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Abstract  

With the growing trend in globalization and market competitiveness, process and resource 

optimization and the production of highly efficient products have become among the concerns 

of corporate managers. This research aims to evaluate and rank different polyethylene product 

grades produced at the Jam Petrochemical Complex using the Fuzzy Data Envelopment 

Analysis (FDEA) based upon fuzzy arithmetic [1]. The input-oriented fuzzy BCC model was 

suitable and applied to obtain the fuzzy efficiencies of different grades of polyethylene 

produced at the Jam Petrochemical Complex (13 DMUs) based on identified input and output 

indicators (Two inputs and three outputs). Then, a preference-degree approach is applied to 

compare and rank fuzzy DMU efficiencies. Based on the results, products HD52518, 

HD52505UV, and HM9450F were ranked first to third, respectively. The results highlight 

significant disparities in efficiency among the grades, providing a basis for targeted 

improvements. 
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1.  Introduction   

The industrialization of societies and the 

advancement of technology have 

intensified global business competition, 

necessitating the use of management 

science and process optimization to gain a 

competitive edge. In the petrochemical 

industry, specifically polyethylene 

production, assessing the efficiency of 

various product grades is crucial for 

optimizing production processes and 

maintaining market competitiveness. 

This research focuses on the polyethylene 

production units at the Jam Petrochemical 

Complex, evaluating the efficiency of 

various product grades. The Fuzzy Data 

Envelopment Analysis (FDEA) [1] is 

employed to handle the inherent 

uncertainty and fuzziness in the data, 

offering a comprehensive efficiency 

assessment. Also, this research 

demonstrates the applicability of FDEA in 

the petrochemical industry, offering a 

framework for efficiency evaluation and 

decision-making. This research aims to 

rank the different grades of polyethylene 

produced at the Jam Petrochemical 

Complex using the FDEA. By identifying 

and analyzing suitable input and output 

criteria and determining the appropriate 

FDEA model, this research seeks to 

evaluate the efficiency of each product 

grade produced in Jam Polyethylene Plants 

and provide actionable insights for process 

improvement. We could not find the use of 

FDEA to rank the efficiency of 

polyethylene grades in previously 

published research. Using FDEA for this 

purpose is the main novelty of current 

research. 

 

2.  Literature Review 

2.1. DEA and Fuzzy DEA 

DEA is a non-parametric method in 

operations research and economics for 

estimating production frontiers. Frontiers 

are applied to evaluate the efficiency of 

decision-making units (DMUs). It was 

introduced by Farrell (1957) [2] and further 

developed by Charnes, Cooper, and 

Rhodes (1978) [3]. Various theoretical 

extensions have been developed for DEA 

[4-8]. DEA allows for assessing relative 

efficiency among similar units, considering 

multiple inputs and outputs without 

requiring explicit functional forms. 

Fuzzy logic first appeared in the scene of 

new computing in 1965, following the 

introduction of the theory of fuzzy sets by 

Lotfizadeh. A well-known approach for 

determining an efficient frontier under 

uncertainty is Stochastic Frontier Analysis, 

introduced in 1977, which can identify 

efficient units by taking several inputs and 

one output. In 1990, Fare and Grosskopf 

changed the above model with more 

complexity to a model with multiple inputs 

and outputs. The complexities in this 

model made it unattractive. Cooper et al. 

(1999) introduced Imprecise Data 

Envelopment Analysis. This model can 

evaluate the performance of DMUs in the 

presence of ambiguous data. In chance-

constrained DEA, inputs are definite, and 

outputs are random. The Monte Carlo 

simulation method, introduced by some 

researchers such as Banker in 1987, was 

used in data coverage analysis. In 1998, 

Simar and Wilson used the bootstrapping 

method to introduce uncertainty in DEA by 

constructing confidence intervals 

regarding performance scores. Other 

methods in this field include regression 

analysis, statistical tolerance, and super-
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efficiency techniques such as Anderson 

and Peterson [5], Fuzzy DEA, and Gray 

DEA [9-11]. 

FDEA extends DEA by incorporating fuzzy 

set theory to handle imprecise data. It can 

be particularly beneficial in real-world 

scenarios where data uncertainty and 

ambiguity are prevalent. FDEA has been 

applied in various industries, including 

healthcare, manufacturing, and energy, to 

provide a more robust efficiency 

evaluation framework. 

 

2.2. Applications in Industry 

The application of DEA and FDEA in 

industrial contexts, especially in the 

petrochemical and polymer industries, has 

shown promising results. Studies have 

demonstrated the utility of DEA in 

evaluating operational efficiencies, 

environmental impacts, and productivity 

improvements. For example, Han et al. 

