrable [9]. For instance, 

bright solitons in PT-Symmetric nonlinear directional couplers (NLDC) are not 

integrable [10] and the Hamiltonian of these systems is non- Hermitian. In 1998 

Bender and Butcher found a unique remarkable phenomenon that even non-
Hermitian Hamiltonians can still have completely real eigenvalue spectra if they 

respect parity-time (PT) symmetry [11]. From then on, the unique properties of 

PT- symmetric systems have drawn considerable attention in both quantum 

mechanics and optics [12]-[16]. 

We study the stability of soliton in PT- Symmetric NLDC by using soliton 

perturbation method. In this method, first by linearizing the nonlinear-coupled 

equations around a soliton solution a set of eigenvalue equations are obtained. 

The eigenvalue equations solve analytically. The perturbed eigenfunctions should 
be tested numerically to clarify the stability or instability [17]. We will use the 

energy and shape of the perturbed solitons for study the stability in a PT-

symmetric NLDC with more precision. NLDC at Nano scales, is recently 

designed by nanowires [18]. 
 

2. THEORY  

A. Perturbation method 

The nonlinear-coupled equations for a PT-Symmetric NLDC with gain and loss 

are: 

2

z

2

z

iu u 2 | u | u = v i u,

iv v 2 | v | v = u i v.





    

    
 (1) 

Where, u  and v  are the normalized slowly varing amplitude at bar and cross 

fiber coupler waveguides, z and   indicate the length of fiber and normalized 

time, respectively. 

To satisfy the PT-symmetric condition, we assume that the group velocities and 

the second-order dispersions in fibers are matched. We normalize the coefficients 
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of u  and v
 to unity, and hence, two waveguides have the same Kerr nonlinear 

coefficients. 
In Eq.(1), the first term in the right hand side is related to coupling between the 

modes propagating in two fiber waveguides and   terms stand for the gain in one 

fiber and loss in the other. Without loss of generality,  can be considered to be 

positive which means that the gain is supposed to be in bar fiber and loss in cross 

one. To confirm the PT-symmetric condition, the gain and loss coefficients must 

be equal [12].  

Equation (1) has solitons solutions as the following: 

  

    2, z = asech(a )exp ia z    

Now we study the propagation of bright soliton under small perturbations. In the 

presence of perturbations, the behavior of soliton and the soliton energy is 

changed thought the propagation. Let add a small perturbation to the soliton 

solution of Eq. (1) as following: 
 
U( ,z) ( , z) U( ,z),

V( ,z) ( , z) V( ,z)

      

      
  (2) 

Substituting Eq. (2) into Eq. (1) leads to: 
 

 

 

2

z

2

z

iU U U 2 | U | U = cos V i U V ,

iV V V 2 | V | V = cos U i U V .





       

       
 (3) 

Using a set of combinations as: 

 

U V U V
p = , q =

2 2

    
 (4) 

In addition, according to standard perturbation analysis, expanding solutions p  

and q  into the following forms [14]: 

 

1 2 1 2

1 2 1 2

p = exp( t)[(p ip )cos t (p ip )sin t],

q = exp( t)[(q iq )cos t (q iq )sin t].

        

        
 (5) 

Where: 
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 1 1 1 2 2 2

1 1 1 2 2 2

p = p ip , p = p ip

q = q iq , q = q iq ,

    

    
  

Two eigenvalue equations obtain by substituting Eq. (2) into Eq. (3) by neglecting 

the higher order terms include multiple of perturbation terms:  

(L cos )p 2 Jq = Jp,

(L cos )q = Jq.

    

  
 (6) 

The operator L is determined as: 

 

 

2
2

2

2
2

2

d
6 0

d
L =

d
0 2

d

 
  

 
 

  
 

 , 

J is a skew-symmetric matrix: 
 

 
0 1

J =
1 0

 
 
 

  

By solving Eq. (6), the analytic eigenfunctions and their corresponding 

eigenvalues are obtained as: 
 

 

0

2

1

2

y = sech(a ), = 0

y = (a ), = 3sech

y = sech(a )tanh(a ), = 0

 

  

  

  

The evolution of energies of propagating solitons in the bar and cross in a PT-

symmetric NLDC, are needed to investigate the stability of soliton. 

The associated puls energies in bar and cross of a PT-symmetric NLDC are: 

 
2 2

u vE = | u | d , E = | v | d    (7) 

We define normalized energy in the bar and cross as the ratio of output energy 

to the input energy: 
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2 2

u v2 2

| u(L, ) | d | v(L, ) | d
e = , e =

| u(0, ) | d | v(0, ) | d

   

   

 

 
. (8) 

If the normalized energy is exceeded than one, gain is dominant; on the other 
hand, if the normalized energy were less than one, loss is dominant. If the 

normalized energy of the soliton is exceeded than one or less than one, the soliton 

is instable. In the case of normalized energy of propagated pulse in the length of 

NLDC equal to one the stability of pulse may be achieved. It is possible that the 
energy of pulse remain constant but the shape of pulse to be altered. In this case, 

if the shape of pulse is repeated at some interval, soliton is stable. For study the 

stability, we consider two cases shape and normalized energy. 