(2015) used FDEA to assess energy 

efficiency in ethylene production systems, 

highlighting significant efficiency 

variations and potential areas for 

optimization [12]. Similarly, Mardani et al. 

(2017) provided a comprehensive review 

of DEA applications in energy efficiency, 

underscoring its relevance and adaptability 

across different industrial sectors [13]. Du 

et al. have used this method to plan the 

production of various units in a central 

management system in such a way that the 

overall efficiency of the system is 

maximized [14]. Ghiyasi and Mokhberian 

(2024) rummage through the 

environmental and technical performance 

of Iranian gas refineries through the DEA 

[15]. D’Angelo et al. (2023) used the DEA 

to compare the assessed technologies in 

terms of economic and environmental life 

cycle assessment (LCA) indicators, 

ranking the different technologies and 

estimating their required improvement 

targets [16]. Tabatabaei et al. (2022) 

present a common-weights approach for a 

relational network DEA model in a fuzzy 

environment to measure the efficiencies of 

the system and the component processes in 

gas refineries [17]. Peng et al. (2021) 

present an attempt to combine the methods 

of generalized DEA and TOPSIS. By 

establishing a green material index system, 

the G-CCR model of generalized DEA was 

first used to select effective materials from 

the candidate samples, and TOPSIS was 

then used to sort the effective suppliers 

[18]. Ahmadi and Ahmadi (2012) 

evaluated the technical efficiency of 23 

industries in Iran and the overall efficiency 

of the provinces with two methods of 

output-oriented DEA [19]. Lotfi et al. 

(2013) researched measuring the 

productivity and ranking of chemical 

companies using the combination of DEA 

models and selective hierarchical analysis 

[20]. Xin and Sun (2014) have used the 

DEA method to evaluate the environmental 

level of the petrochemical industry park 

[21]. In general, the use of this method in 

ranking industries and measuring 

productivity can see in many researches  

[9, 12-13, 22-30]. 

 

3.  Methodology 

3.1. Research Design 

This research utilizes the FDEA to evaluate 

the efficiency of polyethylene product 

grades at the Jam Petrochemical Complex 

(Figure 1). The FDEA is applied for its 

ability to handle data uncertainty, 

providing a more accurate efficiency 

assessment. 

 

https://www.sciencedirect.com/topics/computer-science/life-cycle-assessment
https://www.sciencedirect.com/topics/computer-science/life-cycle-assessment
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3.2. Expert team formation 

An expert team was formed consisting of 

professionals based on the following 

characteristics:   

– Familiarity with the production, sale, 

purchase, repair, and maintenance 

processes. 

 

Figure 1. Methodology Diagram 

– Familiarity with production grades in 

polyethylene plants. 

– Knowledge of financial indicators in 

calculating the cost of products. 

– Work experience. 

– The degree of influence. 

 

3.3.  Identification and finalization of 

DMUs, inputs and outputs 

By considering production history, 

processed data, and experts' opinions, 

DMUs can identified. 

The initial list of inputs and outputs can 

identify through literature review. Then, a 

questionnaire can create and given to the 

experts to collect their opinions. Experts' 

views can collect through descriptive 

variables in the consensus meeting. Then, 

the final list of inputs and outputs can 

identify considering experts' views.   

 

3.4.  Data gathering and determining the 

appropriate FDEA model 

The value of inputs and outputs should be 

in triangular fuzzy number (TFN) format. 

At this stage, first, the TFNs of the inputs 

and outputs of each DMU should 

determine. The TFN DMUs' data gathering 

for inputs and outputs can done by 

considering production history, processed 

data, and experts' opinions considering the 

nature of inputs and outputs. 

Then, the appropriate FDEA model should 

determine. Some features of DEA models 

are mentioned in [36].  

There are three types of DEA models. In 

the input-oriented DEA models, the DMUs 

reach the efficient frontier by decreasing 

input without increasing output values. In 

the output-oriented DEA models, the 

DMUs reach the efficient frontier by 

increasing output without decreasing input 

values. In input-output-oriented DEA 

models, efficient DMUs drive the efficient 

frontier by reducing input and increasing 

output values. So, to determine suitable 

DEA models, defining the type of return to 

scale (such as fixed or variable) and the 

nature of the model (such as input-oriented 

or output-oriented) are necessary. 

In radial DEA models (CCR models), 

inputs and outputs have to decrease or 

increase with the same ratio, but in 

nonradial models (such as BCC models), 

the change of ratios can be different. 

 

3.5.  Fuzzy DEA Analysis upon fuzzy 

arithmetic 

We applied FDEA according to [31]. The 

FDEA provides methods to build models 

and rank the DMUs based on the obtained 

efficiencies. This method has been used in 

Expert team formation

Identification and finalization of 
DMUs, inputs and outputs

Data gathering and determining 
the appropriate FDEA model

Fuzzy DEA Analysis upon fuzzy 
arithmetic
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many academic studies by many 

researchers. For example, we can refer to 

Abbasi and Kaviani (2016)[9], Arana-

Jiménez et al. (2022)[32], Bagheri et al. 

(2022)[33], and Akram et al. (2023)[34-

35].  

 

3.5.1. Fuzzy DEA model based upon 

fuzzy arithmetic 

A fuzzy number is a convex fuzzy set 

defined by a specific range of real numbers, 

where each number has a membership 

grade between 0 and 1. TFNs are the most 

widely used type, with their membership 

functions defined accordingly. 

𝜇𝐴(𝑥) = {

(𝑥 − 𝑎) (𝑏 − 𝑎),             𝑎 ≤ 𝑥 ≤ 𝑏⁄
(𝑑 − 𝑥) (𝑑 − 𝑏),             𝑏 ≤ 𝑥 ≤ 𝑑⁄

0,                                         otherwise
  (1) 

TFNs are often represented as (a, b, d) to 

keep things brief. 

Consider a scenario with n DMUs, m 

inputs, and s outputs. Let xij (i=1, …, m) 

and yrj (r=1, …, s) represent the input and 

output data for DMUj (j=1, …, n). Without 

loss of generality, we assume all input and 

output data xij and yrj are uncertain and 

characterized by TFNs �̃�𝑖𝑗 = (𝑥𝑖𝑗
𝐿 , 𝑥𝑖𝑗

𝑀 , 𝑥𝑖𝑗
𝑈) 

and �̃�𝑟𝑗 = (𝑦𝑟𝑗
𝐿 , 𝑦𝑟𝑗

𝑀 , 𝑦𝑟𝑗
𝑈 ), where xij

L>0 and 

yrj
L>0 for i = 1, . . .,m; r = 1, . . ., s and 

 j = 1, . . .,n. It is mentionable that crisp 

input and output data are treated as a 

special case of TFNs input (�̃�𝑖𝑗), and TFNs 

output (�̃�𝑟𝑗 ), where 𝑥𝑖𝑗
𝐿 = 𝑥𝑖𝑗

𝑀 = 𝑥𝑖𝑗
𝑈  and  

𝑦𝑟𝑗
𝐿 = 𝑦𝑟𝑗

𝑀 = 𝑦𝑟𝑗
𝑈 . The efficiency of DMUj 

is defined as follows: 

�̃�𝑗 = ∑ 𝑢𝑟�̃�𝑟𝑗
𝑠
𝑟=1 ∑ 𝑣𝑖�̃�𝑖𝑗

𝑚
𝑖=1⁄   (2) 

This fuzzy number is referred to as fuzzy 

efficiency, where ur (r = 1, . . ., s) and  

vi (i = 1, . . ., m) represent the weights 

assigned to the outputs and inputs, 

respectively. Based on fuzzy arithmetic, 

the fuzzy efficiency defined in Equation (2) 

can expressed as follows: 

�̃�𝑗 =
∑ 𝑢𝑟[𝑦𝑟𝑗

𝐿 , 𝑦𝑟𝑗
𝑀 , 𝑦𝑟𝑗

𝑈 ]𝑠
𝑟=1

∑ 𝑣𝑖[𝑥𝑖𝑗
𝐿 , 𝑥𝑖𝑗

𝑀, 𝑥𝑖𝑗
𝑈]𝑚

𝑖=1

=
∑ 𝑢𝑟𝑦𝑟𝑗

𝐿𝑠
𝑟=1 , ∑ 𝑢𝑟𝑦𝑟𝑗

𝑀𝑠
𝑟=1 , ∑ 𝑢𝑟𝑦𝑟𝑗

𝑈𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗
𝐿𝑚

𝑖=1 , ∑ 𝑣𝑖𝑥𝑖𝑗
𝑀𝑚

𝑖=1 , ∑ 𝑣𝑖𝑥𝑖𝑗
𝑈𝑚

𝑖=1

≈ [
∑ 𝑢𝑟𝑦𝑟𝑗

𝐿𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗
𝑈𝑚

𝑖=1

,
∑ 𝑢𝑟𝑦𝑟𝑗

𝑀𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗
𝑀𝑚

𝑖=1

,
∑ 𝑢𝑟𝑦𝑟𝑗

𝑈𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗
𝐿𝑚

𝑖=1

] 

(3) 

To evaluate the fuzzy efficiency of DMUj 

in comparison to the other DMUs, we can 

impose the condition �̃�𝑗 ≤ 1 for all j = 1, . 