3. NUMERICAL RESULTS 

For studing the stability of soliton under the perturbation of eigenfunctions, we 
simulate the propagation of puturbed soliton by numerically solving Eq. (1). The 

initial condition is takan such that the purterbed eigenfunction plus following 

bright soliton is launched into the coupler: 

 

u(0, ) = sech(a ), v(0, ) = sech(a )    . (9) 

The result of simulation have two output i.e. the shape and normalized energy of 

the perturbed soliton in the length of PT- symmetric NLDC. In Fig.1 the 

pertubation eigenfunction 0y sech(a )   and its corresponding eigenvalue 0   

is considered. Figs. 1(a) and 1(b) show the evolution of perturded bright solitons 

in the bar and cross of PT-Symmetric NLDC and in Fig. 1(c) normalized energy 

of pulse is plotted for bar and cross of NLDC respectively. We can clearly obsevre 

that perturbed bright soliton at first in bar and cross propagte without any changes 

but after a while in bar ampilified and attenued in cross. As we can see in Fig. 
1(c) the ampilification and attenuationn in bar is continuse untile one of them is 

completely vanished. So these perturbed bright solitons are unstable. The usual 

way of thinking or expected is that the purturbed eigenfunction should be stable 

but the resault shows that we should be interprete the eigenfunctions as 
equilibrium eigenfunction not stable eigenfunction.  
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(a) 

 
 (b) 

 
 

(c) 
 

Fig. 1: Evaluation of shape and energy of perturbed bright soliton by 0y sech(a )   , 0   (a) 

and (b) evolution of shape of pulse for perturbed soliton in bar and cross of a PT- Symmetric 

NLDC, (c) evolution of perturbed solitons energy (solid line for bar and dashed line for cross). 

 

In Figs. (2) the second perturbation eigenfunction and its eigenvalue obtained in 

previous section, 2
1y = (a )sech  and = 3  , is applied into initial bright solitons. 

Fig. 2(a) and 2(b) show that these perturbed solitons have the same behaviour as 

perturbed bright solitons in Figs. (1), bright soliton in bar is amplified and 
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attenuation occure in cross. But the diffrence between these two figures is that in 

Figs. (2) this instability state happen sooner than in Figs. (1) and also as it is 
obvious in Fig. 2(c) amplification in bar is decresed  after a while and the rate is 

not permenet. These perturerbed bright solitons propagating in a PT- Symmetric 

NLDC with gain and loss are unstable too althogh this eigenfunction is at 

equilibrium but not stable. 

 
(a) 

 
(b) 

 
 (c) 

Fig. 2: Perturbed bright soliton by
2

1y sech (a )   , 3    (a) and (b) evolution of 

perturbed soliton in bar and cross of a PT- Symmetric NLDC, (c) Evolution of 

perturbed solitons energy (line for bar and dash-line for cross). 
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In Figs. (3), the third perturbed eigenfunction, 2y = sech(a )tanh(a )  and its 

corresponding eigenvalue = 0  is added to the initial bright soliton. The 

evolution of these perturbed solitons in a PT-Symmetric NLDC with gain and 

loss is examined in Fig. 3(a) and Fig. 3(b). As we can see, the stability durtion of 
these perturbed bright solitons is more than two others. After that the 

amplification happen in bar and attenuation occure in cross. Due to Fig. 3(c) 

evaluation of energies confirm the results in Fig. 3(a) and Fig. 3(b) and also show 
that the shape and energy of perturbed pulse remain constant. In this case the 

equilibrium eigenfunction is stable eigenfunction.  

 

 

 
Fig. 3: Perturbed bright soliton by 2y sech(a ) tanh(a )   , 0   (a) and (b) evolution of 

perturbed soliton in bar and cross of a PT- Symmetric NLDC, (c) Evolution of 

perturbed solitons energy (line for bar and dash-line for cross). 
 

(a) 

(b) 

(c) 
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Numerical method show two functions are unstable but one of them is stable. 

Although two eigenfunctions are unstable but after impose perturbation bar is 
amplified while cross is attenuated, one can interpret such behavior as switching 

behavior which control the output with applied an input weak pulse. Such 

switching behavior referred to all optical switching.  

Recently couplers are design by Nano wires. Nano wire couplers have very small 

effective area so they are efficient for designing nonlinear devices. A So a PT-

Symmetric NLDC can be designed and use for all optical switching in Nano scale.  

 

4. CONCLUSION 

In this paper we examine the stability of temporal bright solitons propagate in a 

PT-symmetric NLDC with gain and loss. Three perturbed eigenfunctions and 

corresponding eigenvalues which have been obtained by perturbation theory are 

used. By applying these small perturbation to the initial bright solitons stability 
of them are studied numerically in two ways: 1) The evolution of perturbed 

temporal bright solitons and 2) evolution of their normalized energy, in a PT-

symmetric NLDC. Three perturbed eigenfunctions corresponding to the two 
eigenvalues are examined for stability. The results show that the two degenerate 

eigenfunctions are unstable while other one is stable which have important result 

that the eigenfunctions are equilibrium function but not stable for all cases. 
Stability is tested by using energy of perturbed soliton that propagate thought the 

length of NLDC. In addition, the behavior of solitons under instable perturbation 

in a PT-Symmetric NLDC can be used to design integrated optics at Nano scales, 

for ultrafast all optical communication systems and logic gates. 
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