. ., n. Using these constraints, the following 

fuzzy DEA model is developed to assess 

the performance of each DMU: 

𝑀𝑎𝑥 �̃�0 ≈ [𝜃0
𝐿 , 𝜃0

𝑀 , 𝜃0
𝑈]

= [
∑ 𝑢𝑟𝑦𝑟0

𝐿𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖0
𝑈𝑚

𝑖=1

,
∑ 𝑢𝑟𝑦𝑟0

𝑀𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖0
𝑀𝑚

𝑖=1

,
∑ 𝑢𝑟𝑦𝑟0

𝑈𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖0
𝐿𝑚

𝑖=1

], 
(4) 

Subjected to 

�̃�𝑗 ≈ [𝜃𝑗
𝐿 , 𝜃𝑗

𝑀, 𝜃𝑗
𝑈]

= [
∑ 𝑢𝑟𝑦𝑟𝑗

𝐿𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗
𝑈𝑚

𝑖=1

,
∑ 𝑢𝑟𝑦𝑟𝑗

𝑀𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗
𝑀𝑚

𝑖=1

,
∑ 𝑢𝑟𝑦𝑟𝑗

𝑈𝑠
𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗
𝐿𝑚

𝑖=1

] ≤ 1, 

   𝑗 = 1 , … , 𝑛, 

𝑢𝑟 , 𝑣𝑖  ≥ 0,          𝑖 = 1, … ,𝑚; 𝑟 = 1,… , 𝑠, 

where the subscript zero denotes the DMU 

being evaluated, i.e. DMU0. 

The fuzzy model (4) can simplified into 

three fractional programming models 

(models (5)-(7)). 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝜃0
𝐿 =

∑ 𝑢𝑟𝑦𝑟0
𝐿𝑠

𝑟=1

∑ 𝑣𝑖𝑥𝑖0
𝑈𝑚

𝑖=1

, (5) 

Subjected to 

𝜃𝑗
𝑀 =

∑ 𝑢𝑟𝑦𝑟𝑗
𝑀𝑠

𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗
𝑀𝑚

𝑖=1

≤ 1,    𝑗 = 1 , … , 𝑛,  

𝑢𝑟 , 𝑣𝑖  ≥ 0,          𝑖 = 1, … ,𝑚; 𝑟 = 1,… , 𝑠, 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝜃0
𝑀 =

∑ 𝑢𝑟𝑦𝑟0
𝑀𝑠

𝑟=1

∑ 𝑣𝑖𝑥𝑖0
𝑀𝑚

𝑖=1

, (6) 
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Subjected to 

𝜃𝑗
𝑀 =

∑ 𝑢𝑟𝑦𝑟𝑗
𝑀𝑠

𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗
𝑀𝑚

𝑖=1

≤ 1,    𝑗 = 1 , … , 𝑛,  

𝑢𝑟 , 𝑣𝑖  ≥ 0,          𝑖 = 1, … ,𝑚; 𝑟 = 1,… , 𝑠, 
 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝜃0
𝑈 =

∑ 𝑢𝑟𝑦𝑟0
𝑈𝑠

𝑟=1

∑ 𝑣𝑖𝑥𝑖0
𝐿𝑚

𝑖=1

, (7) 

Subjected to 

𝜃𝑗
𝑀 =

∑ 𝑢𝑟𝑦𝑟𝑗
𝑀𝑠

𝑟=1

∑ 𝑣𝑖𝑥𝑖𝑗
𝑀𝑚

𝑖=1

≤ 1,    𝑗 = 1 , … , 𝑛,  

𝑢𝑟 , 𝑣𝑖  ≥ 0,          𝑖 = 1, … ,𝑚; 𝑟 = 1,… , 𝑠, 

Then, fractional models (5)-(7) can be 

converted to three linear programming 

models considering features of suitable 

DEA models. By solving the three linear 

programming models for each DMU, we 

obtain the TFN of DMUs. 

3.5.2. A preference degree approach to 

compare and rank fuzzy efficiencies 

Obtained TFNs can be applied to compare 

and rank the DMUs.  Let �̃� = (𝑎𝐿 , 𝑎𝑀 , 𝑎𝑈) 

and �̃� = (𝑏𝐿, 𝑏𝑀 , 𝑏𝑈)  represent two 

triangular fuzzy efficiencies (TFNs). 

𝑃(�̃� > �̃�) can calculated by Eq. (8).

 

𝑃(�̃� > �̃�) =

{
  
 

  
 
1, 𝑖𝑓 𝑎𝐿 ≥ 𝑏𝑈
0, 𝑖𝑓 𝑎𝑈 ≤ 𝑏𝐿

(𝑎𝑈 − 𝑏𝐿)
2

(𝑎𝑈 − 𝑏𝐿 + 𝑎𝑀 − 𝑏𝑀)(𝑎𝑈 − 𝑎𝐿 + 𝑏𝑈 − 𝑏𝐿)
, 𝑖𝑓 (𝑎𝑈 > 𝑏𝐿) ∩ (𝑎𝑀 ≤ 𝑏𝑀)

1 −
(𝑏𝑈 − 𝑎𝐿)

2

(𝑏𝑈 − 𝑎𝐿 + 𝑎𝑀 − 𝑏𝑀)(𝑎𝑈 − 𝑎𝐿 + 𝑏𝑈 − 𝑏𝐿)
,  𝑖𝑓 (𝑎𝑀 > 𝑏𝑀) ∩ (𝑎𝐿 < 𝑏𝑈)

 (8) 

To establish a complete ranking order for 

these fuzzy efficiencies, follow these steps: 

1. Calculate the Degree of Preference 

Matrix: 

Eq. (9) shows the format of the Degree of 

Preference Matrix (𝑀𝑝).  

𝑀𝑝 =

.

�̃�1

�̃�2

⋮

�̃�𝑛

�̃�1 �̃�2 … �̃�𝑛

[
 
 
 
 
− 𝑝12 … 𝑝1𝑛

𝑝21 − … 𝑝2𝑛

⋮ ⋮ ⋮ ⋮

𝑝𝑛1 𝑝𝑛2 … − ]
 
 
 
 
 (9) 

while 𝑝𝑖𝑗 = 𝑝(�̃�𝑖 > �̃�𝑗) (𝑖, 𝑗 = 1,… , 𝑛) 

calculated by Eq. (8). 

2. Identify the Leading Fuzzy Efficiency: 

Find a row in the degree of preference 

matrix where all elements, except for the 

diagonal element, are greater than or equal 

to 0.5. If this row corresponds to �̃�𝑖, �̃�𝑖 has 

the highest fuzzy efficiency. 

3. Update the Matrix: Remove the iii-th 

row and iii-th column (thus removing �̃�𝑖 ) 
from the matrix. In the reduced matrix, if 

�̃�𝑗 appears as the highest fuzzy efficiency 

among the remaining ones, rank �̃�𝑗  in the 

second place. 

�̃�𝑖 >⏞

𝑝𝑖𝑗

�̃�𝑗  if 𝑝𝑖𝑗 > 0.5  or �̃�𝑖~�̃�𝑗  if 𝑝𝑖𝑗 =

𝑝𝑗𝑖 = 0.5. 

4. Iterate for Remaining Efficiencies: 

Remove the j-th row and j-th column from 

the reduced matrix and repeat the process 

until all fuzzy efficiencies are ranked 

appropriately. 
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4.  Results 

4.1.  Expert team 

Fourteen people working in the 

petrochemical field (considering Section 

3.1 characteristics) were selected as an 

expert team (Table 1). 

Table 1. Expert team specifications 

Exp. 

No. 
Responsibilities 

1 Factory manager 

2 Technical assistant of factory manager 

3 Chief of integrated planning 

4 Head of sales and marketing 

5 Head of operation 

6 Head of strategic planning 

7 Head of management information 

8 Head of Technical Services 

9 Head of process engineering 

10 Head of production planning 

11 
Head of technical, economic, and financial 

evaluation of projects and plans 

12 Head of HDPE plant 

13 Head of LLDPE plant 

14 Deputy of operation 

 

4.2.  DMUs, inputs and outputs 

According to production history, processed 

data, and experts' opinions, 13 DMUs are 

identified (Table 2). 

Table 2. DMUs 

DMU Plant Grade name 

1 HDPE CRP100 B 

2 HDPE CRP100 N 

3 LLDPE HD5000S 

4 LLDPE HD52505UV 

5 LLDPE HD52518 

6 LLDPE HD60507 UV 

7 HDPE HF4760 (BL3) 

8 HDPE HM5010T2N (EX3) 

9 HDPE HM9450F (EX5) 

10 HDPE HM8355 (BL4) 

11 LLDPE LL22501AA 

12 LLDPE LL22501KJ 

13 LLDPE MD38504UV 

The selection criteria for input and output 

indicators included relevance to production 

efficiency, data availability, and the ability 

to capture accurately the performance of 

different polyethylene grades. In these 

regards, data was collected from the Jam 

Petrochemical Complex, focusing on 

various grades of polyethylene products to 

distinguish inputs and outputs. We finally 

identified the input and output indicators 

through a review of production processes 

and consultations with experts (Table 3). 

 

Table 3- Indicator data sources 

Indicator Unit Required data Data provider 

Utility 

consumption 
Gj/day Utility consumption 

Process engineering, production control, 

management information, and energy. 

Operational 

difficulty 
- 

Questionnaire, non-conforming 

product amount, maintenance, and 

process problems.  

Maintenance, operation, process 

engineering, and management 

information. 

Amount of 

product 
Ton/day The amount of product 

Process engineering, production control, 

management information 

Gross profit $/day 
Price and quantity of raw materials, 

chemicals, utilities, and products 

Sales, process engineering, finance, 

management information, NPC. 

Market demand - Questionnaire 
Marketing and sales data, management 

information. 

 

Then, the identification of inputs and 

outputs was necessary. So, we created a 

suitable questionnaire based on a literature 

review. Then, according to the results 

obtained from the completed 

questionnaires, as shown in Tables 4 and 
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5, "utility consumption" and "operational 

difficulty" were identified as inputs, and 

"product quantity", "gross profit" and 

"market demand" as outputs. 

Table 4. Inputs 

I Name Description Unit 

1 
Utility 

consumption 

They aren’t used directly in 

the production process, such 

as water, electricity, steam, 

air, nitrogen, cooling water, 

etc. 

Gj/day 

2 
Operational 

difficulty 

Factors that stop/reduce 

production, create process 

problems, produce 

inconsistent products, clog 

lines and equipment, and 

increase the number of 

maintenance operations. 

- 

Table 5. Outputs 

O Name Description Unit 

1 
Product 

quantity 
The amount of each grade. Ton/day 

2 
Gross 

profit 

The product sales price 

subtraction from the cost of 

feed, chemicals and utility 

services. 

$/day 

3 
Market 

demand 

The amount of product 

demand in the market. 
- 

 

4.3. Inputs' TFNs, outputs' TFNs, and 

appropriate DEA models 

We identified the TFN of inputs and 

outputs according to processed data and 

experts' opinions. 

Through data processing based on DMUs, 

the data was validated, sorted, summarized, 

aggregated, and classified. We analyzed I1, 

O1, and O2 values presented on different 

days (quantitative data) using SPSS 

software. In this regard, the minimum, 

average, and maximum values obtained 

from the output of SPSS software were 

considered as the lower, middle, and upper 

limit values of TFNs, respectively. 

As seen in Tables 4 and 5, the value of 

inputs and outputs in the last column is "-" 

(I2 and O3) because the variable is 

descriptive and should gathered through 

experts' views. We determined the TFN of 

I2 and O3 (qualitative data) by considering 

experts' views using descriptive variables 

fuzzification (Table 6).  

Table 6. Descriptive variables fuzzification 

method 

Linguistic 

scale 

5-point 

qualitative scale 

TFN of 

I2 

TFN of 

O3 

Very Poor 1 (5, 6, 7) (1, 2, 3) 

Poor 2 (4, 5, 6) (2, 3, 4) 

Average 3 (3, 4, 5) (3, 4, 5) 

Good 4 (2, 3, 4) (4, 5, 6) 

Very Good 5 (1, 2, 3) (5, 6, 7) 

Tables 7 and 8 show the TFN of DMUs for 

inputs and outputs, respectively. 

Table 7. TFN of inputs 

DMU I1 I2 

1 (1760, 2224, 2543) (5, 6, 7) 

2 (1569, 2179, 2560) (4, 5, 6) 

3 (1972, 2179, 2297) (3, 4, 5) 

4 (1732, 2050, 2213) (1, 2, 3) 

5 (1470, 1952, 2133) (1, 2, 3) 

6 (1746, 2007, 2110) (3, 4, 5) 

7 (1497, 2157, 2614) (1, 2, 3) 

8 (1745, 2321, 2544) (3, 4, 5) 

9 (1002, 2201, 2590) (1, 2, 3) 

10 (2024, 2240, 2600) (1, 2, 3) 

11 (1875, 2128, 2260) (5, 6, 7) 

12 (1645, 2103, 2257) (5, 6, 7) 

13 (2054, 2078, 2097) (3, 4, 5) 

Table 8. TNF of outputs 

DMU O1 O2 O3 

1 (563,792,948) 
(182881,310861, 

613071) 
(5,6,7) 

2 (552,830,973) 
(52808,303440, 

584204) 
(5,6,7) 

3 (570,873,984) 
(-260,200664, 

352438) 
(3,4,5) 

4 (603,957,1074) 
(32325,141023, 

254236) 
(4,5,6) 

5 (551,969,1124) 
(-12545,139779, 

326130) 
(5,6,7) 

6 (616,926,1019) 
(92058,156842, 

230828) 
(2,3,4) 

7 (560,901,1066) 
(26409,182818, 

460306) 
(5,6,7) 

8 (615,767,841) 
(65030,183200, 

279536) 
(3,4,5) 

9 (553,901,1019) 
(83097,236039, 

492700) 
(4,5,6) 
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DMU O1 O2 O3 

10 (715,925,1028) 
(138019,191532, 

292962) 
(2,3,4) 

11 (557,851,988) 
(-6954,96209, 

210772) 
(3,4,5) 

12 (579,835,977) 
(-10869,188687, 

277715) 
(3,4,5) 

13 (922,1013,1058) 
(356674,408392, 

430647) 
(1,2,3) 

According to the properties of the case 

study and DEA models (described in 

section 3.4), a fuzzy input-oriented BCC 

model was suitable.  So, fractional models 

(5)-(7) can convert to three input-oriented 

BCC models (models (10)-(12)). 

 

 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝜃0
𝐿 = ∑ 𝑢𝑟𝑦𝑟0

𝐿𝑆
𝑟=1 − 𝑢0

𝐿 ,  (10) 

S.t. ∑ 𝑣𝑖𝑥𝑖0
𝑈𝑚

𝑖=1 = 1, 

∑ 𝑢𝑟𝑦𝑟𝑗
𝑈𝑆

𝑟=1 −∑ 𝑣𝑖𝑥𝑖𝑗
𝑈𝑚

𝑖=1 − 𝑢0
𝐿 ≤ 0,    𝑗 = 1 ,… , 𝑛,   

𝑢𝑟 , 𝑣𝑖  ≥ 0,          𝑖 = 1, … ,𝑚; 𝑟 = 1,… , 𝑠. 
 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝜃0
𝑀 = ∑ 𝑢𝑟𝑦𝑟0

𝑀𝑆
𝑟=1 − 𝑢0

𝑀,  (11) 

S.t  ∑ 𝑣𝑖𝑥𝑖0
𝑀𝑚

𝑖=1 = 1, 

∑ 𝑢𝑟𝑦𝑟𝑗
𝑈𝑆

𝑟=1 −∑ 𝑣𝑖𝑥𝑖𝑗
𝑈𝑚

𝑖=1 − 𝑢0
𝑀 ≤ 0, 𝑗 = 1 ,… , 𝑛,   

𝑢𝑟 , 𝑣𝑖  ≥ 0,          𝑖 = 1, … ,𝑚; 𝑟 = 1,… , 𝑠. 
 

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒  𝜃0
𝑈 = ∑ 𝑢𝑟𝑦𝑟0

𝑈𝑆
𝑟=1 − 𝑢0

𝑈,  (12) 

S.t  ∑ 𝑣𝑖𝑥𝑖0
𝐿𝑚

𝑖=1 = 1, 

∑ 𝑢𝑟𝑦𝑟𝑗
𝑈𝑆

𝑟=1 −∑ 𝑣𝑖𝑥𝑖𝑗
𝑈𝑚

𝑖=1 − 𝑢0
𝑈 ≤ 0,    𝑗 = 1 ,… , 𝑛,   

𝑢𝑟 , 𝑣𝑖  ≥ 0,          𝑖 = 1, … ,𝑚; 𝑟 = 1,… , 𝑠. 

4.1. Fuzzy efficiency of DMUs 

By solving models (10)-(12) for each DMU 

(with GAMS software), the TFN of DMUs 

was obtained (Error! Reference source not 

found.). 

Table 9. TFN of DMUs 

DMU 

Lower 

bound 

(Model 10) 

Middle 

value 

(Model 11) 

Upper 

bound 

(Model 12) 

1 0.394023 0.45054 1 

2 0.391406 0.459844 1 

3 0.436221 0.459844 0.508114 

4 0.452779 0.5 1 

5 0.469761 0.51332 1 

6 0.474882 0.499253 0.573883 

7 0.383321 0.5 1 

8 0.393868 0.431711 0.574212 

9 0.386873 0.5 1 

10 0.385385 0.5 1 

11 0.443363 0.470865 0.5344 

12 0.443952 0.476462 0.609119 

13 0.477826 0.482194 0.572458 

 

4.1. Ranking and interpretation of 

results 

A preference-degree approach (section 

3.5.2) was applied to rank the TFN of 

DMUs. In step 1, the matrix of the degree 

of preference is calculated by Eq. (8) for 

the fuzzy efficiencies to compare and rank 

DMUs (Table 10). 

Table 10. Matrix of the degree of preference for TFN of DMUs 

DMU 01 02 03 04 05 06 07 08 09 10 11 12 13 

01 - 0.4935 0.8182 0.4352 0.4173 0.6816 0.4669 0.7925 0.4654 0.4660 0.7705 0.6890 0.7027 

02 0.5065 - 0.8285 0.4411 0.4229 0.6903 0.4725 0.7992 0.4710 0.4716 0.7802 0.6978 0.7121 

03 0.1818 0.1715 - 0.0518 0.0266 0.0890 0.1371 0.5456 0.1330 0.1347 0.3396 0.2150 0.1047 

04 0.5648 0.5589 0.9482 - 0.4801 0.8137 0.5298 0.8932 0.5284 0.5290 0.9058 0.8093 0.8377 

05 0.5827 0.5771 0.9734 0.5199 - 0.8542 0.5490 0.9175 0.5476 0.5482 0.9372 0.8415 0.8739 

06 0.3184 0.3097 0.9110 0.1863 0.1458 - 0.2652 0.7883 0.2616 0.2631 0.7879 0.5656 0.5711 

07 0.5331 0.5275 0.8629 0.4702 0.4510 0.7348 - 0.8236 0.4986 0.4992 0.8210 0.7385 0.7570 

08 0.2075 0.2008 0.4544 0.1068 0.0825 0.2117 0.1764 - 0.1730 0.1744 0.3711 0.2806 0.2300 

09 0.5346 0.5290 0.8670 0.4716 0.4524 0.7384 0.5014 0.8270 - 0.5006 0.8250 0.7418 0.7607 

10 0.5340 0.5284 0.8653 0.4710 0.4518 0.7369 0.5008 0.8256 0.4994 - 0.8234 0.7404 0.7592 

11 0.2295 0.2198 0.6604 0.0942 0.0628 0.2121 0.1790 0.6289 0.1750 0.1766 - 0.3325 0.2539 

12 0.3110 0.3022 0.7850 0.1907 0.1585 0.4344 0.2615 0.7194 0.2582 0.2596 0.6675 - 0.4842 
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13 0.2973 0.2879 0.8953 0.1623 0.1261 0.4289 0.2430 0.7700 0.2393 0.2408 0.7461 0.5158 - 

The results of applying steps 2 to 4 are: 

5 ≻
51.99%

4 ≻
52.84%

9 ≻
50.06%

10 ≻
50.08%

7 ≻
52.75%

2 ≻
50.65%

1 

≻
68.16%

6 ≻
57.11%

13 ≻
51.58%

12 ≻
66.75%

11 ≻
66.04%

3 ≻
54.56%

8 

where 5 ≻
51.99%

4  reads as DMU5 performs 

better than DMU4 to the extent of 51.99%. 

DMU5 has the best performance, followed 

by DMUs 4, 9 and 10 (Table 11). 

Table 11. DMUs ranking 

Rank DMU Grade 
Production 

plant 

1 5 HD-52518 LLDPE 

2 4 HD-52505UV LLDPE 

3 9 HM 9450F (EX5) HDPE 

4 10 HM8355 (BL4) HDPE 

5 7 HF 4760 (BL3) HDPE 

6 2 CRP100 N HDPE 

7 1 CRP100 B HDPE 

8 6 HD-60507 UV LLDPE 

9 13 MD-38504UV LLDPE 

10 12 LL-22501KJ LLDPE 

11 11 LL-22501AA LLDPE 

12 3 HD-5000S LLDPE 

13 8 HM-5010T2N HDPE 

Now, we want to analyze the results. The 

first four grades of Table 11 (DMU5, 

DMU4, DMU9, and DMU10) are the most 

consumed products in the market, which 

allocated about 75% of the total volume 

and 72% of the production days of the 

products, while they have only 67% of the 

gross profit. The last three grades 

(DMU11, DMU3, and DMU8) account for 

8.1% of total volume, 9.6% of product 

production days, and 7.5% of gross profit. 

The above data shows that the grades with 

a high rating compared to grades with a 

low rating have a higher production 

capacity. Also, despite having fewer 

production days of high rating grades, their 

profit is less.  

Also, we compared the efficiency results 

with existing benchmarks and previous 

studies in the Jam petrochemical complex. 

The comparison validated the findings and 

highlighted the effectiveness of the FDEA 

in capturing efficiency variations. 

The efficiency scores and rankings provide 

a detailed picture of the performance of 

different polyethylene grades. The high-

performing grades demonstrate effective 

utilization of resources, while the lower-

performing grades suggest areas for 

potential improvements.  

 

5.  Conclusion 

This research applied the FDEA to evaluate 

and rank the efficiency of different 

polyethylene product grades at the Jam 

Petrochemical Complex. The findings 

revealed significant efficiency variations, 

providing actionable insights for process 

optimization. 

Future research could explore the 

application of FDEA incorporating more 

diverse and comprehensive data sets. 

Additionally, longitudinal studies could 

provide insights into efficiency trends and 

the impact of implemented improvements. 
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